1
|
Zhang J, Wang C, Shi X, Feng Q, Shen T. Preparation and Photocatalytic Performance Study of TiO 2-TMP Composites Under Effect of Crystal Structure Modulation. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2623. [PMID: 40508620 PMCID: PMC12156310 DOI: 10.3390/ma18112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/24/2025] [Accepted: 05/29/2025] [Indexed: 06/16/2025]
Abstract
Nano-titanium dioxide (TiO2) is currently the most widely studied photocatalyst. However, its rapid recombination of photogenerated carriers and narrow range of light absorption have limited its development. Crystal form regulation and polymer modification are important means for improving the photocatalytic activity of single-phase materials. In this paper, TiO2 materials of different crystal forms were prepared by changing the synthesis conditions, and they were compounded with trimesoyl chloride-melamine polymers (TMPs) by the hydrothermal synthesis method. Then, their photocatalytic performance was evaluated by degrading methylene blue (MB) under visible light. The mechanisms of influence of TiO2 crystal form on the photocatalytic activity of TiO2-TMP were explored by combining characterization and theoretical calculation. The results showed that the TiO2 crystal form, through interface interaction, the built-in electric field intensity of the heterojunction, and active sites, affected the interface charge separation and transfer, thereby influencing the photocatalytic activity of TiO2-TMP. In the 4T-TMP photocatalytic system, the degradation rate of MB was the highest. These studies provide theoretical support for understanding the structure-property relationship of the interfacial electronic coupling between TiO2 crystal forms and TMP, as well as for developing more efficient catalysts for pollutant degradation.
Collapse
Affiliation(s)
| | - Chen Wang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (J.Z.); (X.S.); (Q.F.); (T.S.)
| | | | | | | |
Collapse
|
2
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
3
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
4
|
Momin ZH, Lingamdinne LP, Kulkarni R, Pal CA, Choi YL, Yang JK, Kang SH, Chang YY, Koduru JR. Redefining water purification: gC 3N 4-CLDH's electrochemical SMX eradication. CHEMOSPHERE 2024; 362:142921. [PMID: 39053778 DOI: 10.1016/j.chemosphere.2024.142921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The contamination of water sources by pharmaceutical compounds presents global environmental and health risks, necessitating the development of efficient water treatment technologies. In this study, the synthesis, characterization, and evaluation of a novel graphitic carbon nitride-calcined (Fe-Ca) layered double hydroxide (gC3N4-CLDH) composite for electrochemical degradation of sulfamethoxazole (SMX) in water yielded significant outcomes are reported. SEM, XRD, FTIR, and XPS analyses confirmed well-defined composite structures with unique morphology and crystalline properties. Electrochemical degradation experiments demonstrated >98% SMX removal and >75% TOC removal under optimized conditions, highlighting its effectiveness. The composite exhibited excellent mineralization efficiency across various pH levels, with superoxide radicals (O2●-) and hydroxyl radicals (●OH) identified as primary reactive oxygen species. With remarkable regeneration capability for up to 7 cycles, the gC3N4-CLDH composite emerges as a highly promising solution for sustainable water treatment. Humic acid (HA) in water significantly slows SMX degradation, suggests complicating SMX degradation with natural organic matter. Despite this, the gC3N4-CLDH composite effectively degrades SMX in groundwater and industrial wastewater, with slight efficiency reduction in the latter due to higher impurity levels. These findings highlight the complexities of treating pharmaceutical pollutants in various water types. Overall, gC3N4-CLDH's high removal efficiency, broad pH applicability, sustainability, and mechanistic insights provide a solid foundation for future research and real-world environmental applications.
Collapse
Affiliation(s)
- Zahid Husain Momin
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea
| | | | - Rakesh Kulkarni
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea
| | - Chandrika Ashwinikumar Pal
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea
| | - Seon-Hong Kang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (01897), Republic of Korea.
| |
Collapse
|
5
|
Zhang J, Yang W, Liu X, Su F, Wang G, Zhan S, Li Y. Iron hydroxyphosphate electro-Fenton catalyst for efficient removal of sulfamethoxazole and resource recycling into slow-release fertiliser ammonium ferrous phosphate. ENVIRONMENTAL RESEARCH 2024; 244:117908. [PMID: 38092238 DOI: 10.1016/j.envres.2023.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Although the electro-Fenton (EF) process is effective for wastewater treatment, recycling spent catalysts remain a major challenge. Therefore, we introduce a reuse strategy for spent catalysts where an iron hydroxyphosphate [Fe5(PO4)4(OH)3·2H2O] catalyst is utilized. Fe5(PO4)4(OH)3·2H2O obtained •OH and •O2- by activating in-situ produced H2O2, and the degradation rate of sulfamethoxazole reached 94.5% after 120 min and showed excellent stability (maintained above 90%) for 10 cycles. Finally, the used catalyst was converted into slow-release ammonium ferrous phosphate (NH4FePO4·H2O) fertiliser at a conversion rate of 85.6%. NH4FePO4·H2O significantly promoted plant and seed growth within 6 days, highlighting the contribution of the resource recycling of the spent catalyst. This study serves as a valuable reference for the efficient utilization of spent catalysts. This study successfully applied EF catalysts and explored the recycling of spent catalysts.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, People's Republic of China; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xingyu Liu
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Fan Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, People's Republic of China.
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
6
|
Xue C, Ma J, Chen X, Liu D, Huang W. Efficient degradation of 2,4-dichlorophenol by heterogeneous electro-Fenton using bulk carbon aerogels modified in situ with FeCo-LDH as cathodes: Operational parameters and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119114. [PMID: 37783084 DOI: 10.1016/j.jenvman.2023.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.
Collapse
Affiliation(s)
- Cheng Xue
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianrui Ma
- China Academy of Information and Communications Technology, Beijing, 100191, China
| | - Xi Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Bilal M, Rashid EU, Munawar J, Iqbal HMN, Cui J, Zdarta J, Ashraf SS, Jesionowski T. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology. Int J Biol Macromol 2023; 237:123968. [PMID: 36906204 DOI: 10.1016/j.ijbiomac.2023.123968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Junaid Munawar
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
8
|
Priyadarshini M, Ahmad A, Ghangrekar MM. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe 3O 4@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121242. [PMID: 36758930 DOI: 10.1016/j.envpol.2023.121242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The current research demonstrates the efficiency of a low-cost MIL-53(Fe)-metal-organic framework (MOF) derived Fe3O4@C (MIL-53(Fe)@Fe3O4@C) electrocatalyst in a batch-scale electro-Fenton (EF) process for the degradation of salicylic acid (SA) from wastewater. The electrocatalyst was prepared from the combination of polyethylene terephthalate (PET) and iron scrap wastes. The result showed 91.68 ± 3.61% degradation of 50 mg L-1 of SA under optimum current density of 5.2 mA cm-2, and pH of 7.0 during 180 min of electrolysis time. The degradation of SA from waste catalyst was similar to the chemical-based MIL-53(Fe)-derived Fe3O4@C (cFe) cathode catalyst. The presence of chloride ions (Cl-) in the water matrix has shown a strong inhibitory effect on the elimination of SA, followed by nitrate (NO3-), and bicarbonate (HCO3-) ions. The multiple cyclic voltammetry (CV) analysis and reusability test of waste cathode catalyst showed only 8.03% drop of current density at the end of the 20th cycle and 5% drop of degradation efficiency after 6th cycle with low leaching of iron. The radical scavenging experiment revealed that the HO• generated via electrochemical generation of H2O2 had a prominent contribution in the removal of SA compared to HO2•/O2•-. Besides, possible catalysis mechanism and degradation pathways were deduced. Furthermore, a satisfactory performance in the treatment of SA spiked in real water matrices was also observed by waste-derived Fe3O4@C cathode catalyst (wFe). Additionally, the total operating cost and toxicity analysis showed that the as-synthesized wFe cathode catalyst could be appropriate for removing organic pollutants from wastewater in the large-scale application.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
9
|
Wang J, Liu Z, Sun Z. In-situ cathode induction of HKUST-1-derived polyvalent copper oxides in electro-Fenton systems for effective sulfamethoxazole degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Wan J, Wang L, Xu W, Xu Z, Yuan J, Zhang G. Preparation of N and Ce Co-doped MIL-101(Fe) Heterogeneous Catalysts for Efficient Electro-Fenton Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiakang Wan
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Ling Wang
- Hangzhou Special Equipments Inspection and Research Institute, Hangzhou310014, China
| | - Wentao Xu
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Zehai Xu
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Junsheng Yuan
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Guoliang Zhang
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| |
Collapse
|
12
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Heterogeneous electro-Fenton catalysis with novel bimetallic CoFeC electrode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tang L, Li M, Jiang J, Ge Y, Tang T, Xue S. Regulating the Anodic Catalytic Selectivity in Electro-Fenton Process for Enhanced Pollutant Removal. ACS ES&T ENGINEERING 2022; 2:2002-2013. [DOI: 10.1021/acsestengg.2c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Mengli Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Yun Ge
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Tian Tang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
15
|
Wang Z, Xiao F, Shen X, Zhang D, Chu W, Zhao H, Zhao G. Electronic Control of Traditional Iron-Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13740-13750. [PMID: 36130282 DOI: 10.1021/acs.est.2c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shifting four-electron (4e-) oxygen reduction in fuel cell technology to a two-electron (2e-) pathway with traditional iron-carbon electrodes is a critical step for hydroxyl radical (HO•) generation. Here, we fabricated iron-carbon aerogels with desired dimensions (e.g., 40 cm × 40 cm) as working electrodes containing atomic Fe sites and Fe3C subnanoclusters. Electron-donating Fe3C provides electrons to FeN4 through long-range activation for achieving the ideal electronic configuration, thereby optimizing the binding energy of the *OOH intermediate. With an iron-carbon aerogel benefiting from finely tuned electronic density, the selectivity of 2e- oxygen reduction increased from 10 to 90%. The resultant electrode exhibited unexpectedly efficient HO• production and fast elimination of organics. Notably, the kinetic constant kM for sulfamethoxazole (SMX) removal is 60 times higher than that in a traditional iron-carbon electrode. A flow-through pilot device with the iron-carbon aerogel (SA-Fe0.4NCA) was built to scale up micropolluted water decontamination. The initial total organic carbon (TOC) value of micropolluted water was 4.02 mg L-1, and it declined and maintained at 2.14 mg L-1, meeting the standards for drinking water quality in China. Meanwhile, the generation of emerging aromatic nitrogenous disinfection byproducts (chlorophenylacetonitriles) declined by 99.2%, satisfying the public safety of domestic water. This work provides guidance for developing electrochemical technologies to satisfy the flexible and economic demand for water purification, especially in water-scarce areas.
Collapse
Affiliation(s)
- Zining Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Xiao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuqian Shen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hongying Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
16
|
Chi C, Zhou X, Wang Y, Zhang H, Meng G, Hu Y, Bai Z. Preparation of needle coke composite cathode and its treatment of RhB wastewater. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Kuai J, Geng X, Ren X, Guo W. Enhanced electro-Fenton degradation of tetracycline in aqueous solution using a self-supported BiOCl/CF cathode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:847-860. [PMID: 36038981 DOI: 10.2166/wst.2022.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cathode material is critical to the yield of hydrogen peroxide (H2O2) and electro-Fenton (EF) performance. In this work, bismuth oxychloride (BiOCl) as one of the representatives of ternary oxides was grown in situ on carbon felt (CF) through a simple solvothermal method and employed directly as a self-standing cathode for the EF degradation of the target contaminant tetracycline (TC). TC can be almost completely degraded, up to 95% in 90 min under the heterogeneous EF process. The characterizations demonstrated that the BiOCl/CF electrode exhibited excellent conductivity due to CF as the supporting carbon material with a 3D network structure; meanwhile, this hybrid electrode also possessed abundant active sites attributed to the decorated BiOCl having rich oxygen defects. Finally, the rational reaction mechanism of TC was also elucidated by the X-ray photoelectron spectroscopy (XPS) spectrum, free radical quenching experiments and electron paramagnetic resonance (EPR) spectra, in which hydroxyl radicals (ċ OH) were considered as the dominant active oxidants and BiOCl had a synergistic effect on in-situ generation and decomposition of H2O2.
Collapse
Affiliation(s)
- Jiangshan Kuai
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail:
| | - Xiusen Geng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail:
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail:
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail:
| |
Collapse
|
18
|
Fu A, Liu Z, Sun Z. Cu/Fe oxide integrated on graphite felt for degradation of sulfamethoxazole in the heterogeneous electro-Fenton process under near-neutral conditions. CHEMOSPHERE 2022; 297:134257. [PMID: 35271897 DOI: 10.1016/j.chemosphere.2022.134257] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
In the heterogeneous electro-Fenton (EF) system, high-efficiency and durable materials have attracted widespread attention as cathodes for degradation of refractory organic pollutants. In this study, a stable Cu/Fe oxide modified graphite felt electrode (Cu0.33Fe0.67NBDC-300/GF) was fabricated via a one-step hydrothermal method and subsequent thermal treatment, which used a bimetallic metal-organic framework (MOF) with 2-aminoterephthalic acid (NH2BDC) ligand as the precursor. The Cu0.33Fe0.67NBDC-300/GF electrode was used as the cathode for sulfamethoxazole (SMX) degradation in the heterogeneous EF process. The coexistence of the FeII/FeIII and CuI/CuII redox couples significantly accelerates the regeneration of FeII and promotes the generation of active free radicals (•OH and •O2-). FeIV was detected during the process, which indicates that the high-valent iron-oxo species was produced in near-neutral pH conditions. The removal efficiency of SMX (10 mg L-1) can reach 100.0% within 75 min over a wide pH range (4.0-9.0). After five cycles, the electrode retained a high stability and an outstanding catalytic capacity. Furthermore, the mechanisms and pathways for SMX degradation were proposed, the products and intermediates of SMX were analyzed, and the toxicity was evaluated. It was found that the toxicity decreased after degradation. This study displays a novel strategy for building an efficient and stable self-supporting electrode for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Ao Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
19
|
Jiang Y, Ran J, Mao K, Yang X, Zhong L, Yang C, Feng X, Zhang H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113464. [PMID: 35395600 DOI: 10.1016/j.ecoenv.2022.113464] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The frequent use of antibiotics allows them to enter aqueous environments via wastewater, and many types of antibiotics accumulate in the environment due to difficult degradation, causing a threat to environmental health. It is crucial to adopt effective technical means to remove antibiotics in aqueous environments. The Fenton reaction, as an effective organic pollution treatment technology, is particularly suitable for the treatment of antibiotics, and at present, it is one of the most promising advanced oxidation technologies. Specifically, rapid Fenton oxidation, which features high removal efficiency, thorough reactions, negligible secondary pollution, etc., has led to many studies on using the Fenton reaction to degrade antibiotics. This paper summarizes recent progress on the removal of antibiotics in aqueous environments by Fenton and Fenton-like reactions. First, the applications of various Fenton and Fenton-like oxidation technologies to the removal of antibiotics are summarized; then, the advantages and disadvantages of these technologies are further summarized. Compared with Fenton oxidation, Fenton-like oxidations exhibit milder reaction conditions, wider application ranges, great reduction in economic costs, and great improved cycle times, in addition to simple and easy recycling of the catalyst. Finally, based on the above analysis, we discuss the potential for the removal of antibiotics under different application scenarios. This review will enable the selection of a suitable Fenton system to treat antibiotics according to practical conditions and will also aid the development of more advanced Fenton technologies for removing antibiotics and other organic pollutants.
Collapse
Affiliation(s)
- Yu Jiang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Li Zhong
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
20
|
Zhang Q, Cheng Y, Fang C, Shi J, Han H, Li M, Zhao J. Electrochemically enhanced adsorption of organic dyes from aqueous using a freestanding metal-organic frameworks/cellulose-derived porous monolithic carbon foam. BIORESOURCE TECHNOLOGY 2022; 347:126424. [PMID: 34838965 DOI: 10.1016/j.biortech.2021.126424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Monolithic carbon foams are promising materials for adsorption due to the easy recyclability and without secondary-pollution. However, poor adsorption efficiency for organic pollutants limits its practical application. Hence, this work proposed a novel monolithic porous carbon foam by a facile carbonization approach as freestanding electrodes to remove the organic dyes. The prepared carbon foam derived from waste cigarette filters and zeolitic-imidazolate frameworks-8 with well-developed pores, and the calculated surface area is 1457 m2·g-1, and exhibited an outstanding removal efficiency for methylene blue in aqueous. The maximum adsorption capacity for methylene blue can reach up to 1846.7 mg·g-1 under the applied voltage of -1.2 V. Importantly, as-prepared carbon foams possessed excellent stability, and the removal efficiency can remain above 85% after 5 cycles. Thus, obtained porous carbon foams in this paper as a free standing electrode is expected to be promising materials of adsorbent besides supercapacitors.
Collapse
Affiliation(s)
- Qingling Zhang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Youliang Cheng
- Faculty of Printing, Packaging Engineering and Digital Media, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Faculty of Printing, Packaging Engineering and Digital Media, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Jiayu Shi
- Faculty of Printing, Packaging Engineering and Digital Media, Xi'an University of Technology, Xi'an 710048, PR China
| | - Hanzhi Han
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Mengyao Li
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Jiarui Zhao
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| |
Collapse
|
21
|
Xuan F, Yan Z, Sun Z. Efficient degradation of diuron using Fe-Ce-LDH/13X as novel heterogeneous electro-Fenton catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
The Surge of Metal-Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules 2021; 26:molecules26185713. [PMID: 34577184 PMCID: PMC8467760 DOI: 10.3390/molecules26185713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Metal–organic-frameworks (MOFs) are emerging materials used in the environmental electrochemistry community for Faradaic and non-Faradaic water remediation technologies. It has been concluded that MOF-based materials show improvement in performance compared to traditional (non-)faradaic materials. In particular, this review outlines MOF synthesis and their application in the fields of electron- and photoelectron-Fenton degradation reactions, photoelectrocatalytic degradations, and capacitive deionization physical separations. This work overviews the main electrode materials used for the different environmental remediation processes, discusses the main performance enhancements achieved via the utilization of MOFs compared to traditional materials, and provides perspective and insights for the further development of the utilization of MOF-derived materials in electrified water treatment.
Collapse
|