1
|
Wang A, Wu X, Sun H, Wang N, Liu Y. Anammox at low temperature: effectiveness, mechanisms and prospect of embedding immobilization to enhance AnAOB activity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:685. [PMID: 40423700 DOI: 10.1007/s10661-025-14170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
Low temperature critically restricts the widespread application of anaerobic ammonium oxidation (anammox) in wastewater treatment by impairing microbial metabolic activity and nitrogen removal efficiency. To address this limitation, embedding immobilization technology (EIT) has emerged as a strategic approach to in-situ enhance the cryotolerance of anaerobic ammonium-oxidizing bacteria (AnAOB). Here, the efficacy of EIT in revitalizing AnAOB activity under low-temperature, with a focused analysis of its mechanisms, material innovations, and future research priorities are reviewed systematically evaluated. Mechanistic studies reveal that EIT establishes a protective microenvironment, mitigating temperature-induced physiological stress and significantly upregulating key enzymatic activities. Notably, at 10°C, EIT elevates hydrazine dehydrogenase (HDH) and hydrazine synthase (HZS) activities by 67% (0.16 μmol cytochrome-c/(min·mg protein)) and 85% (0.53 nmol/(min·mg protein)), respectively, thereby optimizing nitrogen metabolic flux, achieving stable ammonium removal efficiency (ARE) and nitrogen removal efficiency (NRE) of ~ 80% and ~ 90%, respectively, at 10-13°C. The effectiveness of EIT is intricately tied to the physicochemical and biological properties of encapsulation materials. Future advancements require targeted optimization of material stability, biocompatibility, and substrate permeability, alongside the integration of functional additives (e.g., conductive polymers, inorganic hybrids) to enhance electron transfer and long-term operational resilience. This review provides a theoretical and practical framework for the application of EIT technology in the low-temperature resistance of anammox.
Collapse
Affiliation(s)
- Aifang Wang
- School of Environmental and Chemical Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaojuan Wu
- School of Environmental and Chemical Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Hejia Sun
- School of Environmental and Chemical Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ning Wang
- School of Environmental and Chemical Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| | - Yonghong Liu
- School of Environmental and Chemical Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
2
|
Singh P, Bisen M, Kulshreshtha S, Kumar L, Choudhury SR, Nath MJ, Mandal M, Kumar A, Patel SKS. Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives. Bioengineering (Basel) 2025; 12:330. [PMID: 40281690 PMCID: PMC12024423 DOI: 10.3390/bioengineering12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research.
Collapse
Affiliation(s)
- Pradeep Singh
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shubham R. Choudhury
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Mayur J. Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Aman Kumar
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| |
Collapse
|
3
|
Elsayed A, Lee T, Kim Y. Maximizing the efficiency of single-stage partial nitrification/Anammox granule processes and balancing microbial competition using insights of a numerical model study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70059. [PMID: 40119568 PMCID: PMC11928780 DOI: 10.1002/wer.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025]
Abstract
Granulation is an efficient approach for the rapid growth of anaerobic ammonia oxidation (Anammox) bacteria (X ANA $$ {X}_{ANA} $$ ) to limit the growth of nitrite-oxidizing bacteria (X NOB $$ {X}_{NOB} $$ ). However, the high sensitivity of Anammox bacteria to operational conditions and the competition with other microorganisms lead to a critical challenge in maintaining sufficientX ANA $$ {X}_{ANA} $$ population. In this study, a one-dimensional steady-state model was developed and calibrated to investigate the kinetic constants ofX ANA $$ {X}_{ANA} $$ growth and mass transport in individual granules, including the liquid film. According to the model calibration results, the range of the maximum specific growth rate constant ofX ANA $$ {X}_{ANA} $$ (μ ANA $$ {\mu}_{ANA} $$ ) was 0.033 to 0.10 d-1. In addition the other kinetic constants ofX ANA $$ {X}_{ANA} $$ were 0.003 d-1 for decay rate constant (b ANA $$ {b}_{ANA} $$ ), 0.10 mg-O2/L for oxygen half-saturation constant (K O 2 ANA $$ {K}_{O_2}^{ANA} $$ ), 0.07 mg-N/L for ammonia half-saturation constant (K NH 4 ANA $$ {K}_{NH_4}^{ANA} $$ ), and 0.05 mg-N/L for nitrite half-saturation constant (K NO 2 ANA $$ {K}_{NO_2}^{ANA} $$ ). The model simulation results showed that the dissolved oxygen of about 0.10 mg-O2/L was found to be optimal to maintain highX ANA $$ {X}_{ANA} $$ population. In addition, minimal COD concentration is required to control heterotrophs (X H $$ {X}_H $$ ) and improve ammonia oxidation by ammonia-oxidizing bacteria (X AOB $$ {X}_{AOB} $$ ). It was also emphasized that moderate mixing conditions (L f $$ {L}_f $$ ≅ $$ \cong $$ 100 μm) are preferable to decrease the diffusion of oxygen to the deep layers of the granules, controlling the competition betweenX ANA $$ {X}_{ANA} $$ andX NOB $$ {X}_{NOB} $$ . A single-factor relative sensitivity analysis (RSA) on microbial kinetics revealed thatμ ANA $$ {\mu}_{ANA} $$ is the governing factor in the efficient operation of the single-stage PN/A processes. In addition, it was found that nitrite concentration is a rate-limiting parameter on the success of the process due to the competition betweenX ANA $$ {X}_{ANA} $$ andX NOB $$ {X}_{NOB} $$ . These findings can be used to enhance our understanding on the importance of microbial competition and mass transport in the single-stage PN/A process. PRACTITIONER POINTS: A one-dimensional steady-state model was developed and calibrated for simulating the single-stage partial nitrification/Anammox (PN/A) granule process. Moderate liquid films (L f $$ {L}_f $$ ≅ $$ \cong $$ 100 μm) are preferable for better performance of Anammox growth in single-stage PN/A processes. Moderate dissolved oxygen (DO≅ $$ \cong $$ 0.10 mg-O2/L) is highly recommended for efficient growth of Anammox bacteria in single-stage PN/A granulation. Minimal COD (COD≅ $$ \cong $$ 0) is preferable for successful operation of the single-stage PN/A granule process. Nitrite concentration is a rate-limiting parameter on the competition between Anammox and nitrite-oxidizing bacteria in the single-stage PN/A processes.
Collapse
Affiliation(s)
- Ahmed Elsayed
- Department of Civil EngineeringMcMaster UniversityHamiltonOntarioCanada
- Irrigation and Hydraulics DepartmentCairo UniversityGizaEgypt
| | - Taeho Lee
- Department of Civil and Environmental EngineeringPusan National UniversityBusanRepublic of Korea
| | - Younggy Kim
- Department of Civil EngineeringMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
4
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
5
|
Chang RR, Yao W, Pang JL, Dong KY, Lu YY, Huang BC, Jin RC. External redox couple enhanced anammox sludge activity at low temperature: Insight into intracellular resource synthesis. WATER RESEARCH 2024; 260:121904. [PMID: 38878317 DOI: 10.1016/j.watres.2024.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Anaerobic ammonium oxidation (anammox), an energy-efficient deamination biotechnology, faces operational challenges in low-temperature environments. Enhancing the metabolic activity of anammox bacteria (AnAOB) is pivotal for advancing its application in mainstream municipal wastewater treatment. Inspired by the metabolic adaptability of AnAOB and based on our previous findings, this work investigated the enhancement of intracellular ATP and NADH synthesis through the exogenous supply of reduced humic acid (HAred) and H2O2 redox couple, aiming to augment AnAOB activity under low-temperature conditions. Our experimental setup involved continuous dosing of 0.0067 μmol g-1 volatile suspended solid of H2O2 and 10 mg g-1 volatile suspended solid of HAred into a mainstream anammox reactor operated at 15 °C with an influent TN content of 60 mg/L. The results showed that HAred / H2O2 couple succeeded in maintaining the effluent TN at 10.72 ± 0.91 mg l-1. The specific anammox activity, ATP and NADH synthesis levels of sludge increased by 1.34, 2.33 and 6.50 folds, respectively, over the control setup devoid of the redox couple. High-throughput sequencing analysis revealed that the relative abundance of Candidatus Kuenenia after adding HAred / H2O2 couple reached 3.65 % at the end of operation, which was 5.14 folds higher than that of the control group. Further metabolomics analysis underscored an activation in the metabolism of amino acids, nucleotides, and phospholipids, which collectively enhanced the availability of ATP and NADH for the respiratory processes. These findings may provide guidance on strategy development for improving the electron transfer efficiency of AnAOB and underscore the potential of using redox couples to promote the mainstream application of anammox technology.
Collapse
Affiliation(s)
- Rong-Rong Chang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Yao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Luo Pang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai-Yue Dong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yao-Yao Lu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Liu L, Qi WK, Zhang L, Zhang SJ, Ni SQ, Peng Y, Wang C. Treatment of low-C/N nitrate wastewater using a partial denitrification-anammox granule system: Granule reconstruction, stability, and microbial structure analyses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121760. [PMID: 38981264 DOI: 10.1016/j.jenvman.2024.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Industrial wastewater discharged into sewer systems is often characterized by high nitrate contents and low C/N ratios, resulting in high treatment costs when using conventional activated sludge methods. This study introduces a partial denitrification-anammox (PD/A) granular process to address this challenge. The PD/A granular process achieved an effluent TN level of 3.7 mg/L at a low C/N ratio of 2.3. Analysis of a typical cycle showed that the partial denitrification peaked within 15 min and achieved a nitrate-to-nitrite transformation ratio of 86.9%. Anammox, which was activated from 15 to 120 min, contributed 86.2% of the TN removal. The system exhibited rapid recovery from post-organic shock, which was attributed to significant increases in protein content within TB-EPS. Microbial dispersion and reassembly were observed after coexistence of the granules, with Thauera (39.12%) and Candidatus Brocadia (1.25%) identified as key functional microorganisms. This study underscores the efficacy of PD/A granular sludge technology for treating low-C/N nitrate wastewater.
Collapse
Affiliation(s)
- Lifang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China; Beijing Drainage Group Co., Ltd., Beijing, 100044, China
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China; Beijing Drainage Group Co., Ltd., Beijing, 100044, China.
| |
Collapse
|
7
|
Zhou L, Liang M, Zhang D, Niu X, Li K, Lin Z, Luo X, Huang Y. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171557. [PMID: 38460704 DOI: 10.1016/j.scitotenv.2024.171557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ming Liang
- Bureau of Ecology and Environment, Maoming 525000, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510700, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Kai Li
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Zitao Lin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yuying Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| |
Collapse
|
8
|
Huang J, Wang X, Qi Z, Zhang M, Kang R, Liu C, Li D. Quantitative effect of adding percentages of anammox granules on the start-up process and microbial community analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119361. [PMID: 37913619 DOI: 10.1016/j.jenvman.2023.119361] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is challenging due to its long start-up duration and high demand for mature anammox seed sludge. However, adding a small amount of anammox sludge to the inoculum can be a reasonable solution. This study investigated the effect of adding percentage of anammox granules (0, 1, 2, 4, and 8%) in the seed sludge on the anammox start-up process. The anammox process was achieved in all five reactors after 55, 6, 5, 3 and 0 days. Increasing the adding percentage effectively shortened the duration of lag phase and cell lysis, but had little effect on the final nitrogen removal performance, except for 4% adding percentage. Families of Brocadiaceae, Burkholderiaceae, Ignavibacteriaceae, SJA-28, and Rhodocyclaceae were dominant, with a core microbiota of eight operational taxonomic unites (OTUs), and Candidatus Brocadia fulgida became the dominant anammox species. Seven synergistic members with anammox bacteria were identified by correlation network analysis. Major potential functional groups involved in C and N cycle were also observed by FAPROTAX. Together with the qPCR and sequencing results, it was suggested that more than 2% of adding percentages would result in a short lag phase, rapid growth rate in elevation stage, high final performances, and anammox bacteria abundance comparable to that in the anammox seed sludge. This crucial finding indicated the feasibility of economical and rapid start-up of the anammox process with a minimum amount of anammox seed sludge.
Collapse
Affiliation(s)
- Jialu Huang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaolong Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zhiqiang Qi
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Mengqian Zhang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ruiqin Kang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Lin L, Zhang Y, Li YY. Enhancing start-up strategies for anammox granular sludge systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166398. [PMID: 37604370 DOI: 10.1016/j.scitotenv.2023.166398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been developed as one of the optimal alternatives to the conventional biological nitrogen removal process because of its high nitrogen removal capacity and low energy consumption. However, the slow growth rate of anammox bacteria and its high sensitivity to environmental changes have resulted in fewer anammox sludge sources for process start-up and a lengthy start-up period. Given that anammox microorganisms tend to aggregate, granular-anammox sludge is a frequent byproduct of the anammox process. In this study, we review state-of-the-art strategies for promoting the formation of anammox granules and the start-up of the anammox process based on the literature of the past decade. These strategies are categorized as the transformation of alternative sludge, the addition of accelerators, the introduction of functional carriers, and the implementation of other physical methods. In addition, the formation mechanism of anammox granules, the operational performance of various strategies, and their promotion mechanisms are introduced. Finally, prospects are presented to indicate the gaps in contemporary research and the potential future research directions. This review functions as a summary guideline and theoretical reference for the cultivation of granular-anammox sludge, the start-up of the anammox process, and its practical application.
Collapse
Affiliation(s)
- Lan Lin
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
10
|
Zhou L, Guo F, Jiang Y, Liu W, Meng F, Wang C. A pilot-scale SNAD-MBBR process for treating anaerobic digester liquor of swine wastewater: performance and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120329-120339. [PMID: 37936048 DOI: 10.1007/s11356-023-30840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
In this pilot-scale study, simultaneous partial nitrification, anammox, and denitrification (SNAD) process was achieved successfully in a moving bed biofilm reactor (MBBR) for treating anaerobic digester liquor of swine wastewater. After 95 days of operation, when the total nitrogen loading rate of SNAD-MBBR process was 1.09 kg TN/m3/day, the total nitrogen removal rate could reach 0.87 kg TN/m3/day, and the removal efficiencies of ammonium and total nitrogen were 92.0% and 79.7%, respectively. The optimum pH and temperature for SNAD-MBBR process were 8.5 and 35 °C, respectively, and the optimum dissolved oxygen for SNAD1 and SNAD2 were 0.30 and 0.07 mg/L, respectively. The 16S rRNA sequencing suggested that Candidatus Kuenenia, Candidatus Brocadia, Nitrosomonas, and Denitratisoma were the dominant nitrogen removal bacteria. Some of the co-existing bacteria (Truepera, Limnobacter, and Anaerolineaceae uncultured) promoted ammonium oxidation and guaranteed the growth of the anammox bacteria under adverse environmental conditions. Overall, this study demonstrated that the SNAD-MBBR process would be an energy-saving and cost-effective method for the removal of nitrogen from swine wastewater and provided important process parameters for stable operation of the full-scale SNAD process.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, 210000, People's Republic of China
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Fangzheng Guo
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Yongwei Jiang
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, 210000, People's Republic of China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
11
|
Wang T, Chen M, Zhu J, Li N, Wang X. Anodic ammonium oxidation in microbial electrolysis cell: Towards nitrogen removal in low C/N environment. WATER RESEARCH 2023; 242:120276. [PMID: 37392506 DOI: 10.1016/j.watres.2023.120276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Biological nitrogen removal in low C/N environment is challenging in wastewater treatment for a long time. Autotrophic ammonium oxidation is promising due to the no need of carbon source addition, but alternative electron acceptors other than oxygen has to be widely investigated. Recently, microbial electrolysis cell (MEC), which applies a polarized inert electrode as the electron harvester, has been proved effective to oxidize ammonium with electroactive biofilm. That is, anodic microbes stimulated by exogenous low power can extract electron from ammonium and transfer electron to electrodes. This review aims to consolidate the recent advances in anodic ammonium oxidation in MEC. Various technologies based on different functional microbes and mechanisms of these processes are reviewed. Thereafter, the crucial factors influencing the ammonium oxidation technology are discussed. Challenges and prospects of anodic ammonium oxidation in ammonium-containing wastewater treatment are also proposed to provide valuable insights on the technologic reference and potential value of MEC in ammonium-containing wastewater treatment.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
12
|
Lin L, Ju F. Evaluation of different 16S rRNA gene hypervariable regions and reference databases for profiling engineered microbiota structure and functional guilds in a swine wastewater treatment plant. Interface Focus 2023; 13:20230012. [PMID: 37303742 PMCID: PMC10251118 DOI: 10.1098/rsfs.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
High-throughput 16S rRNA gene amplicon sequencing technology is widely applied for environmental microbiota structure analysis to derive knowledge that informs microbiome-based surveillance and oriented bioengineering. However, it remains elusive how the selection of 16S rRNA gene hypervariable regions and reference databases affects microbiota diversity and structure profiling. This study systematically evaluated the fitness of different frequently used reference databases (i.e. SILVA 138 SSU, GTDB bact120_r207, Greengenes 13_5 and MiDAS 4.8) and primers of 16S rRNA gene in microbiota profiling of anaerobic digestion and activated sludge collected from a full-scale swine wastewater treatment plant (WWTP). The comparative results showed that MiDAS 4.8 achieved the highest levels of taxonomic diversity and species-level assignment rate. For whichever sample groups, microbiota richness captured by different primers decreased in the following order: V4 > V4-V5 > V3-V4 > V6-V8/V1-V3. Using primer-bias-free metagenomic data results as the judging standard, V4 region also best characterized microbiota structure and well represented typical functional guilds (e.g. methanogens, ammonium oxidizers and denitrifiers), while V6-V8 regions largely overestimated the archaeal methanogens (mainly Methanosarcina) by over 30 times. Therefore, MiDAS 4.8 database and V4 region are recommended for best simultaneous analysis of bacterial and archaeal community diversity and structure of the examined swine WWTP.
Collapse
Affiliation(s)
- Limin Lin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
13
|
Wu H, Li A, Zhang H, Gao S, Li S, Cai J, Yan R, Xing Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. CHEMOSPHERE 2023; 336:139235. [PMID: 37343397 DOI: 10.1016/j.chemosphere.2023.139235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Suqi Li
- College of Life and Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jindou Cai
- School of Culture and Tourism, Chongqing City Management College, Chongqing, 402160, PR China
| | - Ruixiao Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
14
|
Al-Hazmi HE, Lu X, Grubba D, Majtacz J, Badawi M, Mąkinia J. Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161633. [PMID: 36669661 DOI: 10.1016/j.scitotenv.2023.161633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Xi Lu
- Three Gorges Smart Water Technology Co., Ltd., 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
15
|
Zuo F, Yue W, Gui S, Sui Q, Wei Y. Resilience of anammox application from sidestream to mainstream: A combined system coupling denitrification, partial nitritation and partial denitrification with anammox. BIORESOURCE TECHNOLOGY 2023; 374:128783. [PMID: 36828226 DOI: 10.1016/j.biortech.2023.128783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.
Collapse
Affiliation(s)
- Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanglin Gui
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
16
|
Wang C, Qiao S, Zhou J. Strategy of nitrate removal in anaerobic ammonia oxidation-dependent processes. CHEMOSPHERE 2023; 313:137586. [PMID: 36529177 DOI: 10.1016/j.chemosphere.2022.137586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic ammonium oxidation (anammox), a microbial process that is considered as a low-cost and high efficient wastewater treatment, has received extensive attention with an attractive application prospect. The anammox process reduces nitrite (NO2-) to nitrogen gas (N2) with ammonium (NH4+) as the electron donor. However, some nitrate (NO3-) equivalent to 11% of total nitrogen (TN) is generated in this process, which limits the development of anammox. To overcome this problem, many efforts have been made in this regard, mainly combining with other biological treatment methods (denitrification, denitrifying anaerobic methane oxidation, etc.), introducing the substance into anammox process, etc. Herein, we summarized a detailed review of previous researches on the removal of NO3- in the anammox-dependent processes. It is hoped that this review could serve as valuable guidance in future research and practical applications of anammox.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Qian Y, Shen J, Chen F, Guo Y, Qin Y, Li YY. Increasing nitrogen and organic matter removal from swine manure digestate by including pre-denitrification and recirculation in single-stage partial nitritation/anammox. BIORESOURCE TECHNOLOGY 2023; 367:128229. [PMID: 36332864 DOI: 10.1016/j.biortech.2022.128229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A novel two-stage process comprising pre-denitrification and single-stage partial nitritation/anammox was developed to treat swine manure digestate with a constant nitrogen loading rate of 1.0 gN/L/d. As the influent NH4+-N concentration increased from 500 to 1500 mg/L, a nitrogen removal efficiency of 88 %-96 % and 5-day biochemical oxygen demand removal efficiency of 93 %-97 % were achieved. Owing to the high influent chemical oxygen demand (COD)/nitrates and nitrites (NOX) ratio of 8.2-9.2 and high COD utilization of denitrifying bacteria (DB), the NO2--N and NO3--N removal efficiencies in the denitrification reactor reached 96 %-99 % and 97 %-99 %, respectively. The contribution of anammox bacteria to nitrogen removal was 70.9 %-84.3 %, whereas that of DB was 11.7 %-18.3 %. The contributions of DB and ordinary heterotrophic organisms to COD removal were 19.5 %-49.3 % and 17.9 %-39 %, respectively. This study will help guide the anammox process in swine wastewater treatment.
Collapse
Affiliation(s)
- Yunzhi Qian
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Junhao Shen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
18
|
Jia T, Li X, Jiang H, Dan Q, Sui J, Wang S, Peng Y. Advanced nitrogen removal from municipal sewage via partial nitrification-anammox process under two typical operation modes and seasonal ambient temperatures. BIORESOURCE TECHNOLOGY 2022; 363:127864. [PMID: 36055540 DOI: 10.1016/j.biortech.2022.127864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A novel two-stage partial nitrification-anammox (PN-A) process was developed, achieving nitrogen removal from low carbon/nitrogen ratio municipal sewage under two typical operational modes and seasonal ambient temperatures. When complete nitritation-anammox was performed at temperatures greater than 19.4 °C, the effluent concentration of total inorganic nitrogen (TIN) was 4.1 mg/L, corresponding to a nitrogen removal efficiency (NRE) of 94.3 %. In contrast, when partial nitritation-anammox was performed at temperatures below 19.4 °C, the effluent TIN was 12.3 mg/L, corresponding to a NRE of 83.6 %. The relative abundance of Nitrosomonas and Nitrosomonadaceae increased from 0.02 % to 0.28 %, while Ca. Brocadia decreased from 1.85 % to 1.30 %, with the contribution of anammox to nitrogen removal being highest under low temperatures (19.4℃ to 13.8℃), at 59.0 %. This novel two-stage PN-A process provides a new approach for the stable operation of wastewater treatment plants (WWTPs) under low ambient temperatures.
Collapse
Affiliation(s)
- Tong Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
19
|
Ren ZQ, Wang H, Zhang LG, Du XN, Huang BC, Jin RC. A review of anammox-based nitrogen removal technology: From microbial diversity to engineering applications. BIORESOURCE TECHNOLOGY 2022; 363:127896. [PMID: 36070811 DOI: 10.1016/j.biortech.2022.127896] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has the advantages of high efficiency and low energy consumption, so it has broad application prospects in biological denitrification of wastewater. However, the application of anammox technology to existing wastewater treatment is still challenging. The main problems are the insufficient supply of nitrite and the susceptibility of anammox bacteria to environmental factors. In this paper, from the perspective of the diversity of anammox bacteria, the habitats and characteristics of anammox bacteria of different genera were compared. At the same time, laboratory research and engineering applications of anammox technology in treating wastewater from different sources were reviewed, and the progress of and obstacles to the practical application of anammox technology were clarified. Finally, a focus for future research was proposed to intensively study the water quality barrier factors of anammox and its regulation strategies. Meanwhile, a combined process was developed and optimized on this basis.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Ge Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ning Du
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
20
|
Ya T, Liu J, Zhang M, Wang Y, Huang Y, Hai R, Zhang T, Wang X. Metagenomic insights into the symbiotic relationship in anammox consortia at reduced temperature. WATER RESEARCH 2022; 225:119184. [PMID: 36206682 DOI: 10.1016/j.watres.2022.119184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Anammox as a promising biological nitrogen removal technology has attracted much attention. However, cold temperature would limit its wide application and little is known about the microbial interactions between anammox bacteria (AnAOB) and heterotrophic bacteria at cold temperature. Here, we observed reduced temperature (25-15 °C) promoted the secretion of EPS and thus stimulated bigger size of granular sludge in a laboratory-scale anammox reactor. We further combined co-occurrence network analysis and genome-centered metagenomics to explore the potential interactions between AnAOB and heterotrophic bacteria. Network analysis suggested 22 out of 25 positively related species were reported as definite heterotrophic bacteria in subnetwork of AnAOB. Genome-centered metagenomics analysis yielded 23 metagenomic assembly genomes (MAGs), and we found that Acidobacteriota-affiliated bacteria could biosynthesize most polysaccharides (PS) precursors and contain the most glycosyltransferases and transporters to facilitate exopolysaccharides biosynthesis, together with partial PS precursors produced by AnAOB. AMX1 as the only anammox genome could synthesize most amino acids and cross feed with some heterotrophs to affect the extracellular protein function. Additionally, Bacteroidota, Planctomycetota, Chloroflexota, and Proteobacteria could contribute folate and molybdopterin cofactor for AMX1 to benefit their activity and growth. Superphylum Patescibacteria could survive by cross-feeding with AnAOB and heterotrophic organisms about organic compounds (Glyceraldehyde-3P and lactate). These cross-feedings maintained the stability of anammox reactor performance and emphasize the importance of heterotrophs in anammox system at reduced temperature.
Collapse
Affiliation(s)
- Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junyu Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, PR China
| | - Yan Huang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Deng L, Peng Y, Wu C, Gao R, Li W, Kao C, Li J. Mutual boost of granulation and enrichment of anammox bacteria in an anaerobic/oxic/anoxic system as the temperature decreases when treating municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 357:127336. [PMID: 35618188 DOI: 10.1016/j.biortech.2022.127336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is an important factor affecting the municipal wastewater treatment systems. The aim of this study was tracking the variations in the abundance of anammox bacteria (AnAOB) and the sludge form as the temperature decreased. Mutual boost of granulation and enrichment of AnAOB was achieved even though the temperature dropped from 20.4 °C to 12.9 °C. The average particle size of the sludge increased from 128.5 μm to 245.6 μm. With low dissolved oxygen (DO) aeration (0.2-0.5 mg/L) and short oxic hydraulic retention time (HRT) (5 h), nitritation in the anaerobic/oxic/anoxic (AOA) system was stable enough to provide NO2- for AnAOB. Ca. Brocadia, a type of typical AnAOB, was enriched from 0.03% to 0.24% in the suspended sludge and reached 16.09% in the granular sludge. Overall, this study presents the prospects of anammox and granule technologies when treating municipal wastewater at a low temperature.
Collapse
Affiliation(s)
- Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
22
|
Zhao Y, Min H, Luo K, Zhang R, Chen Q, Chen Z. Transcriptomics and proteomics revealed the psychrotolerant and antibiotic-resistant mechanisms of strain Pseudomonas psychrophila RNC-1 capable of assimilatory nitrate reduction and aerobic denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153169. [PMID: 35051480 DOI: 10.1016/j.scitotenv.2022.153169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Aerobic denitrification has been proved to be profoundly affected by temperature and antibiotics, but little is known about how aerobic denitrifiers respond to temperature and antibiotic stress. In this study, the nitrate reduction performance and the intracellular metabolism by a psychrotolerant aerobic denitrifying bacteria, named Pseudomonas psychrophila RNC-1, were systematically investigated at different temperatures (10 °C, 20 °C, 30 °C) and different sulfamethoxazole (SMX) concentrations (0 mg/L, 0.1 mg/L, 0.5 mg/L, 1.0 mg/L, and 5.0 mg/L). The results showed that strain RNC-1 performed satisfactory nitrate removal at 10 °C and 20 °C, but its growth was significantly inhibited at 30 °C. Nitrate removal by strain RNC-1 was slightly promoted in the presence of 0.5 mg/L SMX, whereas it was significantly suppressed with 5.0 mg/L SMX. Nitrogen balance analysis indicated that assimilatory nitrate reduction and dissimilatory aerobic denitrification jointly dominated in the nitrate removal process of strain RNC-1, in which the inhibition effected on assimilation process was much higher than that on the aerobic denitrification process under SMX exposure. Further transcriptomics and proteomics analysis revealed that the psychrotolerant mechanism of strain RNC-1 could be attributed to the up-regulation of RNA translation, energy metabolism, ABC transporters and the over-expression of cold shock proteins, while the down-regulation of oxidative phosphorylation pathway was the primary reason for the deteriorative cell growth at 30 °C. The promotion of nitrate reduction with 0.5 mg/L SMX was related to the up-regulation of amino acid metabolism pathways, while the down-regulation of folate cycle, glycolysis/gluconeogenesis and bacterial chemotaxis pathways were responsible for the inhibition effect at 5.0 mg/L SMX. This work provides a mechanistic understanding of the metabolic adaption of strain RNC-1 under different stress, which is of significance for its application in nitrogen contaminated wastewater treatment processes.
Collapse
Affiliation(s)
- Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, PR China
| | - Hongchao Min
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, PR China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China.
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|