1
|
Hou J, Wang L, Wang J, Chen L, Han B, Yang T, Liu W. Insights on common fungicides: A national survey on farmland soils from Mainland China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138177. [PMID: 40199079 DOI: 10.1016/j.jhazmat.2025.138177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Fungicides are a growing concern owing to their ecological and human health threats. In China, which is a large fungicide-consuming country, only a few provincial studies have reported several fungicide residues in agricultural soils. Additionally, terrestrial ecological risk assessments of pesticides are limited to the single species. This study showed that fungicides were commonly found in agricultural soils in mainland China, and the Σ13fungicides concentrations ranged from 0.0548 to 3183 μg/kg, with the major contributing component being difenoconazole. Spatial variation in fungicide concentrations was significant, with the highest concentrations observed in Southern China. The Σ13fungicides concentration was higher in soils covered with plastic films compared to uncovered soils, possibly because microplastics from agro-film sources promote fungicide retention in the soil. Among the crop types, the highest fungicide residues were found in soils planted with fruits. In addition, this study was the first to use the probabilistic species sensitivity distribution (pSSD) approach to deduce the predicted no-effect concentrations of major fungicides as terrestrial safety thresholds. Particularly, soil texture conditions may influence the hazard assessment of fungicides. Finally, from the species taxa perspective, the proportions of ecological risks of carbendazim and tebuconazole in agricultural soils in China were 4.3 % and 5.9 %, respectively.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tong Yang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Du J, Li L, Han R, Zhang C, Chen X. Fabrication of self-defense enzymic biocatalyst for harmless degradation of difenoconazole through post-synthesis infiltration and modification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125699. [PMID: 40339247 DOI: 10.1016/j.jenvman.2025.125699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Difenoconazole (DIF) non-point source pollution presents significant eco-environmental challenges. In the present study, an efficient self-defensive biocatalytic system (D4/enzyme-PDA-MOFs@Sponge) was constructed for the first time through post-synthesis infiltration and cold-plasma discharge modification. The system exhibits strong antibacterial capabilities, achieving 93.39 % and 99.02 % inhibition against Escherichia coli and Staphylococcus aureus, respectively, demonstrating its outstanding self-defense ability against external organism invasion. For DIF degradation, immobilized extracellular and intracellular enzymes achieve 73.2 % and 66.9 % removal rates within 48 h, with total organic carbon removal of 81.3 % and 86.3 %, respectively, indicating efficient mineralization. The "birdcage trapping-enzymatic" mechanism enables rapid substrate adsorption and in-situ catalysis, generating low-toxicity transformation products. Notably, the biocatalyst maintains over 45.7 % degradation efficiency after five reuse cycles, showcasing robust reusability. This work provides a promising, environmentally friendly approach for mitigating DIF pollution through efficient, harmless degradation.
Collapse
Affiliation(s)
- Jianfang Du
- Heibei Innovation Center for Bioengineering and Biotechnology, Hebei University, No. 180 Wusi East Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Lianshan Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, No. 180 Wusi East Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Ruimeng Han
- School of Eco-Environment, Hebei University, No. 180 Wusi East Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University, No. 2666, Qiyi East Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Xiaoxin Chen
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, No. 180 Wusi East Road, Lian Chi District, Baoding City, Hebei Province, 071002, China; School of Eco-Environment, Hebei University, No. 180 Wusi East Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| |
Collapse
|
3
|
Liu C, Zhu J, Zhu R, Yin Y. Neurotoxicity induced by difenoconazole in zebrafish larvae via activating oxidative stress and the protective role of resveratrol. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110208. [PMID: 40246219 DOI: 10.1016/j.cbpc.2025.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Difenoconazole (DIF) is a typical triazole fungicide detected in the aquatic ecosystem and organisms. However, the neurotoxic effects of DIF remain largely unknown. This study aimed to investigate the neurotoxicity of DIF in zebrafish and the underlying neuroprotective properties of resveratrol (RES, an antioxidant polyphenol). Zebrafish embryos/larvae were treated with 0.6 and 1.2 mg/L DIF from 4 to 96 h post fertilization (hpf) and neurodevelopment was systematically assessed. DIF induced developmental toxicity and aberrant neurobehaviors, including decreased movement time, swimming distance and clockwise rotation times. DIF suppressed the neurogenesis of the central nervous system (CNS) in HuC:egfp transgenic zebrafish and the length of motor neuron axon in hb9:egfp transgenic zebrafish. DIF inhibited cholinesterase activities and downregulated neurodevelopment related genes. DIF also increased oxidative stress via excessive production of reactive oxygen species and decreased activities of antioxidant enzymes, subsequently triggering neuronal apoptosis in the brain. RES partially reinstated DIF-induced neurotoxicity and developmental toxicity by inhibiting excessive oxidative stress and apoptosis, suggesting the involvement of oxidative stress in DIF-induced neurotoxicity. Overall, this study identified the potential mechanisms underlying DIF-induced neurotoxicity and suggested RES as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chunlan Liu
- School of Public Health Management, Jiangsu Health Vocational College, Nanjing 211800, PR China
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, PR China.
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223001, PR China.
| |
Collapse
|
4
|
Merve A, Ayşenur B, Dogukan DE, Gül Ö. The impact of triadimenol on male fertility: An in vitro study and molecular docking examination. Reprod Toxicol 2025; 132:108861. [PMID: 39954825 DOI: 10.1016/j.reprotox.2025.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Triadimenol, a triazole fungicide, induces various adverse effects including neurotoxicity, hepatotoxicity, and developmental/reproductive toxicity in non-target organisms. Occupational exposure generally occurs in male agricultural workers. Investigating the effects of triadimenol on three different testicular cell lines would be valuable in elucidating the mechanisms underlying male reproductive issues or infertility. This preliminary study examines the potential toxic effects of triadimenol exposure in Leydig (TM3), Sertoli (TM4), and mouse-derived Spermatogonia (GC-1) cell lines, which are representative of the male reproductive system in vitro. The median inhibitory concentration (IC50) values of triadimenol were found to be 121.35 μM, 332.1 μM, and 349.49 μM in TM3, TM4, and GC-1 cells, respectively. The exposure doses were determined to range from 0 to 100 µM in TM3 cell line and 0-300 µM in TM4 and GC-1 cell lines. Reactive oxygen species (ROS) production, reduced glutathione (GSH) content, malondialdehyde (MDA) and protein carbonyl levels, and genotoxicity were examined. TM3 cell line was more resistant to oxidative damage than the other cell lines, while TM4 cell line was found to be more sensitive in terms of protein carbonyl formation. Triadimenol damaged DNA in TM3 cell line (≥16.93), TM4 cell line (≥9.18), and GC-1 cell line (≥3.28). Additionally, the docking score of triadimenol on the active site of steroid 5-α-reductase 2 (5αR2), which converts testosterone to 5α-dihydrotestosterone, was not close. The results emphasised that the toxicity of triadimenol was cell-specific. Overall, triadimenol disrupted male fertility by affecting spermatogenesis, testosterone production, germ cell support, and sperm quality.
Collapse
Affiliation(s)
- Arici Merve
- Istinye University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey.
| | - Bilgehan Ayşenur
- University of Health Science, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey
| | - Dincel Efe Dogukan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Özhan Gül
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey
| |
Collapse
|
5
|
Zhou Y, Wang L, Sui J, Chen F, Wang T, Yang J, Chen SH, Cui X, Yang Y, Zhang W. Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by Pseudomonas putida A-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4770-4786. [PMID: 39844663 DOI: 10.1021/acs.jafc.4c10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain Pseudomonas putida A-3 was isolated for the first time which can degrade DIF efficiently. After optimization of the degradation conditions, the degradation rate reached 75.98%. Moreover, a new DIF degradation pathway, including hydroxylation, hydrolysis, dechlorination, and ether bond breaking. The acute and chronic toxicity of DIF degradation products assessed using ECOSAR software showed lower toxicity than the parent compound. Furthermore, strain A-3 remarkably accelerated the degradation of DIF in contaminated water-sediment systems. We successfully predicted six potential key enzymes for DIF degradation based on the results of whole genome sequencing, RT-qPCR, and molecular docking. Overall, the results revealed novel pathways for DIF biodegradation and provide a strong candidate for bioremediation of DIF residue-polluted environments.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Liping Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jingyi Sui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Feiyu Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianyue Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jia Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shao-Hua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
6
|
Dong B. Recent advances in the toxicological effects of difenoconazole: A focus on toxic mechanisms in fish and mammals. CHEMOSPHERE 2024; 368:143751. [PMID: 39547292 DOI: 10.1016/j.chemosphere.2024.143751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The toxicological study of pesticides at sub-lethal and environment-relevant concentrations has become increasingly crucial for human and environmental health. Toxic mechanisms of agrochemicals contribute to discovering green pesticides, assessing the hazards of pesticides comprehensively, and supporting legitimate regulatory decisions. However, the toxicological effects of difenoconazole are not yet fully understood despite being frequently detected in fruits, vegetables, waters, and soils and posing hazards to humans and the environment. This lack of knowledge could lead to flawed risk assessment and administrative oversight. Thus, the review aimed to provide some investigation perspectives for clarifying the toxicological effects of difenoconazole by synthesizing the toxic data of difenoconazole on various organisms, such as bees, Daphnia magna, fish, earthworms, mammals, and plants and summarizing the toxicological mechanisms of difenoconazole, especially in fish and mammals from peer-reviewed publications. Evidence revealed that difenoconazole caused multiple toxicological effects, including developmental toxicity, reproductive toxicity, endocrine disruption effects, neurotoxicity, and transgenerational toxicity. The toxic mechanisms involved in metabolic disturbance, oxidative stress, inflammation, apoptosis, and autophagy by activating reactive oxygen species-mediated signaling pathways and mitochondrial apoptosis routes, disturbing amino acids, lipid, and nucleotide metabolism, and regulating gene transcription and expression in mammals and fish. Based on the review, further studies better focus on the toxic differences of difenoconazole stereoisomers, the toxicological effects of transformation products of difenoconazole, and the mechanism of action of difenoconazole on sex-specific endocrine disruption effects, intestinal damage, and gut dysbacteriosis for its hazard assessment and management synthetically.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China.
| |
Collapse
|
7
|
Farder-Gomes CF, Miranda FR, Bernardes RC, Bastos DSS, Gomes DS, da Silva FP, Gonçalves PL, Arndt S, da Silva Xavier A, Zago HB, Serrão JE, Martins GF, de Oliveira LL, Fernandes KM. Exposure to the herbicide tebuthiuron affects behavior, enzymatic activity, morphology and physiology of the midgut of the stingless bee Partamona helleri. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104516. [PMID: 39032582 DOI: 10.1016/j.etap.2024.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Partamona helleri is an important pollinator in the Neotropics. However, this bee faces an increased risk of pesticide exposure, potentially affecting both individual bees and entire colonies. Thus, this study aimed to evaluate the effects of the herbicide tebuthiuron on behavior, antioxidant activity, midgut morphology, and signaling pathways related to cell death, cell proliferation and differentiation in P. helleri workers. tebuthiuron significantly reduced locomotor activity and induced morphological changes in the midgut. The activity of the detoxification enzymes superoxide dismutase and glutathione S-transferase increased after exposure, indicating a detoxification mechanism. Furthermore, the herbicide led to alterations in the number of positive cells for signaling-pathway proteins in the midgut of bees, suggesting induction of apoptotic cell death and disruption of midgut epithelial regeneration. Therefore, tebuthiuron may negatively impact the behavior, antioxidant activity, morphology, and physiology of P. helleri workers, potentially posing a threat to the survival of this non-target organism.
Collapse
Affiliation(s)
| | - Franciane Rosa Miranda
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Davy Soares Gomes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Fernanda Pereira da Silva
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - Pollyana Leão Gonçalves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Stella Arndt
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - André da Silva Xavier
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - Hugo Bolsoni Zago
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Kenner Morais Fernandes
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| |
Collapse
|
8
|
Herath HMUL, Piao MJ, Kang KA, Fernando PDSM, Kang HK, Koh YS, Hyun JW. The inhibitory effect of chlorogenic acid on oxidative stress and apoptosis induced by PM 2.5 in HaCaT keratinocytes. J Biochem Mol Toxicol 2024; 38:e23806. [PMID: 39148258 DOI: 10.1002/jbt.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Exposure to fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) can cause oxidative damage and apoptosis in the human skin. Chlorogenic acid (CGA) is a bioactive polyphenolic compound with antioxidant, antifungal, and antiviral properties. The objective of this study was to identify the ameliorating impact of CGA that might protect human HaCaT cells against PM2.5. CGA significantly scavenged the reactive oxygen species (ROS) generated by PM2.5, attenuated oxidative cellular/organelle damage, mitochondrial membrane depolarization, and suppressed cytochrome c release into the cytosol. The application of CGA led to a reduction in the expression levels of Bcl-2-associated X protein, caspase-9, and caspase-3, while simultaneously increasing the expression of B-cell lymphoma 2. In addition, CGA was able to reverse the decrease in cell viability caused by PM2.5 via the inhibition of extracellular signal-regulated kinase (ERK). This effect was further confirmed by the use of the mitogen-activated protein kinase kinase inhibitor, which acted upstream of ERK. In conclusion, CGA protected keratinocytes from mitochondrial damage and apoptosis via ameliorating PM2.5-induced oxidative stress and ERK activation.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Hee Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Young Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
9
|
Szczygieł T, Koziróg A, Otlewska A. Synthetic and Natural Antifungal Substances in Cereal Grain Protection: A Review of Bright and Dark Sides. Molecules 2024; 29:3780. [PMID: 39202859 PMCID: PMC11357261 DOI: 10.3390/molecules29163780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Molds pose a severe challenge to agriculture because they cause very large crop losses. For this reason, synthetic fungicides have been used for a long time. Without adequate protection against pests and various pathogens, crop losses could be as high as 30-40%. However, concerns mainly about the environmental impact of synthetic antifungals and human health risk have prompted a search for natural alternatives. But do natural remedies only have advantages? This article reviews the current state of knowledge on the use of antifungal substances in agriculture to protect seeds against phytopathogens. The advantages and disadvantages of using both synthetic and natural fungicides to protect cereal grains were discussed, indicating specific examples and mechanisms of action. The possibilities of an integrated control approach, combining cultural, biological, and chemical methods are described, constituting a holistic strategy for sustainable mold management in the grain industry.
Collapse
Affiliation(s)
- Tomasz Szczygieł
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
- Interdisciplinary Doctoral School, Lodz University of Technology, 90-530 Lodz, Poland
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| |
Collapse
|
10
|
Mosalam EM, Abdel-Bar HM, Elberri AI, Abdallah MS, Zidan AAA, Batakoushy HA, Abo Mansour HE. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer's disease. Int J Biol Macromol 2024; 275:133742. [PMID: 38986998 DOI: 10.1016/j.ijbiomac.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
This study aims to investigate the molecular mechanisms and the neuroprotective effect of hyaluronic acid modified verapamil-loaded carbon quantum dots (VRH-loaded HA-CQDs) against an in-vitro Alzheimer's disease model induced by amyloid beta (Aβ) in SH-SY5Y and Neuro 2a neuroblastoma cells. Briefly, different HA-CQDs were prepared using hydrothermal method and optimized by Box-Behnken design to maximize quantum yield and minimize particle size. Serum stable negatively charged VRH-loaded HA-CQDs was successfully prepared by admixing the optimized HA-CQDs and VRH with association efficiency and loading capacity of 81.25 ± 3.65 % and 5.11 ± 0.81 %, respectively. Cells were pretreated with VRH solution or loaded-HA-CQDs followed by exposure to Aβ. Compared to the control group, amyloidosis led to reduction in cellular proliferation, mitochondrial membrane potential, expression of cytochrome P450, cytochrome c oxidase, CREB-regulated transcriptional coactivator 3, and mitotic index, along with marked increase in reactive oxygen species (ROS) and inflammatory cytokines. Pretreatment with VRH, either free or loaded HA-CQDs, enhanced cell survival, mitochondrial membrane potential, mitotic index, and gene expression. It also reduced inflammation and ROS. However, VRH-loaded HA-CQDs exhibited superior effectiveness in the measured parameters. These findings suggest that VRH-loaded HA-CQDs have enhanced therapeutic potential compared to free VRH in mitigating amyloidosis negative features.
Collapse
Affiliation(s)
- Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt.
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt.
| | - Mahmoud S Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt; Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid, Jordan.
| | | | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| |
Collapse
|
11
|
Pan E, Xin Y, Li X, Ping K, Li X, Sun Y, Xu X, Dong J. Immunoprotective effect of silybin through blocking p53-driven caspase-9-Apaf-1-Cyt c complex formation and immune dysfunction after difenoconazole exposure in carp spleen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19396-19408. [PMID: 38358624 DOI: 10.1007/s11356-024-32392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.
Collapse
Affiliation(s)
- Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
12
|
Ji X, Guo J, Ma Y, Zhang S, Yang Z, Li Y, Ping K, Xin Y, Dong Z. Quercetin alleviates the toxicity of difenoconazole to the respiratory system of carp by reducing ROS accumulation and maintaining mitochondrial dynamic balance. Toxicol Appl Pharmacol 2024; 484:116860. [PMID: 38342444 DOI: 10.1016/j.taap.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Difenoconazole (DFZ) is a fungicidal pesticide extensively employed for the management of fungal diseases in fruits, vegetables, and cereal crops. However, its potential environmental impact cannot be ignored, as DFZ accumulation is able to lead to aquatic environment pollution and harm to non-target organisms. Quercetin (QUE), a flavonoid abundant in fruits and vegetables, possesses antioxidant and anti-inflammatory properties. In this article, carp were exposed to 400 mg/kg QUE and/or 0.3906 mg/L DFZ for 30 d to investigate the effect of QUE on DFZ-induced respiratory toxicity in carp. Research shows that DFZ exposure increases reactive oxygen species (ROS) production in the carp's respiratory system, leading to oxidative stress, inflammation, and damage to gill tissue and tight junction proteins. Further research demonstrates that DFZ induces mitochondrial dynamic imbalance and gill cell apoptosis. Notably, QUE treatment significantly reduces ROS levels, alleviates oxidative stress and inflammation, and mitigates mitochondrial dynamics imbalance and mitochondrial apoptosis. This study emphasizes the profound mechanism of DFZ toxicity to the respiratory system of common carp and the beneficial role of QUE in mitigating DFZ toxicity. These findings contribute to a better understanding of pesticide risk assessment in aquatic systems and provide new insights into strategies to reduce their toxicity.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajia Guo
- Lianyungang Higher Vocational College of Traditional Chinese Medicine, Lianyungang 222000, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zuwang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
13
|
Wang X, Li S, Zhang C, Xu W, Wu M, Cheng J, Li Z, Tao L, Zhang Y. Stereoselective toxicity of acetochlor chiral isomers on the nervous system of zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133016. [PMID: 37992503 DOI: 10.1016/j.jhazmat.2023.133016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Acetochlor (ACT) is a widely detected pesticide globally, and the neurotoxic effects of its chiral isomers on humans and environmental organisms remain uncertain. Zebrafish were used to study the neurotoxicity of ACT and its chiral isomers. Our study reveals that the R-ACT, Rac-ACT, and S-ACT induce neurotoxicity in zebrafish larvae by impairing vascular development and disrupting the blood-brain barrier. These detrimental effects lead to apoptosis in brain cells, hindered development of the central nervous system, and manifest as altered swimming behavior and social interactions in the larvae. Importantly, the neurotoxicity caused by the S-ACT exhibits the most pronounced impact and significantly diverges from the effects induced by the R-ACT. The neurotoxicity associated with the Rac-ACT falls intermediate between that of the R-ACT and S-ACT. Fascinatingly, we observed a remarkable recovery in the S-ACT-induced abnormalities in BBB, neurodevelopment, and behavior in zebrafish larvae upon supplementation of the Wnt/β-catenin signaling pathway. This observation strongly suggests that the Wnt/β-catenin signaling pathway serves as a major target of S-ACT-induced neurotoxicity in zebrafish larvae. In conclusion, S-ACT significantly influences zebrafish larval neurodevelopment by inhibiting the Wnt/β-catenin signaling pathway, distinguishing it from R-ACT neurotoxic effects.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shoulin Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Wang X, Geng L, Wu M, Xu W, Cheng J, Li Z, Tao L, Zhang Y. Molecular mechanisms of cardiotoxicity induced by acetamide and its chiral isomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166349. [PMID: 37598958 DOI: 10.1016/j.scitotenv.2023.166349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Acetamide (ACT) is used in a racemic form, and the considerable residues of this compound in the environment raise potential safety concerns for human health. We investigated the toxicity of ACT and its chiral isomers on human cardiomyocyte (AC16) cell line and zebrafish embryonic heart, and found that (+)-S-ACT was the main component causing cardiac toxicity. Our findings indicate that the IC50 of (±)-Rac-ACT on AC16 cells was 20.19 μg/mL. (-)-R-ACT, (±)-Rac-ACT, and (+)-S-ACT caused DNA damage and apoptosis in AC16 cells at this concentration. The underlying molecular mechanism may involve the induction of reactive oxygen species (ROS). The accumulation of ROS results in a decline in mitochondrial membrane potential (MMP) and prompts the release of cytochrome c (cyt c) from the mitochondria. This cascade of events ultimately activates the caspase-3 and caspase-9 signaling pathways, resulting in apoptosis. Furthermore, in vivo observations in zebrafish hearts demonstrated caspase-3 activation and the presence of the DNA damage marker (γH2AX), indicating that (+)-S-ACT is more toxic to cardiomyocytes than (-)-R-ACT and (±)-Rac-ACT. These findings suggest that (+)-S-ACT may be the primary component responsible for the toxicity of (±)-Rac-ACT in AC16 cells. Overall, these findings raise public awareness regarding the risks associated with chiral isomeric pesticides and provide a scientific foundation for their appropriate use.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li Geng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
15
|
Ruiz-Yance I, Siguas J, Bardales B, Robles-Castañeda I, Cordova K, Ypushima A, Estela-Villar E, Quintana-Criollo C, Estacio D, Rodríguez JL. Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. TOXICS 2023; 11:839. [PMID: 37888690 PMCID: PMC10610737 DOI: 10.3390/toxics11100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Triazole fungicides are widely used in the world, mainly in agriculture, but their abuse and possible toxic effects are being reported in some in vivo and in vitro studies that have demonstrated their danger to human health. This in vitro study evaluated the cytotoxicity, oxidative stress and proinflammation of EA.hy926 endothelial cells in response to ipconazole exposure. Using the MTT assay, ipconazole was found to produce a dose-dependent reduction (*** p < 0.001; concentrations of 20, 50 and 100 µM) of cell viability in EA.hy926 with an IC50 of 29 µM. Also, ipconazole induced a significant increase in ROS generation (** p < 0.01), caspase 3/7 (** p < 0.01), cell death (BAX, APAF1, BNIP3, CASP3 and AKT1) and proinflammatory (NLRP3, CASP1, IL1β, NFκB, IL6 and TNFα) biomarkers, as well as a reduction in antioxidant (NRF2 and GPx) biomarkers. These results demonstrated that oxidative stress, proinflammatory activity and cell death could be responsible for the cytotoxic effect produced by the fungicide ipconazole, such that this triazole compound should be considered as a possible risk factor in the development of alterations in cellular homeostasis.
Collapse
Affiliation(s)
- Iris Ruiz-Yance
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Junior Siguas
- Animal Physiology Department, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Brandy Bardales
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Ingrid Robles-Castañeda
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Karen Cordova
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Alina Ypushima
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Esteban Estela-Villar
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Carlos Quintana-Criollo
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Darwin Estacio
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - José-Luis Rodríguez
- Pharmacology and Toxicology Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
Dong Z, Cui K, Liang J, Guan S, Fang L, Ding R, Wang J, Li T, Zhao S, Wang Z. The widespread presence of triazole fungicides in greenhouse soils in Shandong Province, China: A systematic study on human health and ecological risk assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121637. [PMID: 37059173 DOI: 10.1016/j.envpol.2023.121637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Triazole fungicides (TFs) are extensively used on greenhouse vegetables and are ubiquitously detected in the environment. However, the human health and ecological risks associated with the presence of TFs in the soil are unclear. In this study, ten widely used TFs were measured in 283 soil samples from vegetable greenhouses across Shandong Province, China, and their potential human health and ecological risks were assessed. Among all soil samples, difenoconazole, myclobutanil, triadimenol, and tebuconazole were the top detected TFs, with detection rates of 85.2-100%; these TFs had higher residues, with average concentrations of 5.47-23.8 μg/kg. Although most of the detectable TFs were present in low amounts, 99.3% of the samples were contaminated with 2-10 TFs. Human health risk assessment based on hazard quotient (HQ) and hazard index (HI) values indicated that TFs posed negligible non-cancer risks for both adults and children (HQ range, 5.33 × 10-10 to 2.38 × 10-5; HI range, 1.95 × 10-9 to 3.05 × 10-5, <1). Ecological risk assessment based on the toxicity exposure ratio (TER) and risk quotient (RQ) values indicated that difenoconazole was a potential risk factor for soil organisms (TERmax = 1 for Eisenia foetida, <5; RQmean = 1.19 and RQmax = 9.04, >1). Moreover, 84 of the 283 sites showed a high risk (RQsite range, 1.09-9.08, >1), and difenoconazole was the primary contributor to the overall risk. Considering their ubiquity and potential hazards, TFs should be continuously assessed and prioritized for pesticide risk management.
Collapse
Affiliation(s)
- Zhan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Shengying Zhao
- Shandong Shibang Agrochemical Co., Ltd., Heze, Shandong, 274300, China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
17
|
Jiang X, Wang J, Liu J, Zhu H, Hu J, Sun X, Zhou W. Resveratrol ameliorates penconazole-induced cardiotoxicity by inhibition of oxidative stress and apoptosis in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114865. [PMID: 37018857 DOI: 10.1016/j.ecoenv.2023.114865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Penconazole (PEN) is a typical systemic triazole fungicide with cardiac toxic effects. Resveratrol (RES) is a natural polyphenolic phytochemical with antioxidation properties. This study aimed to investigate if RES could protect against PEN-induced cardiotoxicity and to determine the underlying mechanisms. Zebrafish embryos were exposed to 0, 0.5, 1 and 2 mg/L of PEN from 4 to 96 h post fertilization (hpf) and cardiac developmental toxicity was assessed. Our results showed that PEN decreased hatching rate, survival rate, heart rate and body length, with increased malformation rate and spontaneous movement. PEN induced pericardial edema and abnormal cardiac structure in myl7:egfp transgenic zebrafish, as well as downregulation of cardiac development related genes (nkx2.5, tbx2.5, gata4, noto, and vmhc). In addition, PEN elevated oxidative stress via reactive oxygen species (ROS) accumulation and triggered cardiomyocytic apoptosis by upregulation of p53, bcl-2, bax and caspase 3. These adverse outcomes were counteracted by RES, indicating that RES ameliorated PEN-induced cardiotoxicity by inhibiting oxidative stress and apoptosis in zebrafish. Taken together, this study revealed the important role of oxidative stress in PEN-induced cardiotoxicity and identified dietary RES supplementation as a novel strategy to mitigate its toxicity.
Collapse
Affiliation(s)
- Xue Jiang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jie Wang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jin Liu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Haiyan Zhu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jian Hu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Xingzhen Sun
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Wendi Zhou
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China.
| |
Collapse
|
18
|
Zheng X, Wei Y, Chen J, Wang X, Li D, Yu C, Hong Y, Shen L, Long C, Wei G, Wu S. Difenoconazole Exposure Induces Retinoic Acid Signaling Dysregulation and Testicular Injury in Mice Testes. TOXICS 2023; 11:328. [PMID: 37112555 PMCID: PMC10142862 DOI: 10.3390/toxics11040328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide that is widely utilized in agriculture. Although DFZ has been demonstrated to induce reproductive toxicity in aquatic species, its toxic effects on the mammalian reproductive system have yet to be fully elucidated. In vivo, male mice were administered 0, 20 or 40 mg/kg/d of DFZ via oral gavage for 35 days. Consequently, DFZ significantly decreased testicular organ coefficient, sperm count and testosterone levels, augmented sperm malformation rates, and elicited histopathological alterations in testes. TUNEL assay showed increased apoptosis in testis. Western blotting results suggested abnormally high expression of the sperm meiosis-associated proteins STRA8 and SCP3. The concentrations of retinoic acid (RA), retinaldehyde (RE), and retinol (ROL) were increased in the testicular tissues of DFZ-treated groups. The mRNA expression level of genes implicated in RA synthesis significantly increased while genes involved in RA catabolism significantly decreased. In vitro, DFZ reduced cell viability and increased RA, RE, and ROL levels in GC-2 cells. Transcriptome analysis revealed a significant enrichment of numerous terms associated with the RA pathway and apoptosis. The qPCR experiment verified the transcriptome results. In conclusion, our results indicate that DFZ exposure can disrupt RA signaling pathway homeostasis, and induce testicular injury in mice testes.
Collapse
|
19
|
Dong B, Hu J. Dissipation, residues, and dietary risk assessment of difenoconazole in field-planted spinach, wax gourd, and summer squash in China. J Verbrauch Lebensm 2023. [DOI: 10.1007/s00003-023-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Preliminary Structural Characterization of Selenium Nanoparticle Composites Modified by Astragalus Polysaccharide and the Cytotoxicity Mechanism on Liver Cancer Cells. Molecules 2023; 28:molecules28041561. [PMID: 36838549 PMCID: PMC9961785 DOI: 10.3390/molecules28041561] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Astragalus alcohol soluble polysaccharide (AASP) could present superior water solubility and antitumor activity with high concentration. Selenium nanoparticles (SeNPs) have received growing attention in various fields, but their unstable property increases the application difficulties. In the present study, functionalized nano-composites (AASP-SeNPs) were synthesized through SeNPs using AASP (average molecular weight of 2.1 × 103 Da) as a surface modifier, and the preliminary structural characteristics and inhibitory mechanism on liver cancer (HepG2) cells were investigated. Results showed that AASP-SeNPs prepared under a sodium selenite/AASP mass ratio of 1/20 (w/w) were uniformly spherical with a mean grain size of 49.80 nm and exhibited superior dispersivity and stability in water solution. Moreover, the composites could dose-dependently inhibit HepG2 cell proliferation and induce apoptosis through effectively regulating mitochondria-relevant indicators including ΔΨm depletion stimulation, intracellular ROS accumulation, Bax/Bcl-2 ratio improvement, and Cytochrome c liberation promotion. These results provide scientific references for future applications in functional food and drug industries.
Collapse
|
22
|
Zhu R, Liu C, Wang J, Zou L, Yang F, Chi X, Zhu J. Nano-TiO 2 aggravates bioaccumulation and developmental neurotoxicity of difenoconazole in zebrafish larvae via oxidative stress and apoptosis: Protective role of vitamin C. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114554. [PMID: 36682185 DOI: 10.1016/j.ecoenv.2023.114554] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) could enhance the bioavailability and toxicity of coexisting organic contaminants in the aquatic environment. This study attempted to investigate the combined effects of n-TiO2 and difenoconazole (DIF) on the neurodevelopment of zebrafish and the underlying mechanisms. In this study, zebrafish embryos were exposed to n-TiO2 (100 μg/L), DIF (0, 0.1 and 0.5 mg/L) and their mixtures from 4 to 96 h post fertilization (hpf) and neurotoxicity was evaluated. Our results indicated that n-TiO2 adsorbed DIF into the brain of zebrafish and significantly enhanced the bioaccumulation of DIF and n-TiO2 in the 0.5 mg/L co-exposure group. 100 μg/L n-TiO2 was not developmentally toxic to the zebrafish larvae, but it exacerbated DIF-induced neurobehavioral alterations in the zebrafish larvae. n-TiO2 also aggravated DIF-induced suppression of central nervous system (CNS) neurogenesis in Tg (HuC:egfp) zebrafish, motor neuron axon length in Tg (hb9:egfp) zebrafish, and downregulation of neurodevelopmental genes (elavl3, ngn1, gap43, gfap and mbp). In addition, DIF elevated oxidative stress by accumulation of reactive oxygen species (ROS) and inhibition of antioxidant enzymes, and triggered apoptosis by upregulation of p53, bax, bcl-2 and caspase-3, which were markedly intensified in the presence of n-TiO2. Moreover, vitamin C (VC) ameliorated n-TiO2/DIF-induced abnormal locomotor behaviors and neurotoxicity by inhibiting oxidative stress and apoptosis, indicating that oxidative stress and apoptosis are involved in n-TiO2/DIF-induced neurotoxicity. Taken together, our data indicated that n-TiO2 enhanced the accumulation of DIF and heightened oxidative stress and apoptosis, thereby inducing neurotoxicity. This study exemplifies the importance of the toxicity assessment of chemical mixtures and novel insights to mitigate their combined toxicity.
Collapse
Affiliation(s)
- Renfei Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Third Hospital of Nantong University, Nantong 226001, PR China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Fan Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong 226011, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China.
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China.
| |
Collapse
|
23
|
Wu X, Xu B, Chen H, Qiang J, Feng H, Li X, Chu M, Pan E, Dong J. Crosstalk of oxidative stress, inflammation, apoptosis, and autophagy under reactive oxygen stress involved in difenoconazole-induced kidney damage in carp. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108508. [PMID: 36581253 DOI: 10.1016/j.fsi.2022.108508] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Difenoconazole is a commonly used triazole fungicide in agricultural production. Because of its slow degradation and easy accumulation in the environment, it seriously endangers both animal health and the ecological environment. Therefore, it is hoped that the effects on carp kidneys can be studied by simulating difenoconazole residues in the environment. The experiment was designed with two doses (0.488 mg/L, 1.953 mg/L) as exposure concentrations of difenoconazole for 4 d. Histopathological results showed that difenoconazole could cause severe damage to the kidney structure and extensive inflammatory cell infiltration in carp. Elevated levels of Creatinine, and BUN suggested the development of kidney damage. The DHE fluorescence probe's result suggested that difenoconazole might cause reactive oxygen species (ROS) to accumulate in the kidney of carp. Difenoconazole was found to increase MDA levels while decreasing the activities of CAT, SOD, and GSH-PX, according to biochemical indicators. In addition, difenoconazole could up-regulate the transcription levels of inflammatory factors tnf-α, il-6, il-1β, and inos. At the same time, it inhibited the transcription level of il-10 and tgf-β1. The TUNEL test clearly showed that difenoconazole induced apoptosis in the kidney and vastly raised the transcript levels of apoptosis-related genes p53, caspase9, caspase3, and bax while inhibiting the expression of Bcl-2, fas, capsase8. Additionally, TEM imaging showed that clearly autophagic lysosomes and autophagosomes were formed. Elevated levels of LC3II protein expression, increased transcript levels of the autophagy-related gene atg5 as well as decreased transcript levels of p62 represented the generation of autophagy. In conclusion, the study illustrated that oxidative stress, inflammation, apoptosis, and autophagy all played roles in difenoconazole-induced kidney injury in carp, which was closely linked to ROS production. This work provides a valuable reference for studying the toxicity of difenoconazole to aquatic organisms.
Collapse
Affiliation(s)
- Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingyi Chu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
24
|
Chen X, Peng S, Liu M, Wang L, Pang K, Zhang L, Cui Z, Liu A. Highly efficient in-situ cleaner degradation of difenoconazole by two novel dominant strains: Microflora diversity, monoclonal isolation, growth factor optimization, intermediates, and pathways. CHEMOSPHERE 2023; 310:136863. [PMID: 36244419 DOI: 10.1016/j.chemosphere.2022.136863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The non-point source pollution of difenoconazole (DIF) has become a serious environmental issue, increasingly causes indelible damages to eco-environment and human health due to its toxicity, persistence, and biomagnification. An eco-friendly, cost-effective, and efficient control technology is imperative towards a cleaner and sustainable agricultural production. Herein, a dominant microflora of efficiently degrading DIF was successfully screened, and its microbial diversity was investigated. Two novel degrading strains were isolated and identified as Phyllobacterium sp. (T-1) and Aeromonas sp. (T-2). The results of growth factor optimization indicated that the degradation rates of DIF (C0 = 20 mg/L) by strain T-1 and T-2 were up to 96.32% and 97.86% within 14 d, respectively, under the optimal conditions. Moreover, there no obvious synergy between strain T-1 and strain T-2. From catalytic kinetics of enzymes, the intracellular enzyme of strain T-1 dominated the degradation of DIF (C0 = 20 mg/L) entirely with the degradation rate of 82.4% (48 h), the extracellular enzyme showed little catalytic activity. However, the degrade rates of DIF (C0 = 20 mg/L) by both intracellular and extracellular enzymes of strain T-2 were 77.99% and 26.73% within 48 h, respectively. Moreover, these enzymes remained an undiminished catalytic activity within 48 h. DIF was degraded by strain T-1 to three main transformation products (DIF-TPs 406, DIF-TPs 216, and DIF-TPs 198) undergoing hydroxyl substitution, hydrolysis, cleavage of ether bond between benzene rings, and rearrangement, while two additional products (DIF-TPs 281 and DIF-TPs 237) were generated with the biodegradation of strain T-2, excepting for DIF-TPs 406 and DIF-TPs 216, involving hydrolysis, hydroxylation, and ether bond cleavage between benzene rings. Moreover, QSAR simulation showed that the by-products were almost much lower toxicity or even non-toxic to three typical aquatic organisms (fish, daphnia, and green algae) than DIF. This study not only provides an in depth understanding of DIF bioelimination, but also be instrumental in cleaner management of DIF-contaminated soil. This study can promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xiaoxin Chen
- School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, China; College of Chemistry and Environmental Science, Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Hebei University, China.
| | - Shan Peng
- College of Chemistry and Environmental Science, Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Hebei University, China.
| | - Miao Liu
- School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, China; College of Chemistry and Environmental Science, Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Hebei University, China.
| | - Lei Wang
- Hebei Key Laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding, 071002, Hebei Province, China.
| | - Kyongjin Pang
- Department of Organic Chemistry, Hamhung University of Chemical Industry, Hamhung, North Korea.
| | - Liyuan Zhang
- School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, China.
| | - Ziyi Cui
- School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, China.
| | - An Liu
- Hebei Key Laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding, 071002, Hebei Province, China.
| |
Collapse
|
25
|
Köktürk M. In vivo toxicity assessment of Remazol Gelb-GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158473. [PMID: 36063928 DOI: 10.1016/j.scitotenv.2022.158473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Dyes, which are very important for various industries, have very adverse effects on the aquatic environment and aquatic life. However, there are limited studies on the toxic properties of dyes on living things. This research elucidated the sublethal toxicity of acute exposure of the textile dye remazol gelb-GR (RG-GR) using zebrafish embryos and larvae for 96 h. The 96 h-LC50 for RG-GR in zebrafish embryos/larvae was determined to be 151.92 mg/L. Sublethal 96 hpf exposure was performed in RG-GR concentrations (0.5; 1.0; 10.0; 100.0 mg/L) to determine the development of toxicity in zebrafish embryos/larvae. RG-GR dye affected morphological development, and decreased heart rate, hatching, blood flow, and survival rates in zebrafish embryos/larvae. The immunopositivity of 8-hydroxy 2 deoxyguanosine (8-OHdG) in larvae exposed to RG-GR at high concentrations was found to be intense. Depending on the RG-GR dose increase, some biochemical parameters such as glutathione peroxidase (GSH) level, acetylcholinesterase (AChE) activity, catalase (CAT) activities, superoxide dismutase (SOD), and nuclear factor erythroid 2 (Nrf-2) levels were detected to be decreased in larvae, while malondialdehyde (MDA) content, nuclear factor kappa (NF-kB), tumor necrosis factor-α (TNF-α), DNA damage (8-OHdG level), interleukin-6 (IL-6) and apoptosis (Caspase-3) levels were found to be increased. The experimental results revealed that RG-GR dye has high acute toxicity on zebrafish embryo/larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, TR-76000 Igdir, Turkey.
| |
Collapse
|
26
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
27
|
Wang J, Gao X, Liu F, Dong J, Zhao P. Difenoconazole causes cardiotoxicity in common carp (Cyprinus carpio): Involvement of oxidative stress, inflammation, apoptosis and autophagy. CHEMOSPHERE 2022; 306:135562. [PMID: 35792209 DOI: 10.1016/j.chemosphere.2022.135562] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Difenoconazole, a commonly used broad-spectrum triazole fungicide, is widely applied to fish culture in paddy fields. Due to its high chemical stability, low biodegradability, and easy transfer, difenoconazole persists in aquatic systems, raising public awareness of environmental threats. Difenoconazole causes cardiotoxicity in carp, however, the potential mechanisms of difenoconazole-induced cardiotoxicity remain unclear. Here, common carp were exposed to difenoconazole, and cardiotoxicity was evaluated by measuring the creatine kinase (CK) and the lactate dehydrogenase (LDH) in the serum. Cardiac pathological injury was determined by HE staining. The content and expression of oxidative stress indicators were detected using biochemical kits and qPCR analysis. Changes in inflammation-related cytokines were examined by qPCR. Apoptosis levels were assessed by TUNEL assay and qPCR. The occurrence of autophagy was measured by western blotting detection of autophagy flux LC3II/LC3I, and autophagy regulatory pathways were detected using qPCR. The results showed that difenoconazole exposure induced cardiotoxicity accompanied by obviously elevated LDH and CK levels and caused myocardial fibers to swell and inflammatory cells to increase. Elevated peroxide MDA and reduced transcriptional and activity levels of the antioxidant enzymes CAT, SOD and GSH-Px were dependent on the Nrf2/Keap-1 pathway. Moreover, the proinflammatory cytokines IL-1β, IL-6, and TNF-α were upregulated, iNOS activity was enhanced, whereas the anti-inflammatory cytokines TGF-β1 and IL-10 were downregulated after exposure to difenoconazole. Moreover, apoptosis was observed in the TUNEL assay and mediated through the p53/Bcl-2/Bax-Caspase-9 mitochondrial pathway. Furthermore, difenoconazole increased the autophagy markers LC3II, ATG5 and p62 and regulated them through the PI3K/AKT/mTOR pathway. Altogether, this study demonstrated that difenoconazole exposure caused common carp cardiotoxicity, which is regulated by oxidative stress, inflammation, apoptosis and autophagy, providing central data for toxicological risk assessment of difenoconazole in the ecological environment.
Collapse
Affiliation(s)
- Jinxin Wang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feixue Liu
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
28
|
Zhang Y, Dong F, Wang Z, Xu B, Zhang T, Wang Q, Lin Q. Fluoride Exposure Provokes Mitochondria-Mediated Apoptosis and Increases Mitophagy in Osteocytes via Increasing ROS Production. Biol Trace Elem Res 2022:10.1007/s12011-022-03450-w. [PMID: 36255553 DOI: 10.1007/s12011-022-03450-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
Abstract
Fluoride is a persistent environmental pollutant, and its excessive intake causes skeletal and dental fluorosis. However, few studies focused on the effects of fluoride on osteocytes, making up over 95% of all bone cells. This study aimed to investigate the effect of fluoride on osteocytes in vitro, as well as explore the underlying mechanisms. CCK-8, LDH assay, fluorescent probes, flow cytometry, and western blotting were performed to examine cell viability, apoptosis, mitochondria changes, reactive oxygen species (ROS) and mitochondrial ROS (mtROS), and protein expressions. Results showed that sodium fluoride (NaF) exposure (4, 8 mmol/L) for 24 h inhibited the cell viability of osteocytes MLO-Y4 and promoted G0/G1 phase arrest and increased cell apoptosis. NaF treatment remarkably caused mitochondria damage, loss of MMP, ATP decrease, Cyto c release, and Bax/Bcl-2 ratio increase and elevated the activity of caspase-9 and caspase-3. Furthermore, NaF significantly upregulated the expressions of LC-3II, PINK1, and Parkin and increased autophagy flux and the accumulation of acidic vacuoles, while the p62 level was downregulated. In addition, NaF exposure triggered the production of intracellular ROS and mtROS and increased malondialdehyde (MDA); but superoxide dismutase (SOD) activity and glutathione (GSH) content were decreased. The scavenger N-acetyl-L-cysteine (NAC) significantly reversed NaF-induced apoptosis and mitophagy, suggesting that ROS is responsible for the mitochondrial-mediated apoptosis and mitophagy induced by NaF exposure. These findings provide in vitro evidence that apoptosis and mitophagy are cellular mechanisms for the toxic effect of fluoride on osteocytes, thereby suggesting the potential role of osteocytes in skeletal and dental fluorosis.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| | - Fanhe Dong
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Zihan Wang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Bingbing Xu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Tao Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Qiqi Wang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Qiao Lin
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| |
Collapse
|
29
|
Liu F, Wang Y, Chen L, Bello BK, Zhang T, Yang H, Li X, Pan E, Feng H, Dong J. Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114081. [PMID: 36113268 DOI: 10.1016/j.ecoenv.2022.114081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Excessive use of hard-to-degrade pesticides threatens the ecological health of aquatic systems. This study aimed to investigate difenoconazole (DFZ) residues in the environment induced neurotoxicity in carp and the underlying mechanisms. A total of thirty-six carps were divided into three groups and exposed to 0, 0.5, and 2.0 mg/L DFZ for 96 h, respectively. The alterations in behavior and blood-brain barrier (BBB) were examined, and potential mechanisms were explored using immunological assays and biochemical methods. The results showed that DFZ exposure caused behavioral freezing, reduced feeding, and neuronal necrosis in carp. Mechanistically, DFZ triggered ROS accumulation and destroyed the balance between oxidation and antioxidation with increased lipid peroxidation product MDA contents and reduced antioxidant enzymes SOD and CAT activities in the carp brain by inhibiting the NF-E2-related factor 2 (Nrf2) pathway. The activation of oxidative stress further reduced tight junction proteins and MMP levels, thereby destroying BBB and leading to DFZ leakage into the brain. Increased BBB permeability additionally led to DFZ activation of nuclear factor kappa-B signaling-mediated inflammatory cytokine storm, exacerbating neuroinflammation. Meanwhile, DFZ exposure activated mitochondria-associated apoptosis in the carp's brain by up-regulating Bcl-2 associated X protein, cleaved-caspase3, and cytochrome C and decreasing B-cell lymphoma-2 levels. Interestingly, the carp's brain initiated a protective autophagic response via the PI3K/AKT/TOR pathway intending to counteract the neurotoxicity of DFZ. Overall, we concluded that accumulation of DFZ at high concentrations in the aquatic systems disrupted the BBB and resulted in neurotoxicity in carp through inhibition of Nrf2 pathway-mediated ROS accumulation. This study provides a reference for monitoring DFZ residues in the environment and a new target for the treatment of DFZ-induced neurotoxicity in carp.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Li Chen
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
30
|
Anticancer effects of Curcuma zedoaria (Berg.) Roscoe ethanol extract on a human breast cancer cell line. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Oxidative Stress Induces Bovine Endometrial Epithelial Cell Damage through Mitochondria-Dependent Pathways. Animals (Basel) 2022; 12:ani12182444. [PMID: 36139304 PMCID: PMC9495185 DOI: 10.3390/ani12182444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Polymorphonuclear neutrophil (PMN) count is the main diagnostic method of bovine endometritis. High neutrophil PMN counts in the endometrium of cows affected by endometritis suggest the involvement of oxidative stress among the causes of impaired fertility. The damage mechanism of oxidative stress on bovine endometrial epithelial cells (BEECs) is still unelucidated. The objective of this experiment was to investigate the relationship between oxidative stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury to BEECs. Our research showed that there was an imbalance of antioxidant stress in dairy cow uterine with endometritis, oxidative stress damaged dairy cow endometrial epithelial cells through mitochondria-dependent pathways. These findings may provide new insight into the therapeutic target of bovine endometrial cell injury. Abstract Bovine endometritis is a mucosal inflammation that is characterized by sustained polymorphonuclear neutrophil (PMN) infiltration. Elevated PMN counts in the uterine discharge of dairy cows affected by endometritis suggest that oxidative stress may be among the causes of impaired fertility due to the condition. Nevertheless, the effects of oxidative stress-mediated endometritis in dairy cows largely remain uninvestigated. Therefore, fresh uterine tissue and uterine discharge samples were collected to diagnose the severity of endometritis according to the numbers of inflammatory cells in the samples. Twenty-six fresh uteri were classified into healthy, mild, moderate, and severe endometritis groups based on hematoxylin and eosin stain characteristics and the percentage of PMNs in discharge. BEECs were treated with graded concentrations of H2O2 from 50 μM to 200 μM in vitro as a model to explore the mechanism of oxidative stress during bovine graded endometritis. The expressions of antioxidant stress kinases were detected by quantitative fluorescence PCR to verify the oxidative stress level in uteri with endometritis. Reactive oxygen species were detected by fluorescence microscope, and inflammation-related mRNA expression increased significantly after H2O2 stimulation. Moreover, mRNA expression levels of antioxidant oxidative stress-related enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and mitochondrial membrane potential both decreased. Further investigation revealed that expression of the apoptosis regulator Bcl-2/Bax decreased, whereas expression of the mitochondrial apoptosis-related proteins cytochrome c and caspase-3 increased in response to oxidative stress. Our results indicate that an imbalance exists between oxidation and antioxidation during bovine endometritis. Moreover, apoptosis induced in vitro by oxidative stress was characterized by mitochondrial damage in BEECs.
Collapse
|
32
|
Wang A, Chen X, Wang L, Jia W, Wan X, Jiao J, Yao W, Zhang Y. Catechins protect against acrylamide- and glycidamide-induced cellular toxicity via rescuing cellular apoptosis and DNA damage. Food Chem Toxicol 2022; 167:113253. [PMID: 35738327 DOI: 10.1016/j.fct.2022.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide (AA) occurs in both various environmental and dietary sources and has raised widespread concern as a probable carcinogen. Glycidamide (GA) is the main genotoxic metabolite through P450 2E1 (CYP2E1). In the present study, we investigate the protective effect of (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin (EC) against AA- and GA-induced hepatotoxicity in HepG2 cells. The results demonstrated that EC and EGCG inhibited AA- and GA-induced cytotoxicity and mitochondria-mediated cellular apoptosis. Moreover, exposure to AA (100 μg/mL) and GA (50 μg/mL) caused cell cycle arrest and DNA damage, while EC and EGCG ranging from 12.5 to 50 μg/mL rescued cell cycle arrest and inhibited DNA damage. Furthermore, EC and EGCG down-regulated pro-apoptotic protein Bax and Caspase 3 after 24 h treatment in HepG2 cells exposed to AA (100 μg/mL) or GA (50 μg/mL). Also, the intervention with EC or EGCG up-regulated DNA repair related protein PARP and down-regulated expression of cleaved-PARP. Besides, EC exerted better protective effect than EGCG against AA- and GA-induced cytotoxicity in HepG2 cells. Altogether, EC and EGCG were effective in protecting AA- and GA-induced hepatotoxicity via rescuing cellular apoptosis and DNA damage, as well as promoting cell cycle progression in HepG2 cells.
Collapse
Affiliation(s)
- Anli Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Laizhao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Zhang M, Zhou Z, Zhang J, Yu Y, Sun L, Lu T, Qian H. Metagenomic ecotoxicity assessment of trace difenoconazole on freshwater microbial community. CHEMOSPHERE 2022; 294:133742. [PMID: 35090847 DOI: 10.1016/j.chemosphere.2022.133742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Difenoconazole, a typical triazole fungicide, inhibits the activity of cytochrome P450 enzyme in fungi, and is extensively used in protecting fruits, vegetables, and cereal crops. However, reports elucidating the effects of difenoconazole on aquatic microbial communities are limited. Our study showed that difenoconazole promoted microalgae growth at concentrations ranging from 0.1 to 5 μg/L, which was similar with its environmental residual concentrations. Metagenomic analysis revealed that the aquatic microbial structure could self-regulate to cope with difenoconazole-induced stress by accumulating bacteria exhibiting pollutant degrading abilities. In the short-term, several functional pathways related to xenobiotic biodegradation and analysis were upregulated to provide ability for aquatic microbial community to process xenobiotic stress. Moreover, most disturbed ecological functions were recovered due to the redundancy of microbial communities after prolonged exposure. Furthermore, the risks associated with the dissemination of antibiotic resistance genes were enhanced by difenoconazole in the short-term. Overall, our study contributes to a comprehensive understanding of the difenoconazole-induced ecological impacts and the behavior of aquatic microbial communities that are coping with xenobiotic stress.
Collapse
Affiliation(s)
- Mengwei Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Department of Jianhu, Zhejiang Industry Polytechnic College, Shaoxing, 312000, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
34
|
Sub-Chronic Difenoconazole Exposure Induced Gut Microbiota Dysbiosis in Mice. TOXICS 2022; 10:toxics10010034. [PMID: 35051076 PMCID: PMC8780654 DOI: 10.3390/toxics10010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/02/2023]
Abstract
Difenoconazole (DIF) is a widely separated triazole fungicide in many countries. The excessive usage of DIF increases the high volume of residues in agriculture production and water bodies. Some previous studies demonstrated the toxic effects of DIF on non-target animals, however, there were still some gaps in the knowledge of the potential hazards of DIF to mammals and human health. Herein, 7-week-old male mice were exposed to 30 and 100 mg/kg/day DIF for 14 and 56 days. We observed that 56 days of DIF exposure decreased the colonic mucus expression of alcin blue-periodic acid-schiff (AB-PAS) stain and the immunochemical stain of muc2 protein. The transcript levels of mucin protein (muc1, muc2 and muc3) decreased significantly in the gut of mice followed 56 days of 100 mg/kg/day DIF exposure. In addition, the gut microbiota composition was also affected after 14 or 56 days of DIF exposure. Although the mucus expression after 14 days of DIF exposure only decreased slightly, the gut microbiota composition compared with the control group was changed significantly. Moreover, the DIF-30 and DIF-100 caused respectively different changes on the gut microbiota. The relative abundance of Bacteroidetes decreased significantly after 14 days and 56 days of DIF exposure. After 14 days of DIF exposure, there were 35 and 18 differential genera in the DIF-30 and DIF-100 group, respectively. There were 25 and 32 differential genera in the DIF-30 and DIF-100 group after 56 days of exposure, respectively. Meanwhile, the alpha diversity indexes, including observed species, Shannon, Simpson, Chao1 and ACE, in gut microbiota decreased significantly after 56 days of DIF exposure. Interestingly, the relative abundance of Akkermansia increased significantly after 56 days of 100 mg/kg/d DIF exposure. Although Akkermansia was considered as one probiotic, the phenomenon of dramatic Akkermansia increase with the decrease in gut microbiota diversity needed further discussion. These results provided some new insights on how DIF exposure impacts the mucus barrier and induces gut microbiota dysbiosis.
Collapse
|
35
|
ROS and iron homeostasis dependent ferroptosis play a vital role in 5-Fluorouracil induced cardiotoxicity in vitro and in vivo. Toxicology 2022; 468:153113. [DOI: 10.1016/j.tox.2022.153113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
|