1
|
Zhang H, Su Q. Recent Advances of Indium-Based Sulfides in Photocatalytic CO 2 Reduction. ACS OMEGA 2025; 10:8793-8815. [PMID: 40092754 PMCID: PMC11904684 DOI: 10.1021/acsomega.4c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Urgent and significant, the mitigation of greenhouse effects and the preservation of the Earth's ecological environment are paramount concerns. Photocatalytic carbon dioxide (CO2) reduction technology holds immense promise as it directly harnesses renewable solar energy to convert CO2 into hydrocarbon fuels and valuable chemical products. Indium (In)-based sulfides have garnered significant attention in the realm of fundamental research on CO2 photocatalytic conversion. The photocatalytic performance exhibited by In-based materials is attributed to the appropriate bandgap (E g), unique electronic states, tunable atomic structure, and superior optoelectronic properties. Notably, In-based metal sulfides also show excellent potential for addressing challenges related to photocorrosion and carrier recombination. This paper highlighted the key structural features and commonly employed synthesis techniques of In-based metal sulfides. Furthermore, it summarized effective modification strategies aimed at optimizing the photocatalytic performance of these materials. A particular focus was placed on exploring the intricate structure-activity relationships, encompassing the influence of heterostructure construction, element doping, defect engineering, and co-catalyst modification on enhancing photocatalytic efficiency. Finally, the article identified the current challenges and outlined the promising future directions for In-based photocatalysts, hoping to provide valuable references for researchers.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Chemistry and
Chemical & Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- Department of Chemistry and
Chemical & Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
2
|
Tarif A, Tran KD, Ahn YY, Kim K, Kim J, Park H. Visible light-induced photocatalytic degradation of tetrabromobisphenol A on platinized tungsten oxide. CHEMOSPHERE 2024; 363:142785. [PMID: 38972463 DOI: 10.1016/j.chemosphere.2024.142785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In this study, we investigated the degradation of the flame retardant tetrabromobisphenol A (TBBPA) using platinized tungsten oxide (Pt/WO3), synthesized via a simple photodeposition method, under visible light. The results of degradation experiments show a significant enhancement in TBBPA degradation upon surface platinization of WO3, with the degradation rate increasing by 13.4 times compared to bare WO3. The presence of Pt on the WO3 surface stores conduction band electrons, which facilitates the two-electron reduction of oxygen and enhances the production of valence band holes (hVB+) and hydroxyl radicals (●OH). Both hVB+ and ●OH are significantly involved in the degradation of TBBPA in the visible light-irradiated Pt/WO3 system. This was verified through fluorescence spectroscopy employing coumarin as a chemical probe and oxidizing species-quenching experiments. The analysis of degradation products and their toxicity assessment demonstrate that the toxicity of TBBPA-contaminated water is significantly reduced after Pt/WO3 photocatalysis. The degradation rate of TBBPA increased with increasing Pt/WO3 dosage, reached an optimum at a Pt content of 0.5 wt%, but decreased with increasing TBBPA concentration. The decrease in degradation efficiency of Pt/WO3 was minor, both in the presence of various anions and after repeated use. This study proposes that Pt/WO3 is a viable photocatalyst for the degradation of TBBPA in water under visible light.
Collapse
Affiliation(s)
- Ahmed Tarif
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Khen Duy Tran
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Luo G, Liu Y, Xu Z, Shen H, Sheng Y, Zhu Y, Wu S, Liu L, Shan Y. Zinc-doped C 4N 3/BiOBr S-scheme heterostructured hollow spheres for efficient photocatalytic degradation of tetracycline. Phys Chem Chem Phys 2024; 26:19658-19672. [PMID: 38963731 DOI: 10.1039/d4cp01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Photocatalytic degradation of organic pollutants in water is of great significance to the sustainable development of the environment, but encounters limited efficiency when a single compound is used. Thus, there have been enormous efforts to find novel photocatalytic heterostructured composites with high performance. In this work, a novel S-scheme heterostructure is constructed with BiOBr and Zn2+ doped C4N3 (Zn-C4N3) by a solvothermal method for efficient photodegradation of tetracycline (TC), a residual antibiotic difficult to be removed from the aquatic environment. Thanks to Zn2+-doping induced improvement in chemical affinity between Zn-C4N3 and BiOBr, well-formed Zn-C4N3/BiOBr heterostructured hollow spheres are formed. This structure can efficiently suppress fast recombination of photogenerated electron-hole pairs to enhance the photocatalytic activity of BiOBr dramatically. At a room temperature of 25 °C and neutral pH 7, the catalyst can degrade a significant portion of TC pollutants within 30 min under visible light. Also, the Zn-C4N3/BiOBr heterostructure displays good stability after recycling experiments. Free radical capture experiments and ESR tests show that ˙O2- is the main active substance for photocatalytic degradation of TC. This study provides new insights for constructing heterostructures with an intimate interface between the two phases for photocatalytic applications.
Collapse
Affiliation(s)
- Yaqi Liu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Guicheng Luo
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yichen Liu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Zuozheng Xu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Hengxin Shen
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Yuxiang Sheng
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Yuan Zhu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic China.
| | - Lizhe Liu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Yun Shan
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| |
Collapse
|
4
|
Bernegossi AC, Castro GB, Felipe MC, de Souza TTC, Macêdo WV, Gorni GR, Corbi JJ. Anaerobic treatment removing tetrabromobisphenol A and biota safety: How do tropical aquatic species respond to effluent toxicity over short- and long-term exposures? WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11065. [PMID: 38895814 DOI: 10.1002/wer.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 μg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juliano José Corbi
- Universidade de São Paulo Escola de Engenharia de São Carlos, São Carlos, Brazil
| |
Collapse
|
5
|
Ning B, Chen Z, Cai Y, Xiao FX, Xu P, Xiao G, He Y, Zhan L, Zhang J. Simultaneous Photocatalytic Tetracycline Oxidation and Cr(VI) Reduction by Z-Scheme Multiple Layer TiO 2/SnIn 4S 8. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9144-9154. [PMID: 38629776 DOI: 10.1021/acs.langmuir.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Wastewater pollutants are a major threat to natural resources, with antibiotics and heavy metals being common water contaminants. By harnessing clean, renewable solar energy, photocatalysis facilitates the synergistic removal of heavy metals and antibiotics. In this paper, MXene was both a template and raw material, and MXene-derived oxide (TiO2) and SnIn4S8 Z-scheme composite materials were synthesized and characterized. The synergistic mode of photocatalytic reduction and oxidation leads to the enhanced utilization of e-/h+ pairs. The TiO2/SnIn4S8 exhibited a higher photocatalytic capacity for the simultaneous removal of tetracycline (TC) (20 mg·L-1) and Cr(VI) (15 mg·L-1). The main active substances of TC degradation and Cr(VI) reduction were identified via free radical scavengers and electron paramagnetic resonance (EPR). Additionally, the potential photocatalytic degradation route of TC was thoroughly elucidated through liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Boyuan Ning
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
| | - Zhixin Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yanqing Cai
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
| | - Fang-Xing Xiao
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Pingfan Xu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
| | - Guangcan Xiao
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yunhui He
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou 350108, P. R. China
| | - Linjian Zhan
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
| | - Junyi Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, P. R. China
| |
Collapse
|
6
|
Pandey A, Gupta A, Alam U, Verma N. Construction of a stable S-scheme NiSnO 3/g-C 3N 4 heterojunction on activated carbon fibre for the degradation of glyphosate in water under flow condition. CHEMOSPHERE 2024; 347:140709. [PMID: 37977535 DOI: 10.1016/j.chemosphere.2023.140709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Creating light-harvesting heterojunctions as a photocatalyst is critical for efficiently treating organics-laden wastewater. Yet the materials stabilization and limited reusability hinder their practical applications. In this study, an S-scheme heterojunction in the Sn-based perovskite and g-C3N4 (gCN) composite, supported on an activated carbon fiber (ACF) substrate, is developed for glyphosate (GLP) degradation under water under flow conditions. The reusable NiSnO3-gCN/ACF photocatalyst was synthesized using a simple wet impregnation and calcination method. The supported photocatalyst achieved 99% GLP-removal at 4 mL/min water flowrate and 1.25 g/m2 of photocatalyst loading in ACF. The photocatalyst showed a stable structure and repeat photocatalytic performance across 5 cycles despite prolonged visible light exposure under flow conditions. The materials stability is attributed to the effective dispersion of NiSnO3-gC3N4 in ACF, preventing the photocatalyst from elution in water flow. Radical trapping experiment revealed the superoxide and hydroxyl radicals as the primary reactive species in the GLP-degradation pathway. A plausible S-scheme mechanism was proposed for heterojunction formation, based on the high resolution deconvoluted spectra of X-ray photoelectron spectroscopy and the radical trapping experimental results. The inexpensive Sn-based perovskite synthesized in this study is indicated as an alternative to Ti-based perovskites for wastewater remediation application.
Collapse
Affiliation(s)
- Arin Pandey
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Abhishek Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Umair Alam
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Nishith Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
7
|
Jia L, Yang C, Jin X, Wang D, Li F. Direct Z-scheme heterojunction Bi/Bi 2S 3/α-MoO 3 photoelectrocatalytic degradation of tetracycline under visible light. CHEMOSPHERE 2023; 315:137777. [PMID: 36621692 DOI: 10.1016/j.chemosphere.2023.137777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
A hot research topic in visible-light-driven photoelectrocatalytic (PEC) oxidation technology is the development of superior photoanode materials. The design of the photoanode system with a direct Z-scheme charge transfer mechanism is crucial to achieving effective charge separation for sustainable photoelectrocatalysis. Here, a novel Bi/Bi2S3/α-MoO3 heterostructure was successfully assembled by a simple and feasible strategy. The direct Z-scheme heterogeneous formed between Bi2S3 and α-MoO3 has the advantages of low resistance, high optical response current and the surface plasmon resonance (SPR) effect of Bi nanoparticles (Bi NPs). Thus, the efficiency of photogenerated carrier separation and transfer is further enhanced, and the catalytic activity is significantly improved. It is impressive that the unique photoanode has achieved a maximum removal efficiency of 85.8% of tetracycline (TC) pollutants under visible light irradiation within 60 min and has excellent stability, which is expected to degrade antibiotics efficiently and environmentally in harsh environments. These characteristics give Bi/Bi2S3/α-MoO3 promising candidates for practical applications in antibiotic degradation.
Collapse
Affiliation(s)
- Litao Jia
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenjia Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Dan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
8
|
Gong D, Sun K, Yin K, Wang X. Selenium mitigates the inhibitory effect of TBBPA on NETs release by regulating ROS/MAPK pathways-induced carp neutrophil apoptosis and necroptosis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108501. [PMID: 36566834 DOI: 10.1016/j.fsi.2022.108501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most common and persistent organic pollutants found in the environment. When TBBPA is ingested by organisms through various pathways and stored in the body, it shows obvious harmful effects. Selenium (Se) works as an antioxidant in the body, allowing it to withstand the poisonous effects of dangerous substances. The effects and mechanisms of Se and TBBPA on carp neutrophil immune function, apoptosis, and necroptosis, however, are unknown. As a result, we created TBBPA exposure and Se antagonism models using carp neutrophils as study objects, and we investigated the expression of genes implicated in extracellular traps (NETs), cytokines, apoptosis, and necroptosis. The findings demonstrated that extracellular traps neutrophils in the TBBPA group displayed the inhibition of NETs, apoptosis, and necrosis, as well as an increase in Reactive oxygen species (ROS) levels and activation of the MAPK pathway. The expression of genes related to the mitochondrial apoptosis pathway (Bax, Cyt-c, Bcl-2 and Caspase-3) and necroptosis pathway (MLKL, RIPK1, RIPK3, Caspase-8 and FADD) were activated. The expression of inflammatory factors IL-1 and TNF-α were increased, and the expression of IL-2 and IFN-γ were decreased. But an appropriate concentration of Se can mitigate the effects of TBBPA. Our results suggest that Se can mitigate the inhibitory effect of TBBPA on NETs release by regulating apoptosis and necroptosis of carp neutrophil via ROS/MAPK pathways. These results provide a basis information for exploring the toxicity of TBBPA, and enrich the anti-toxicity mechanism of trace element Se in the body.
Collapse
Affiliation(s)
- Duqiang Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Jilin Agricultural Science and Technology University, Jilin, 132101, PR China.
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kexin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
9
|
Li Y, Wang X, Xiao Z, Liao G, Wang J, Li X, Tang Y, He C, Li L. Efficient removal of TBBPA with a Z-scheme BiVO 4-(rGO-Cu 2O) photocatalyst under sunlight irradiation. CHEMOSPHERE 2022; 308:136259. [PMID: 36057348 DOI: 10.1016/j.chemosphere.2022.136259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 05/12/2023]
Abstract
In this study, reduced graphene oxide (rGO) was used to fabricate a Z-scheme BiVO4-(rGO-Cu2O) photocatalyst for the degradation of Tetrabromobisphenol A (TBBPA) under sunlight irradiation. The photocatalyst was synthesized using a three-step method BiVO4-(rGO-Cu2O) photocatalyst with an rGO loading of 1% and (rGO-Cu2O) to BiVO4 ratio of 50% achieved the best degradation effect for TBBPA removal. Electron paramagnetic resonance spectroscopy (EPR) confirmed that the charge transfer path of BiVO4-(rGO-Cu2O) follows that of Z-scheme photocatalysts. Moreover, the addition of rGO increases the charge transfer efficiency. High performance liquid chromatography-mass spectrometry (HPLC-MS) was used to detect and analyze intermediate products, allowing the proposal of the main degradation pathway of TBBPA. Photogenerated electrons of BiVO4-(rGO-Cu2O) were then transferred into the conduction band of Cu2O. Cu2O is located in the surface layer, which has the most effective contact area with pollutants, and therefore has a good outcome for the photocatalytic reduction of TBBPA. Photogenerated electrons (e-) and hydroxyl radicals (∙OH) are the main factors affecting TBBPA degradation. The degradation process of TBBPA includes electron reduction debromination, hydroxylation, and β-cleavage. In our work, BiVO4-(rGO-Cu2O) was successfully synthesized to degrade TBBPA; this study brings forth a novel approach for the degradation of halogenated organic pollutants using a Z-scheme photocatalytic composite.
Collapse
Affiliation(s)
- Yaoyi Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Xi Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| | - Zijun Xiao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Gaozu Liao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Jing Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| | - Xukai Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Yiming Tang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Chun He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology(Sun Yat-sen University) , China
| | - Laisheng Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| |
Collapse
|
10
|
Dong J, Li G, Gao J, Zhang H, Bi S, Liu S, Liao C, Jiang G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157695. [PMID: 35908699 DOI: 10.1016/j.scitotenv.2022.157695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive commercial use of brominated flame retardants (BFRs), human beings are chronically exposed to BFRs, causing great harms to human health, which imposes urgent demands to degrade them in the environment. Among various degradation techniques, catalytic degradation has been proven to be outstanding because of its rapidness and effectiveness. Therefore, much attention has been given to catalytic degradation, especially the extensively studied photocatalytic degradation and nanocatalytic reduction techniques. Recently, some novel advanced catalytic techniques have been developed and show excellent catalytic degradation efficiency for BFRs, including natural substances catalytic degradation, new Fenton catalytic degradation, new chemical reagent catalytic degradation, new material catalytic degradation, electrocatalytic degradation, plasma catalytic degradation, and composite catalytic degradation systems. In addition to the common features of traditional catalytic techniques, these novel techniques possess their own specific advantages in various aspects. Therefore, this review summarized the degradation mechanism of BFRs by the above new catalytic degradation methods under the laboratory conditions, simulated real environment, and real environment conditions, and further evaluated their advantages and disadvantages, aiming to provide some research ideas for the catalytic degradation of BFRs in the environment in the future. We suggested that more attention should focus on features of novel catalytic techniques, including eco-friendliness, cost-effectiveness, and pragmatic usefulness.
Collapse
Affiliation(s)
- Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Zhang Y, Chen J, Wang H, Cui Q, Fan D, Zhang Y, Ren X, Ma H, Wei Q, Ju H. Novel Photoelectrochemical Biosensing Platform Based on a Double Type II CdLa 2S 4/SnIn 4S 8/Sb 2S 3 Ternary Heterojunction as Photoactive Materials and NiCo 2O 4 Nanospheres as a Photoquencher for CA19-9 Detection. Anal Chem 2022; 94:15915-15923. [DOI: 10.1021/acs.analchem.2c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingying Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Jingjing Chen
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hui Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qianqian Cui
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
12
|
Lin XQ, You JM, Meng LY, Yoshida N, Han JL, Li CJ, Wang AJ, Li ZL. Nano Pd doped Ni foam electrode stimulated electrochemical reduction of tetrabromobisphenol A: Optimization strategies and function mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156007. [PMID: 35595130 DOI: 10.1016/j.scitotenv.2022.156007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a hazardous and persistent flame retardant, has been widely detected in the natural aquatic system. The acceleration of reductive debromination (rate-limiting process) is vital during the decomposition and detoxification of TBBPA. This study achieved superior TBBPA electrochemical reductive debromination performance by nano Pd doped Ni foam electrode (4.8 times higher than Ni foam electrode). The optimal TBBPA reductive debromination performance was obtained under -1.2 V of cathode potential, 1.2 wt% of Pd loading, 10 mg L-1 of TBBPA and 100 mM of Na2SO4 as the electrolyte solution. UPLC-QTOF-MS verified that Br atoms in TBBPA were removed sequentially to form bisphenol A as the major product. Most TBBPA was reductively debrominated by atomic H* through indirect hydrodebromination, evidenced by the atomic H* quenching test. The higher solution conductivity and appropriate TBBPA concentration would contribute to the debromination efficiency. Excessive H2 generation whether by over negative potential or H atom richness electrolyte largely disturbed the reaction process and restricted the debromination. The improved generation of reductant (H*)adsPd was the most significant, while excessive Pd loading would make aggregation and limit the debromination efficiency. The study confirmed the optimization strategies of conditions for Pd/Ni foam electrode and revealed the related function mechanism for stimulating TBBPA electrochemical reduction, giving suggestions for the efficient removal of TBBPA in the aquatic environment.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Mei You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling-Yu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Cong-Ju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Liu S, Hou X, Yu C, Pan X, Ma J, Liu G, Zhou C, Xin Y, Yan Q. Integration of wastewater treatment units and optimization of waste residue pyrolysis conditions in the brominated phenol flame retardant industry. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Jin X, Li M, Fu L, Wu C, Tian X, Wang P, Zhou Y, Zuo J. A thorough observation of an ozonation catalyst under long-term practical operation: Deactivation mechanism and regeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154803. [PMID: 35341845 DOI: 10.1016/j.scitotenv.2022.154803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Heterogeneous catalytic oxidation, as an efficient advanced treatment technology, has been gradually applied in industrial wastewater treatment. The fixed bed technique is one of the most popular catalytic ozonation methods. However, few studies have concentrated on the long-term operation effects on catalysts. In this study, we conducted long-term (~5 years) observations of the operation of the largest petrochemical wastewater treatment plant (treatment capacity 120,000 m3/d) with catalytic ozonation technology in China. A commercial catalyst, which uses Al2O3 pellets supporting copper oxide was applied in this plant. The results showed that the catalytic efficiency gradually decreased from 60.65% to 25.98% since 2018, and the ozone dosage to COD removal ratio (ozone/COD) also increased from 0.82 to 1.93 mg/mg as the running time continued. By means of the comparison and characterization of fresh catalyst and used catalyst, a "mucus layer" was formed by the adsorption of negatively charged extracellular polymeric substances on the positively charged catalyst surface and the interception of the catalyst layer. The mucus layer significantly reduced the catalytic efficiency by isolating ozone with catalytic active sites and releasing extra organic contaminants during the catalytic process resulting in 53.97% TOC increase in the batch test. Meanwhile, regeneration experiments revealed that the TOC removal efficiency was 4.76% and 43.48% in presence of washed catalysts and calcinated catalysts, respectively. Compared with the fresh catalyst, 73% of the catalytic activity was recovered for calcinated catalyst. Consequently, this study provides much practical information, showing positive effects on the promotion of catalytic ozonation application in actual wastewater treatment.
Collapse
Affiliation(s)
- Xiaoguang Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Min Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Xiangmiao Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Panxin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Zhao J, Tian W, Chu M, Chen H, Yang S, Jiang J. Enhanced photodegradation of methyl and parent PAH over flower-sphere Ag/rGO/BiOBr composite: Performance, mechanism and pathway. CHEMOSPHERE 2022; 297:134175. [PMID: 35271896 DOI: 10.1016/j.chemosphere.2022.134175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Significant amounts of methyl and parent polycyclic aromatic hydrocarbons (PAHs) exist in the environment, causing a potential environmental threat. A cost-effective, stable, and efficient photocatalyst was valuable for water remediation. In this work, Ag and reduced graphene oxide (rGO) was used to promote the visible light utilization of BiOBr catalyst. The photocatalytic degradation performance of synthesized catalysts under sunlight irradiation was better than under visible light irradiation. The Ag/rGO/BiOBr catalyst was superior to pure BiOBr and Ag/BiOBr in the photodegradation of 3,6-dimethylphenanthrene (3,6-DMP) and phenanthrene (Phe) with the optimum doping amounts (Ag 1.5 wt% and rGO 3 wt%). The degradation of 3,6-DMP on 1.5Ag/3rGO/BiOBr was influenced by solution pH, catalyst dosage and humic acid adding. 3,6-DMP was more easily photodegraded than Phe. Superoxide radicals (·O2-) and holes (h+) played key roles in the photocatalytic process. The photodegradation mechanisms and pathways of 3,6-DMP and Phe were proposed according to the intermediate detection results by GC-MS. Ag/rGO/BiOBr provided a promising solution for methyl and parent PAH remediation.
Collapse
Affiliation(s)
- Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China.
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Haining Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Shujie Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Junfeng Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
16
|
Zheng X, Zhang X, Cai Y, Zhao S, Wang S. Efficient degradation of bisphenol A with MoS 2/BiVO 4 hetero-nanoflower as a heterogenous peroxymonosulfate activator under visible-light irradiation. CHEMOSPHERE 2022; 289:133158. [PMID: 34875299 DOI: 10.1016/j.chemosphere.2021.133158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 05/14/2023]
Abstract
Photocatalyst activated peroxymonosulfate (PMS) under visible-light irradiation to construct a photo-Fenton system has shown great application prospect for environmental remediation. In this study, MoS2/BiVO4 heterojunction nanoflowers were successfully synthesized by hydrothermal method and used to activate PMS under visible-light to achieve highly efficient degradation of bisphenol A (BPA). The constructed heterojunction showed excellent catalytic activity, which was attributed to the synergistic effect of effective separation of charge carriers and PMS activation. In the MoS2/BiVO4/PMS/vis system, 2-MoS2/BiVO4 (2-MB) exhibited the highest degradation rate constant for BPA (0.1747 min-1), which was 91.9 times of pure MoS2 and 38.0 times of pure BiVO4, respectively. The electron paramagnetic resonance (EPR) and radical quenching experiments demonstrated that the oxidative degradation of BPA was mainly participated by SO4-, OH, 1O2 and h+ active species. Through the analysis of energy band structure and element valence state of photocatalyst and the identification of reaction intermediates, the degradation mechanism and degradation pathways were proposed. In addition, MoS2/BiVO4 heterojunction showed high catalytic ability for various organic pollutants (herbicides, pesticide intermediates, antibiotics and dyes), and common anions (Cl-, SO42- and NO3-) and humic acid (HA) had little effect on its degradation efficiency. This study has provided a new solution for the use of heterojunction photocatalysts for visible-light assisted PMS activation to achieve highly efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
17
|
Kisała J, Ferraria AM, Mitina N, Cieniek B, Krzemiński P, Pogocki D, Nebesnyi R, Zaichenko O, Bobitski Y. Photocatalytic activity of layered MoS 2 in the reductive degradation of bromophenol blue. RSC Adv 2022; 12:22465-22475. [PMID: 36105982 PMCID: PMC9366594 DOI: 10.1039/d2ra03362c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Molybdenum disulphide (MoS2) is a layered material with interesting photocatalytic properties. In this study, a layered MoS2 was produced using a hydrothermal method. The obtained material was characterised by XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscopy), UV-Vis spectroscopy, DLS (dynamic light scattering), and zeta potential analysis. For the evaluation of the photocatalytic properties of layered MoS2, a solution of bromophenol blue (BPB) and the catalyst was illuminated for 120 minutes. According to the experimental results, MoS2 exhibited excellent catalytic activity in BPB degradation. The MoS2 preparation method enabled improved light harvesting, avoided fast charge recombination (related to bulk MoS2), and created a large number of suitable electron transfer sites for photocatalytic reactions. Simulation of BPB decay and bromide production was carried out for a further understanding of MoS2 photocatalytic action. The simulation results proved the reduction mechanism of BPB photodegradation. Molybdenum disulphide (MoS2) is a layered material with interesting photocatalytic properties.![]()
Collapse
Affiliation(s)
- Joanna Kisała
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Ana M. Ferraria
- BSIRG-iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Nataliya Mitina
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Bogumił Cieniek
- Institute of Materials Science, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
| | - Piotr Krzemiński
- Centre for Microelectronics and Nanotechnology, Institute of Physics, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
| | - Dariusz Pogocki
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Roman Nebesnyi
- Technology of Organic Products Department, Lviv Polytechnic National University, 12S. Bandera St., Lviv, 79013, Ukraine
| | - Oleksandr Zaichenko
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Yaroslav Bobitski
- Centre for Microelectronics and Nanotechnology, Institute of Physics, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
- Department of Photonics, Lviv Polytechnic National University, 1 Sviatoho Yura Sq., 79013 Lviv, Ukraine
| |
Collapse
|
18
|
Liu J, Lin H, Dong Y, He Y, Liu C. MoS 2 nanosheets loaded on collapsed structure zeolite as a hydrophilic and efficient photocatalyst for tetracycline degradation and synergistic mechanism. CHEMOSPHERE 2022; 287:132211. [PMID: 34826913 DOI: 10.1016/j.chemosphere.2021.132211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 05/14/2023]
Abstract
In this study, MoS2@Z photocatalysts were synthesized by combining ultrasonic and hydrothermal methods, and used for the degradation of tetracycline. The structure characteristics and photocatalytic degradation mechanism of photocatalysts were also systematically investigated. The obtained MoS2@Z-5 exhibits the highest photo-degradation efficiency of tetracycline (87.23%), which is 3.58 times more than alkali-modified zeolite (24.34%) and 1.80 times more than pure MoS2 (48.53%). Furthermore, the MoS2@Z-5 showed significant stability in three times photocatalytic recycles and the removal efficiency only decrease by 9.03%. Crystal structure and micromorphology analysis show modified zeolite with collapsed structure can regulate the morphology of nano-MoS2 and make MoS2 appear fault structure, which can expose more active sites. In addition, low Si/Al ratio zeolite increases the hydrophilia of MoS2@Z-5. Reactive-species-trapping experiments show that the hole is the main reactive oxidizing species. The superior photo-degradation efficiency is mainly attributed to outstanding hydrophilia, exposure of the edge active sites, and efficient separation of photogenerated charge and holes. A possible photocatalytic mechanism and degradation pathways of tetracycline were proposed. The results indicate that MoS2@Z-5 may become an efficient, stable, and promising photocatalyst in tetracycline wastewater treatment.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|