1
|
Domaoal JG, Stack ME, Hollman K, Khanum S, Cho C, Daines A, Mladenov N, Hoh E, Sant KE. Effects of sunlight exposure on tire tread particle leachates: Chemical composition and toxicity in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126286. [PMID: 40258507 DOI: 10.1016/j.envpol.2025.126286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Tire tread particles (TTP) are small micro- or nano-particles resulting from the friction of tire tread against roadways. These secondary microplastics have been found in waterways, arriving through airborne means or runoff. Due to their abundance and persistence in aquatic environments, TTP pose a potential hazard to wildlife. Natural degradation processes like photoirradiation can potentially worsen this by transforming leached TTP chemicals. In this study, we assessed the toxicity and chemical composition of TTP leachates produced over 1 or 6 days in either dark or photoirradiated conditions. For toxicity studies, zebrafish embryos were exposed to leachates over a range of concentrations and from 0 to 4 days post fertilization. TTP exposures impaired survival and hatching, induced embryonic defects, and modulated detoxification by the enzyme ethyoxyresorufin-O-deethylase. RNA sequencing revealed divergent effects based on photoirradiation, including impacts on glycolysis, lipid metabolism, and mitochondrial function. For chemical analysis, leachates were assessed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) and chromatographic features were annotated. In total, 546 chromatographic features were detected across all samples, and clustering showed unique chemical profiles based on photoirradiation during leaching. Several compounds were in high abundance in 1-day irradiated leachates, including 1,3-diphenylguanidine, aniline, and 1H-benzotriazole, though their relative abundance was reduced in 6-day leachates. Overall, this research compounds on the existing literature defining TTPs as toxic microplastics in the environment, and we show novel chemical and toxicological data that demonstrates how photoirradiation in the natural environment may exacerbate toxicity.
Collapse
Affiliation(s)
- Jenielle G Domaoal
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Margaret E Stack
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; San Diego State University Research Foundation, San Diego, CA, 92128, USA
| | - Kelly Hollman
- San Diego State University Department of Civil, Construction, and Environmental Engineering, San Diego, 92128, CA, USA
| | - Saleha Khanum
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; San Diego State University Research Foundation, San Diego, CA, 92128, USA
| | - Christine Cho
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Alysia Daines
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Natalie Mladenov
- San Diego State University Department of Civil, Construction, and Environmental Engineering, San Diego, 92128, CA, USA
| | - Eunha Hoh
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Karilyn E Sant
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; Michigan State University, Department of Pharmacology & Toxicology, East Lansing, 48824, MI, USA.
| |
Collapse
|
2
|
Lee D, Alyami I, Zimila H, Arnold RG, Quanrud DM, Sáez AE. Photolytic transformation of trace organic compounds: Roles of direct photolysis and indirect photolysis by singlet oxygen. WATER RESEARCH 2025; 283:123799. [PMID: 40359892 DOI: 10.1016/j.watres.2025.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Both direct and indirect solar photolysis contribute to the in-situ attenuation of trace organic compounds (TOrCs) in surface waters, including those that are impacted by treated wastewater. In particular, the formation of singlet oxygen (1O2) from photosensitizers may play a role in the degradation of specific TOrCs. Quantification of the kinetics of photolytic processes is essential for anticipation of TOrC attenuation in sunlit waters. In this work, quantum yields for direct photolysis in sunlight and ultraviolet A light (290-400 nm), and second-order rate constants for TOrC reactions with 1O2 were determined for sixteen TOrCs that are ubiquitous in effluent-receiving surface waters. Six of the sixteen TOrCs (prednisone, dexamethasone, benzophenone, hydrocortisone, hydrochlorothiazide, and furosemide) were transformed via direct photolysis. Compounds that reacted readily with 1O2 included furosemide, propylparaben, and diltiazem. Second-order rate constants for reactions with 1O2 were determined using a kinetic model applied to a batch reactor and confirmed by measurement of kinetic solvent isotope effects (KSIE) in deuterated water (D2O). A reactor model that combined direct and indirect photolysis was used to predict TOrC in chemically complex solutions containing natural organic matter (NOM) or effluent organic matter (EfOM), using the measured direct photolysis quantum yield and reaction rate constant with 1O2.
Collapse
Affiliation(s)
- Doorae Lee
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA.
| | - Ibrahim Alyami
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Hercilio Zimila
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Robert G Arnold
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - David M Quanrud
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona 85721, USA
| | - A Eduardo Sáez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
3
|
Hollman KV, Stack ME, Hoh E, Sant KE, Harper B, Mladenov N. Behavior of compounds leached from tire tread particles under simulated sunlight exposure. WATER RESEARCH 2025; 274:123060. [PMID: 39756220 DOI: 10.1016/j.watres.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Tire tread particles are microplastics (< 5 mm) and leach organic chemicals into aquatic environments. It is important to understand the behavior of tire wear compounds in sunlight-exposed waters in terms of their persistence, removal, and transformation. Therefore, we conducted photolysis experiments with leachates from laboratory-generated tire tread particles (TTP) over 72 h in a solar simulator to evaluate the behavior of leached compounds and fluorescent components over time. Compared to initial leachates, simulated sunlight exposure resulted in ∼12 % decrease in dissolved organic carbon, 11 % reduction in the total fluorescence of leachates, and ∼30 % removal of the 213 chromatographic features detected by nontargeted analysis (NTA) using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. A decrease in total chemical abundance determined by NTA was observed, with normalized peak areas decreasing by 36.4% in the 72 h photoirradiated samples and by 13.6% in the dark samples. Fifty-three compounds were tentatively identifiable based on mass spectral matching and among them, 12 compounds were confirmed with authentic standards. Among the 53 compounds, 19 compounds were photo-labile, 27 were photo-resistant, and 7 were photo-transformation products. NTA also identified compounds previously unreported as tire-related compounds. Parallel factor analysis (PARAFAC) modeling of three-dimensional excitation-emission-matrix (EEM) data identified five fluorescent components. PARAFAC component C4 (excitation/emission peak at 285/445 nm) was found to be a fluorescent analog for 6PPD. Rapid double exponential decay kinetics were observed for the 6PPD-like component during photoirradiation. Similarly, the peak fluorescence of commercially available 6PPD exposed to simulated sunlight was reduced by >90 % in the first 0.5 h of photoirradiation. 6PPD photodegradation resulted in the production of a fluorescent transformation product resembling PARAFAC Component C2 (with emission at 360 nm). These results prove that EEM fluorescence analyses can serve as a rapid method for kinetics analysis of 6PPD, and may be combined with NTA compound tentative identification to track the behavior of other TTP-derived compounds in experimental studies.
Collapse
Affiliation(s)
- Kelly V Hollman
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Margaret E Stack
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; San Diego State University Research Foundation, San Diego, CA 92182, USA
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan Harper
- Department of Environmental and Molecular, Toxicology Oregon State University, Corvallis, OR 97731, USA
| | - Natalie Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
4
|
Cao L, Garcia SL, Wurzbacher C. Profiling trace organic chemical biotransformation genes, enzymes and associated bacteria in microbial model communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136811. [PMID: 39662353 DOI: 10.1016/j.jhazmat.2024.136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Microbial biotransformation of trace organic chemicals (TOrCs) is an essential process in wastewater treatment to eliminate environmental pollution. Understanding TOrC biotransformation mechanisms, especially at their original concentrations, is important to optimize treatment performance, whereas our current knowledge is limited. Here, we investigated the biotransformation of seven TOrCs by 24 model communities. The genome-centric analyses unraveled potential biotransformation drivers concerning functional genes, enzymes, and responsible bacteria. We obtained efficient model communities for completely removing ibuprofen, caffeine, and atenolol, with transformation efficiencies between 0 % and 45 % for sulfamethoxazole, carbamazepine, trimethoprim, and gabapentin. Biotransformation performance was not fully reflected by the presence of known biotransformation genes and enzymes in the metagenomes of the communities. Functional similar homologs to existing biotransformation genes and enzymes (e.g., long-chain-fatty-acid-CoA ligase encoded by fadD and fadD13 gene) could play critical roles in TOrC metabolism. Finally, we identified previously undescribed degrading strains, e.g., Rhodococcus qingshengii for caffeine, carbamazepine, sulfamethoxazole, and ibuprofen biotransformation, and potential transformation enzymes, e.g., SDR family oxidoreductase targeting sulfamethoxazole and putative hypothetical proteins for caffeine, atenolol and gabapentin biotransformation. This study provides fundamental insights into naturally assembled low-complexity degrader communities that can help to identify and tackle the current research gaps on biotransformation.
Collapse
Affiliation(s)
- Lijia Cao
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
5
|
Volpatto F, Vitali L. Development of a new method using dispersive liquid-liquid microextraction with hydrophobic natural deep eutectic solvent for the analysis of multiclass emerging contaminants in surface water by liquid chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1032-1046. [PMID: 39775300 DOI: 10.1039/d4ay02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (1H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples. Vortex was used as the dispersion mode, eliminating the use of the dispersion solvent. Chromatographic conditions and sample preparation were optimized using multivariate experimental designs. The optimized chromatographic conditions included the column oven temperature, mobile phase modifiers, and stationary phase type. The optimized conditions for sample preparation included the extraction temperature and pH, salting out effect, and extraction solvent volume. The analytical performance was evaluated through repeatability and intermediate precision tests, with RSD values below 20%, and recoveries between 70 and 120%. The coefficient of determination was greater than 0.98 for all analytes. LOQs varied between 1.5 and 35 μg L-1. DLLME is a simple technique, it does not require expensive and specific equipment. Furthermore, replacing traditional chlorinated solvents with NADES makes the procedure more environmentally friendly. The method presented here can be applied to a wide range of analytes for the analysis of fresh, brackish, and salt waters. Up to the present moment, this is the first study using NADES based thymol and butyric acid for the determination of multiclass emerging contaminants in surface waters samples.
Collapse
Affiliation(s)
- Fernanda Volpatto
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
| | - Luciano Vitali
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
| |
Collapse
|
6
|
Devers J, Pattison DI, Hansen AB, Christensen JH. Comprehensive two-dimensional gas chromatography as a tool for targeted and non-targeted analysis of contaminants of emerging concern in wastewater. Talanta 2025; 282:127032. [PMID: 39406094 DOI: 10.1016/j.talanta.2024.127032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024]
Abstract
Wastewater is a major reservoir for chemical contaminants, both anthropogenic and biogenic. Recent chemical and toxicological analysis reveals the abundance and impact of these compounds, often termed contaminants of emerging concern (CECs). Concurrently, incomplete removal of these compounds in wastewater treatment plants sets a precedent for detailed characterisation and monitoring of such substances. Although liquid chromatography (LC) is frequently used for analysis of CECs in wastewater, gas chromatography (GC) maintains its significance for non-polar to mid-polar analytes. GC offers advantages such as increased separation efficiency, fewer matrix effects, and greater availability and reliability of reference mass spectra compared to LC. Comprehensive two-dimensional gas chromatography (GC × GC) delivers unmatched peak capacity and separational capabilities, critical in the resolution of diverse compound groups present within wastewater. When coupled with high resolution mass spectrometry, it provides a powerful identification tool with spectral databases and both 1st and 2nd dimensional retention indices, and has allowed for the separation, reliable annotation and characterisation of diverse CECs within wastewater in recent years. Herein, on the basis of recent studies from the last fifteen years, we outline cutting-edge methodologies and strategies for wastewater analysis using GC × GC. This includes sample preparation, derivatization of polar analytes, instrumental setup, and data analysis, ultimately providing the reader a framework for future non-targeted analysis of wastewater and other complex environmental matrices.
Collapse
Affiliation(s)
- Jason Devers
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - David I Pattison
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Asger B Hansen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Delanka-Pedige HMK, Ahmed A, Schaub T, Trainor P, Nirmalakhandan N. Feasibility of organic micropollutant removal from municipal wastewaters by algal treatment vs. activated sludge treatment: Comparison based on non-targeted organic compound analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121936. [PMID: 39096723 DOI: 10.1016/j.jenvman.2024.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Sustainability and life-cycle concerns about the conventional activated sludge (CAS) process for wastewater treatment have been driving the development of energy-efficient, greener alternatives. Feasibility of an algal-based wastewater treatment (A-WWT) system has been demonstrated recently as a possible alternative, capable of simultaneous nutrient and energy recovery. This study compared capabilities of the A-WWT and CAS systems in removing organic micropollutants (OMP). Initial assessments based on surrogate organic measures and fluorescence excitation-emission matrix (FEEM) scans revealed that the A-WWT system achieved higher removals of organics than the CAS system. However, effluents of both systems contained residual organic matter, necessitating further OMP assessment for a rigorous comparison. A novel ultrahigh-performance liquid chromatography- Fourier transform mass spectrometry (UPLC-FTMS)-based non-targeted screening approach was adopted here for residual OMP analysis. This approach confirmed that the A-WWT system resulted in better OMP removal, eliminating 329 compounds and partially reducing 472 compounds, compared to 206 eliminations and 410 partial reductions by the CAS system. Mass spectra signal corresponding to some OMPs increased with treatment while some transformation products were observed following treatment. Higher OMP reduction in the A-WWT system with concurrent reductions of biodegradable carbon, nutrients, and pathogens in a single-step while producing energy and nutrient rich algal biomass underscore its potential as a greener alternative for wastewater treatment.
Collapse
Affiliation(s)
- H M K Delanka-Pedige
- School of Civil, Environmental, and Infrastructure Engineering, Southern Illinois University, Carbondale, IL, 62901, USA
| | - A Ahmed
- Chemical & Analysis Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - T Schaub
- Chemical & Analysis Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - P Trainor
- Economics, Applied Statistics & International Business Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - N Nirmalakhandan
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
8
|
Le TP, Luong HVT, Nguyen HN, Pham TKT, Trinh Le TL, Tran TBQ, Ngo TNM. Insight into adsorption-desorption of methylene blue in water using zeolite NaY: Kinetic, isotherm and thermodynamic approaches. RESULTS IN SURFACES AND INTERFACES 2024; 16:100281. [DOI: 10.1016/j.rsurfi.2024.100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Kim HJ, Lee TH, Hong Y, Lee JC, Kim HW. Enhanced oxidation of parabens in an aqueous solution by air-assisted cold plasma. CHEMOSPHERE 2024; 361:142570. [PMID: 38852636 DOI: 10.1016/j.chemosphere.2024.142570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Various contaminants of emerging concern (CECs) including pharmaceuticals and personal care products (PPCPs) have been known to threaten the aquatic ecosystem and human health even at low levels in surface water. Among them, the wide variety use of parabens as preservatives may pose potential threat to human because parabens may present estrogenic activity. Various advanced oxidation processes have been attempted to reduce parabens, but challenges using cold plasma (CP) are very rare. CP is worth paying attention to in reducing parabens because it has the advantage of generating radical ions, including reactive oxygen/nitrogen species and various ions. Accordingly, this study demonstrates how CP can be utilized and how CP competes with other advanced oxidation processes in energy requirements. Quantified ethyl-, propyl-, and butyl-paraben indicate that CP can effectively degrade them up to 99.1% within 3 h. Regression reveals that the kinetic coefficients of degradation can be increased to as high as 0.0328 min-1, comparable to other advanced oxidation processes. Many by-products generated from the oxidation of parabens provide evidence of the potential degradation pathway through CP treatment. In addition, we found that the electrical energy consumption per order of CP (39-95 kWh/m3/order) is superior to other advanced oxidation processes (69∼31,716 kWh/m3/order). Overall, these results suggest that CP may be a viable option to prevent adverse health-related consequences associated with parabens in receiving water.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Division of Civil, Environmental, Mineral Resource and Energy Engineering, Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Environmental Fate and Exposure Research Group, Korea Institute of Toxicology, Jinju, Republic of Korea.
| | - Tae-Hun Lee
- Groon., Ltd., 109, Wonmanseong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Youngpyo Hong
- Groon., Ltd., 109, Wonmanseong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jae-Cheol Lee
- Department of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Mokpo National University, Mokpo, 58554, Republic of Korea.
| | - Hyun-Woo Kim
- Division of Civil, Environmental, Mineral Resource and Energy Engineering, Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Environment and Energy (BK21 Four), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
10
|
Johnson JL, Dodder NG, Mladenov N, Steinberg L, Richardot WH, Hoh E. Comparison of Trace Organic Chemical Removal Efficiencies between Aerobic and Anaerobic Membrane Bioreactors Treating Municipal Wastewater. ACS ES&T WATER 2024; 4:1381-1392. [PMID: 38633364 PMCID: PMC11019542 DOI: 10.1021/acsestwater.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Evaluating persistent trace organic chemicals (TOrCs) and transformation products (TPs) in membrane bioreactors (MBRs) is essential, given that MBRs are now widely implemented for wastewater treatment and water reuse. This research applied comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS)-based nontargeted analysis to compare the effectiveness of parallel aerobic and anaerobic MBRs (AeMBRs and AnMBRs, respectively), treating the same municipal wastewater. The average total chromatographic feature peak area abundances were significantly reduced by 84% and 72% from influent to membrane permeate in both the AeMBR and AnMBR (p < 0.05), respectively. However, the reduction of the average number of chromatographic features was significant for only AeMBR treatment (p = 0.006). A similar number of TPs were generated during both AeMBR and AnMBR treatments (165 vs 171 compounds, respectively). The overall results suggest that the AeMBR was more effective for reducing the diversity of TOrCs than the AnMBR, but both aerobic and anaerobic processes had a similar reduction of TOrC abundance. Suspect screening analysis using GC×GC/TOF-MS, which resulted in the tentative identification of 351 TOrCs, proved to be a powerful approach for uncovering compounds previously unreported in wastewater, including many fragrances and personal care products.
Collapse
Affiliation(s)
- Jade L. Johnson
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Nathan G. Dodder
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Natalie Mladenov
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Lauren Steinberg
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - William H. Richardot
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Eunha Hoh
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
11
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
12
|
López-Valcárcel ME, Del Arco A, Parra G. Zooplankton vulnerability to glyphosate exacerbated by global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169806. [PMID: 38181966 DOI: 10.1016/j.scitotenv.2023.169806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Anthropogenic activities generate a severe footprint at a global scale. Intensive agriculture is a global change driver that affects aquatic systems due to the discharge of pollutants. This situation can be modified or aggravated by other aspects, such as the disturbance history and other global change factors. Following our study line, it is necessary to evaluate how the disturbance history combined with temperature changes can affect the functioning of aquatic systems. The objectives of this study were divided into two phases. The objectives of phase 1 were to induce vulnerability in Daphnia magna populations through a disturbance history based on sublethal glyphosate concentration exposure under different temperature conditions (20 °C and 25 °C). In phase 2, vulnerability was assessed through the exposure to subsequent stressors (starvation, increased salinity and paracetamol) combined with changes in temperature. During the glyphosate exposure period in phase 1, differences were observed in the D. magna populations with respect to temperature, with lower abundance at 25 °C than at 20 °C. However, no differences were observed in abundance regarding glyphosate treatment. The results obtained in phase 2 with the new stressors combined with temperature changes in both directions, revealed stronger effects in vulnerable populations than in control populations. In addition, the temperature changes modulated the effects in the starvation and increased salinity tests. Agrochemical sublethal concentrations induce vulnerability in D. magna populations and inflicted temperature changes can act as a modulating factor for this vulnerability, showing the complexity in assessing the responses under the multiple scenarios associated with global change.
Collapse
Affiliation(s)
- María Eugenia López-Valcárcel
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| | - Ana Del Arco
- Limnological Institute, University of Konstanz, Mainaustraße 252, 78464 Konstanz, Germany.
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| |
Collapse
|
13
|
Selwe KP, Sallach JB, Dessent CEH. Nontargeted Screening of Contaminants of Emerging Concern in the Glen Valley Wastewater Treatment Plant, Botswana. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:52-61. [PMID: 37877782 DOI: 10.1002/etc.5775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
There is growing concern about the prevalence and impact of contaminants of emerging concern (CECs). The environmental monitoring of CECs has, however, been limited in low- and middle-income countries due to the lack of advanced analytical instrumentation locally. In the present study we employed a nontargeted and suspect screening workflow via liquid chromatography coupled with high-resolution mass spectrometry (HRMS) to identify known and unknown pollutants in the Glen Valley wastewater treatment plant, Botswana, complemented by analysis of groundwater samples. The present study represents the first HRMS analysis of CECs in water samples obtained in Botswana. Suspect screening of 5942 compounds qualitatively identified 28 compounds, including 26 pharmaceuticals and two illicit drugs (2-ethylmethcathinone and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol). Nontargeted analysis tentatively identified the presence of 34 more compounds including (5ξ)-12,13-dihydroxypodocarpa-8,11,13-trien-7-one, 12-aminododecanoic acid, atenolol acid, brilliant blue, cyclo leucylprolyl, decanophenone, DL-carnitine, N,N'-dicyclohexylurea, N4-acetylsulfamethoxazole, NP-003672, and 24 polyethylene glycol polymers. The highest number of detections were in influent wastewater (26 CECs) followed by effluent wastewater (10 CECs) and, lastly, groundwater (4 CECs). Seventeen CECs detected in the influent water were not detected in the effluent waters, suggesting reduced emissions due to wastewater treatment. Two antiretroviral compounds (abacavir and tenofovir) were detected in the influent and effluent sources. This suggests that wastewater treatment plants are a major pathway of chemical pollution to the environment in Botswana and will help inform prioritization efforts for monitoring and remediation that is protective of these key ecosystems. Environ Toxicol Chem 2024;43:52-61. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kgato P Selwe
- Department of Chemistry, University of York, Heslington, York, United Kingdom
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | | |
Collapse
|
14
|
Almansa X, Starostka R, Raskin L, Zeeman G, De Los Reyes F, Waechter J, Yeh D, Radu T. Anaerobic Digestion as a Core Technology in Addressing the Global Sanitation Crisis: Challenges and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19078-19087. [PMID: 37956995 PMCID: PMC10702437 DOI: 10.1021/acs.est.3c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Successfully addressing the complex global sanitation problem is a massive undertaking. Anaerobic digestion (AD), coupled with post-treatment, has been identified as a promising technology to contribute to meeting this goal. It offers multiple benefits to the end users, such as the potential inactivation of pathogenic microorganisms in waste and the recovery of resources, including renewable energy and nutrients. This feature article provides an overview of the most frequently applied AD systems for decentralized communities and low- and lower-middle-income countries with an emphasis on sanitation, including technologies for which pathogen inactivation was considered during the design. Challenges to AD use are then identified, such as experience, economics, knowledge/training of personnel and users, and stakeholder analysis. Finally, accelerators for AD implementation are noted, such as the inclusion of field studies in academic journals, analysis of emerging contaminants, the use of sanitation toolboxes and life cycle assessment in design, incorporation of artificial intelligence in monitoring, and expansion of undergraduate and graduate curricula focused on Water, Sanitation, and Hygiene (WASH).
Collapse
Affiliation(s)
| | - Renata Starostka
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Grietje Zeeman
- Wageningen
University & Research, Wageningen, 6708PB, The Netherlands
| | - Francis De Los Reyes
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695-7908, United
States
| | | | - Daniel Yeh
- Department
of Civil and Environmental Engineering, University of South Florida, Florida 33620, United States
| | - Tanja Radu
- School
of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, United
Kingdom
| |
Collapse
|
15
|
Richardot W, Yabes L, Wei HH, Dodder NG, Watanabe K, Cibor A, Schick SF, Novotny TE, Gersberg R, Hoh E. Leached Compounds from Smoked Cigarettes and Their Potential for Bioaccumulation in Rainbow Trout ( Oncorhynchus mykiss). Chem Res Toxicol 2023; 36:1703-1710. [PMID: 37827523 PMCID: PMC10664143 DOI: 10.1021/acs.chemrestox.3c00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 10/14/2023]
Abstract
Cigarette butts are one of the most prevalent forms of litter worldwide and may leach toxic compounds when deposited in aquatic environments. Previous studies demonstrated that smoked cigarette leachate is toxic toward aquatic organisms. However, the specific bioavailable chemicals from the leachate and the potential for human and wildlife exposure through the food chain were unknown. Using a nontargeted analytical approach based on GC×GC/TOF-MS, 43 compounds were confirmed to leach from smoked cigarettes when exposed to a water source. Additionally, the bioaccumulation potential of organic contaminants in an edible fish, rainbow trout (Oncorhynchus mykiss), was assessed through direct exposure to the leachate of smoked cigarettes at 0.5 CB/L for 28 days. There was a significant reduction in fish mass among the exposed rainbow trout vs the control group (χ2 (1) = 5.3, p = 0.021). Both nontargeted and targeted chemical analysis of representative fish tissue identified four tobacco alkaloids, nicotine, nicotyrine, myosmine, and 2,2'-bipyridine. Their average tissue concentrations were 466, 55.4, 94.1, and 70.8 ng/g, respectively. This study identifies leached compounds from smoked cigarettes and demonstrates the uptake of specific chemicals in rainbow trout, thus suggesting a potential for accumulation in food webs, resulting in human and wildlife exposure.
Collapse
Affiliation(s)
- William
H. Richardot
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Lenard Yabes
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Hung-Hsu Wei
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Nathan G. Dodder
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Kayo Watanabe
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Adrienne Cibor
- Enthalpy
Analytical (formerly Nautilus Environmental), San Diego, California 92120, United States
| | - Suzaynn F. Schick
- School
of Medicine, Division of Occupational and Environmental Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Thomas E. Novotny
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Richard Gersberg
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Eunha Hoh
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
16
|
Stack ME, Hollman K, Mladenov N, Harper B, Pinongcos F, Sant KE, Rochman CM, Richardot W, Dodder NG, Hoh E. Micron-size tire tread particles leach organic compounds at higher rates than centimeter-size particles: Compound identification and profile comparison. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122116. [PMID: 37394053 DOI: 10.1016/j.envpol.2023.122116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 μm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds. Nontargeted chemical analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) was used to compare the chemical profiles of leachates. After leaching for 12 days, DOC was 4.0 times higher in the micron TTP leachate than in the centimeter TTP leachate, and TDN was 2.6 times higher. The total GC×GC/TOF-MS chromatographic feature peak area was 2.9 times greater in the micron TTP leachate than the centimeter TTP leachate, and similarly, the total relative abundance of 54 tentatively identified compounds was 3.3 times greater. We identified frequently measured tire-related chemicals, such as 6PPD, N-cyclohexyl-N'-phenylurea (CPU), and hexa(methoxymethyl)melamine (HMMM), but nearly 50% of detected chemicals were not previously reported in tire literature or lacked toxicity information. Overall, the results demonstrate that smaller TTP have a greater potential to leach chemicals into aquatic systems, but a significant portion of these chemicals are not well-studied and require further risk assessment.
Collapse
Affiliation(s)
- M E Stack
- San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - K Hollman
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - N Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - B Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - F Pinongcos
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - K E Sant
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - C M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - W Richardot
- San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - N G Dodder
- San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - E Hoh
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
17
|
Mustafa B, Mehmood T, Wang Z, Chofreh AG, Shen A, Yang B, Yuan J, Wu C, Liu Y, Lu W, Hu W, Wang L, Yu G. Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation. CHEMOSPHERE 2022; 308:136333. [PMID: 36087726 DOI: 10.1016/j.chemosphere.2022.136333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multiple contaminants with contrasting characteristics and variable efficiencies in different systems demands further optimization in GO-mediated membranes. This review concludes with identifying future critical research directions to promote research for determining the GO-assisted OMPs removal membrane technology nexus and maximizing this technique for industrial application.
Collapse
Affiliation(s)
- Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Zhiyuan Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Andy Shen
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Bing Yang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Jun Yuan
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Chang Wu
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | | | - Wengang Lu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Hu
- Jiangsu Industrial Technology Research Institute, Nanjing, 210093, China
| | - Lei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| | - Geliang Yu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
18
|
Sharma M, Yadav A, Dubey KK, Tipple J, Das DB. Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156569. [PMID: 35690196 DOI: 10.1016/j.scitotenv.2022.156569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In many developing countries, untreated hospital effluents are discharged and treated simultaneously with municipal wastewater. However, if the hospital effluents are not treated separately, they pose concerning health risks due to the possible transport of the antimicrobial genes and microbes in the environment. Such effluent is considered as a point source for a number of potentially infectious microorganisms, waste antimicrobial compounds and other contaminants that could promote antimicrobial resistance development. The removal of these contaminants prior to discharge reduces the exposure of antimicrobials to the environment and this should lower the risk of superbug development. At an effluent discharge site, suitable pre-treatment of wastewater containing antimicrobials could maximise the ecological impact with potentially reduced risk to human health. In addressing these points, this paper reviews the applications of decentralized treatment systems toward reducing the concentration of antimicrobials in wastewater. The most commonly used techniques in decentralized wastewater treatment systems for onsite removal of antimicrobials were discussed and evidence suggests that hybrid techniques should be more useful for the efficient removal of antimicrobials. It is concluded that alongside the cooperation of administration departments, health industries, water treatment authorities and general public, decentralized treatment technology can efficiently enhance the removal of antimicrobial compounds, thereby decreasing the concentration of contaminants released to the environment that could pose risks to human and ecological health due to development of antimicrobial resistance in microbes.
Collapse
Affiliation(s)
- Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Joshua Tipple
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
19
|
Greening Urban Areas with Decentralized Wastewater Treatment and Reuse: A Case Study of Ecoparque in Tijuana, Mexico. WATER 2022. [DOI: 10.3390/w14040596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In rapidly growing urban areas, such as Tijuana, Mexico, the presence of urban green spaces (UGSs) can help stem soil erosion, improve infiltration, slow runoff, decrease flooding, reduce air pollution, and mitigate climate change. In many water-scarce parts of the world, where centralized wastewater treatment is not accessible or practical, decentralized wastewater treatment systems (DEWATSs) have the potential to supply the water needed for irrigating UGSs. Here, we first review UGS systems supported by DEWATSs and the water quality guidelines and challenges associated with implementing DEWATSs for urban greening in different countries, including Mexico. We also critically examine the linkages between the lack of UGSs in Tijuana, Mexico, extensive soil erosion, and failing sanitation infrastructure that has led to the infamously poor water quality in the Tijuana River. Tijuana’s Ecoparque Wastewater Treatment Facility, a low-energy, aerobic DEWATS, which collects, treats, and discharges residential sewage for localized landscape irrigation, demonstrates how DEWATSs can meet the water demands for urban greening in rapidly urbanizing cities. The aerobic decentralized treatment using a gravity-fed trickling biofilter resulted in a >85% removal of chemical oxygen demand and dissolved organic carbon. Prior to treatment facility upgrades, there was a ~2 log reduction in total coliform and Escherichia coli and a <20% decrease in ammonia from the influent to final effluent. After the addition of a maturation pond in 2020, the effluent met Mexico standards for irrigation reuse, with a ~4 log reduction in fecal coliforms from the influent to final effluent. Case study results demonstrated the potential for decentralized wastewater treatment to meet effluent standards for landscape irrigation, provide water for urban greening, and prevent pollution in the Tijuana River and other urban waterways.
Collapse
|