1
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
K Benny C, Chakraborty S. Mechanistic investigation of azo dye removal from carbon-deficient dyeing wastewater using horizontal-vertical constructed wetlands. CHEMOSPHERE 2024; 364:143148. [PMID: 39168387 DOI: 10.1016/j.chemosphere.2024.143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Azo dye degradation can be achieved by simulating a series of anaerobic and aerobic conditions within the constructed wetland (CW) system. The current investigation evaluated the effectiveness of a baffled horizontal-vertical CW system, planted with Typha angustifolia, simulating anaerobic-aerobic conditions to treat carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 (RY145) azo dye. In the absence of an available carbon source in dyeing wastewater, an optimum quantity of sodium acetate was supplemented as the substrate for microbial degradation of RY145. Influent dyeing wastewater characteristics were 5555 ADMI colour, 461 mg/L chemical oxygen demand (COD) and 39 mg/L total nitrogen (TN). During the operation period, the CW system achieved 97% colour, 87% COD, 95% ammonium nitrogen (NH4+-N) and 71% TN removals at 4 d hydraulic retention time (HRT). Favourable environmental conditions, such as low redox conditions and substrate availability in horizontal CW, contributed to a significant reduction in colour (96%). Most TN reduction (67%) happened in horizontal CW by denitrification and plant assimilation. The metagenomic study revealed that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were responsible for pollutant degradation within horizontal CW. The UV-visible spectra and high-resolution liquid chromatograph mass spectrometer (HR-LCMS) analysis confirmed that dye degradation intermediates generated from the breakage of azo bonds were eliminated in vertical CW with high redox conditions. The results of the phytotoxicity and fish toxicity experiments demonstrated a substantial toxicity reduction in the CW system-treated effluent.
Collapse
Affiliation(s)
- Christy K Benny
- Department of Civil Engineering, IIT Guwahati, Guwahati, India.
| | | |
Collapse
|
3
|
Pang Q, Wang D, Jiang Z, Abdalla M, Xie L, Zhu X, Peng F, Smith P, Wang L, Miao L, Hou J, Yu P, He F, Xu B. Intensified river salinization alters nitrogen-cycling microbial communities in arid and semi-arid regions of China. ECO-ENVIRONMENT & HEALTH 2024; 3:271-280. [PMID: 39252856 PMCID: PMC11381997 DOI: 10.1016/j.eehl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 09/11/2024]
Abstract
Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources. However, a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking. A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics. To further analyze the impact of salinity on nitrogen metabolism processes, we evaluated rivers with long-term salinity gradients based on in situ observations. The genes and enzymes that were inhibited generally by salinity, especially those involved in nitrogen fixation and nitrification, showed low abundances in three salinity levels. The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion, especially for denitrification genes/enzymes that were enriched under medium salinity. Denitrifying bacteria exhibited various relationships with salinity, while dissimilatory nitrate reduction to ammonium bacterium (such as Hydrogenophaga and Curvibacter carrying nirB) were more inhibited by salinity, indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration. Most genera exhibited symbiotic and mutual relationships, and the highest proportion of significant positive correlations of abundant genera was found under medium salinity. This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules, and our results are useful for improving the availability of river water resources in arid and semi-arid regions.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Mohamed Abdalla
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, UK
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, UK
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lingzhan Miao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Yu
- Shandong Academy of Environmental Sciences Co., Ltd, Jinan 250100, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
4
|
Zoufri I, Merzouki M, Ammari M, El-Byari Y, Chedadi M, Bari A, Jawhari FZ. Performance of vertical flow constructed wetland for the treatment of effluent from a brassware industry in city of Fez, Morocco: a laboratory scale study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1564-1576. [PMID: 38591171 DOI: 10.1080/15226514.2024.2338137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Brassware industry constitutes the second most polluting industrial sector in Fez city, Morocco, owing to its high heavy metal load. The aim of this study is to examine and evaluate the performance of vertical flow constructed wetlands in treating brassware effluents using various plant species. Ten treatment systems were planted with four types of plants: Chrysopogon zizanioides, Typha latifolia, Phragmites australis, and Vitex agnus-castus, while another system remained unplanted. These systems underwent evaluation by measuring various parameters, including pH, electrical conductivity, suspended solids, chemical oxygen demand, biological oxygen demand, sulfates, orthophosphates, total Kjeldhal nitrogen, ammonium, nitrates, nitrites, and heavy metals such as silver, copper, and nickel, using standard methods over of ten weeks. The results obtained demonstrate effectiveness of these systems. When planted with Ch. zizanioides, the systems achieved elimination rates of 83.64%, 98.55%, 91.48%, 86.82%, 80.31%, 96.54%, 98%, and 98.82% for suspended solids, ammonium, nitrites, BOD5, sulfates, orthophosphates, silver, and nickel, respectively. System with V. agnus-castus showed significant reductions in nitrate and copper, with rates of 84.48% and 99.10%, respectively. Considerable decrease in pH and electrical conductivity values was observed in all systems, with a notable difference between planted and control systems regarding effectiveness of treatment for other parameters.
Collapse
Affiliation(s)
- Imane Zoufri
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahrez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mohammed Merzouki
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahrez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Malika Ammari
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahrez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Younesse El-Byari
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahrez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mohamed Chedadi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahrez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahrez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | | |
Collapse
|
5
|
Munir R, Muneer A, Younas F, Sayed M, Sardar MF, Albasher G, Noreen S. Actas Pink-2B dye removal in biochar nanocomposites augmented vertical flow constructed wetland (VF-CWs). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1392-1409. [PMID: 38441053 DOI: 10.1080/15226514.2024.2324360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Industries generate hazardous dye wastewater, posing significant threats to public health and the environment. Removing dyes before discharge is crucial. The ongoing study primarily focused on synthesizing, applying, and understanding the mechanism of green nano-biochar composites. These composites, including zinc oxide/biochar, copper oxide/biochar, magnesium oxide/biochar, and manganese oxide/biochar, are designed to effectively remove Actas Pink-2B (Direct Red-31) in conjunction with constructed wetlands. Constructed wetland maintained pH 6.0-7.9. At the 10th week, the copper oxide/biochar treatment demonstrated the highest removal efficiency of total suspended solids (72%), dissolved oxygen (7.2 mg/L), and total dissolved solids (79.90%), followed by other biochar composites. The maximum removal efficiency for chemical oxygen demand (COD) and color was observed at a retention time of 60 days. The electrical conductivity also followed the same order, with a decrease observed up to the 8th week before becoming constant. A comprehensive statistical analysis was conducted, encompassing various techniques including variance analysis, regression analysis, correlation analysis, and principal component analysis. The rate of color and COD removal followed a second-order and first-order kinetics, respectively. A significant negative relationship was observed between dissolved oxygen and COD. The study indicates that employing biochar composites in constructed wetlands improves textile dye removal efficiency.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Murtaza Sayed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Abbasi HN, Ahmad W, Shahzad KA, Lu X. Evaluating the potential of Abelmoschus esculentus, Solanum melongena, and Capsicum annuum spp. for nutrient and microbial reduction from wastewater in hybrid constructed wetland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:293. [PMID: 38383675 DOI: 10.1007/s10661-024-12474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Utilizing engineered wetlands for the cultivation of vegetables can help to overcome the problems of water and food scarcity. These wetlands are primarily designed for wastewater treatment, and their efficiency and effectiveness can be improved by selecting an appropriate substrate. To investigate the potential for nutrient and microbial removal, the Abelmoschus esculentus, Solanum melongena, and Capsicum annuum L. plants were selected to grow in a hybrid constructed wetland (CW) under natural conditions. The removal efficiency of the A. esculentus, S. melongena, and C. annuum L. in the CW system varied between 59.8 to 68.5% for total phosphorous (TP), 40.3 to 53.1% for ammonium (NH4+), and 33.6 to 45.1% for total nitrogen (TN). The influent sample contained multiple pathogenic bacteria, including Alcaligenes faecalis, Staphylococcus aureus, and Escherichia coli, with Capsicum annuum exhibiting a positive association with 7 of the 11 detected species, whereas microbial removal efficiency was notably higher in the S. melongena bed, potentially attributed to temperature variations and plant-facilitated oxygen release rates. While utilizing constructed wetlands for vegetable cultivation holds promising potential to address the disparity between water and food supply and yield various environmental, economic, and social benefits, it is crucial to note that the wastewater source may contain heavy metals, posing a risk of their transmission to humans through the food chain.
Collapse
Affiliation(s)
- Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
- School of Ennery and Environment, Southeast University, Nanjing, China.
| | - Waqar Ahmad
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Xiwu Lu
- School of Ennery and Environment, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Liu C, Zhuo Y, Chen Y, Mao Y, Shen Q, Ma J, Ma R, Cheng L, Ji F, Xu X. Synthesis of amorphous-MnO 2/Clinoptilolite and its utilization for NH 4+-N oxidation in an anoxic environment. ENVIRONMENTAL RESEARCH 2024; 241:117574. [PMID: 37931738 DOI: 10.1016/j.envres.2023.117574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Mediating the anoxic ammonia oxidation with manganese oxide (MnOx) can reduce the requirements of dissolved oxygen (DO) concentrations in constructed wetlands (CWs) and improve the removal of ammonium nitrogen (NH4+-N). Recent studies that employed natural manganese ore and/or mine waste as substrates in CWs may develop potentially negative environmental effects due to leachates. However, removing NH4+-N by anoxic ammonia oxidation is influenced by the crystal form of MnOx. In this study, a novel clinoptilolite-based amorphous-MnO2 (amorphous-MnO2/clinoptilolite) was synthesized by the sol-gel method as an alternative substrate to improve the efficiency of anoxic ammonia oxidation and reduce the impact of Mn ion leaching. According to the anoxic ammonia oxidation experiment of clinoptilolite, amorphous-MnO2/clinoptilolite, and manganese ore on NH4+-N, the amounts of NH4+-N removed were 24.55 mg/L/d, 44.55 mg/L/d, and 11.04 mg/L/d, respectively, and the initial NH4+-N concentration was 49.53 mg/L. These results indicated that the amorphous-MnO2/clinoptilolite had both the adsorption and the anoxic ammonia oxidation performance. The recycling experiment demonstrated that the effect of anoxic ammonia oxygen mediated by amorphous-MnO2 would not diminish with the gradual saturation of clinoptilolite for NH4+-N. Furthermore, the anoxic ammonia oxidation consumed NH4+-N in the clinoptilolite, which restored the adsorption capacity of the clinoptilolite and simultaneously decreased the leakage of manganese ions in the process, making it environmentally friendly. Therefore, the amorphous-MnO2/clinoptilolite provided an excellent substrate material for the constructed wetland under an anoxic environment, which greatly improved the nitrogen removal capacity compared to existing substrate materials.
Collapse
Affiliation(s)
- Caocong Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yiyuan Zhuo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yuzhe Chen
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China.
| | - Yuanxiang Mao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jiangsen Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Rui Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Linsong Cheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215001, China.
| |
Collapse
|
8
|
Zhang J, Yan Q, Bai G, Guo D, Chi Y, Li B, Yang L, Ren Y. Inducing root redundant development to release oxygen: An efficient natural oxygenation approach for subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 239:117377. [PMID: 37832770 DOI: 10.1016/j.envres.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Dissolved oxygen (DO) is a limiting factor affecting the purification efficiency of subsurface flow (SSF) constructed wetlands (CWs). To clarify the causes of oxygen environments and the response characteristics of plant oxygen release (POR) in SSF CWs, this study set three oxygen source treatments by limiting atmospheric reaeration (AR) and influent oxygen (IO) and compared the differences in plant physiological metabolism, DO distribution characteristics, and the purification effect of the SSF CWs at different depths. The results showed that limiting exogenous oxygen stimulated root redundancy of the wetland plants. The root volume and proportion of fibrous roots of the wetland plants increased significantly (p < 0.05). When only the POR existed, the root zone DO increased significantly to 2.05-4.37 mg/L (p < 0.05), and was positively correlated with the TN and TP removal rates (p < 0.05). Additionally, in the presence of POR only, the average removal rates of TN and TP in the top layer were 86.5% and 76.9%, respectively. The proportion of fibrous roots, root zone DO, and root-shoot ratio were key factors promoting the purification effect of the SSF CWs under limited exogenous oxygen sources. Enhancing POR by inducing root redundancy enhanced nitrification (hao, pmoABC-amoABC), plant absorption, and assimilation-related functional genes (nrtABC, nifKDH), and enriched nitrogen and phosphorus removal bacteria, such as Flavobacterium and Zoogloea. This consequently improved pollutant removal efficiency. Inducing root redundancy to strengthen POR produced an aerobic environment in the SSF CWs. This ensures the efficient and stable operation of the SSF CW and is an effective approach for natural oxygenation.
Collapse
Affiliation(s)
- Jingying Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiuhui Yan
- Xi'an High-tech Zone CITY CORE Development & Construction Co., Ltd, Xi'an, 710117, China
| | - Ge Bai
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dun Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanbin Chi
- School of Metallurgical and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Botanical Institute of Shaanxi Province, Xi'an, 710061, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
9
|
Huang L, Xiong H, Jiang C, He J, Lyu W, Chen Y. Pathways and biological mechanisms of N 2O emission reduction by adding biochar in the constructed wetland based on 15N stable isotope tracing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118359. [PMID: 37311348 DOI: 10.1016/j.jenvman.2023.118359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Constructed wetlands (CWs) added with biochar were built to study pollutant removal efficiencies, nitrous oxide (N2O) emission characteristics, and biological mechanisms in nitrogen transformation. The results showed that biochar addition enhanced the average removal rates of ammonium (NH4+-N), total nitrogen, and chemical oxygen demand by 4.03-18.5%, 2.90-4.99%, and 2.87-5.20% respectively while reducing N2O emissions by 25.85-83.41%. Based on 15N stable isotope tracing, it was found that nitrification, denitrification, and simultaneous nitrification and denitrification were the main processes contributing to N2O emission. The addition of biochar resulted in maximum reduction rates of 71.50%, 80.66%, and 73.09% for these three processes, respectively. The relative abundance of nitrogen-transforming microbes, such as Nitrospira, Dechloromonas, and Denitratisoma, increased after the addition of biochar, promoting nitrogen removal and reducing N2O emissions. Adding biochar could increase the functional gene copy number and enzyme activity responsible for nitrogen conversion, which helped achieve efficient NH4+-N oxidation and eliminate nitrite accumulation, thereby reducing N2O emissions.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China.
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Chunli Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Jinke He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Wanlin Lyu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China
| |
Collapse
|
10
|
Zhang J, Shao Z, Li B, Bai G, Yang L, Chi Y, Wang M, Ren Y. Root vertical spatial stress: A method for enhancing rhizosphere effect of plants in subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 231:116083. [PMID: 37164283 DOI: 10.1016/j.envres.2023.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
The depth of the substrate of subsurface flow (SSF) constructed wetlands (CWs) is closely related to their cost and operation stability. To explore the physiological regulation mechanism of wetland plants and pollutant removal potential of SSF CWs under "vertical spatial stress of roots" (by greatly reducing the depth of the substrate in SSF CWs to limit the vertical growth space of roots, VSSR), the physiological response and wetland purification effect of a 0.1 m Canna indica L. CW under VSSR were studied compared with conventional SSF CWs (0.6 m, 1.2 m). The results demonstrated that VSSR significantly enhanced the dissolved oxygen (DO) concentration (p < 0.05) within the SSF CWs, with the DO in 0.1 m CW remaining stable at over 3 mg/L. Under the same hydraulic retention time (HRT), VSSR significantly improved the removal effect of pollutants (p < 0.05). The removal rates of COD, NH4+-N, and total phosphorus (TP) remained above 87%, and the mean removal rates of total nitrogen (TN) reached 91.71%. VSSR promoted the morphological adaptation mechanisms of plants, such as significantly increased root-shoot ratio (p < 0.05), changed biomass allocation. Plants could maintain the stability of the photosynthetic mechanism by changing the distribution of light energy. The results of microbial community function prediction demonstrated that aerobic denitrification was the main mechanism of N transformation in the 0.1 m CW under VSSR. VSSR could induce the high root activity of plants, augment the concentration of root exudates, enhance the redox environment of the plant rhizosphere, further foster the enrichment of aerobic denitrifying bacteria, and strengthen the absorption efficiency of wetland plants and substrate, thus achieving an efficient pollutant removal capacity. Studies showed that VSSR was an effective means to enhance the rhizosphere effect of plants and pollutant removal in SSF CWs.
Collapse
Affiliation(s)
- Jingying Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhiyong Shao
- Hefei Municipal Design & Research Institute Co., Ltd., Hefei, 230000, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Botanical Institute of Shaanxi Province, Xi'an, 710061, China
| | - Ge Bai
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanbin Chi
- School of Metallurgical and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Wang
- Shaanxi Environmental Monitoring Technology Advisory Service Center, Xi'an, 710000, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
11
|
Benny CK, Chakraborty S. Dyeing wastewater treatment in horizontal-vertical constructed wetland using organic waste media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117213. [PMID: 36628836 DOI: 10.1016/j.jenvman.2023.117213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
A hybrid constructed wetland (CW) system with horizontal and vertical flow combination was evaluated for treating carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 dye. Organic waste products such as cow manure and wood chips were added as media in horizontal CW, and gravel as vertical CW media. Horizontal and vertical CWs were planted with Typha angustifolia. Horizontal CW was operated in continuous mode at hydraulic retention time (HRT) of 3 d and vertical CW in batch mode at 1 d HRT. The results suggested the potential application of a cost-effective horizontal-vertical hybrid CW to remove azo dyes from low-carbon dyeing wastewater. In horizontal CW, organic media was used as the carbon source for microbial dye degradation, resulting in 90% colour removal in the absence of available carbon in dyeing wastewater. Proteobacteria, Firmicutes and Bacteroidetes played a dominant role in dye degradation in horizontal CW. Vertical CW removed dye degradation organics, 69% ammonium-nitrogen and 39% organic-nitrogen. Phytotoxicity assays indicated toxicity reduction along the CW treatment path.
Collapse
Affiliation(s)
- Christy K Benny
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
12
|
Jian Y, Zhu J, Zeng Y, Long D, Wang H, Liu Z, Pu S. Pollutant removal from swine wastewater and kinetics in constructed rapid infiltration system (CRI system). ENVIRONMENTAL TECHNOLOGY 2023; 44:1642-1652. [PMID: 34807808 DOI: 10.1080/09593330.2021.2010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this paper is centred on the kinetics of removal of main pollutants in wastewater and to compared different hydraulic loading conditions of the constructed rapid infiltration system (CRI system) in terms of removal efficiencies, effluent concentrations, mass removal rate (MRR), and the first-order removal rate coefficient (k) of COD, TOC, NH4+-N, TN, and TP. The results showed that the higher the hydraulic loading, the higher the effluent concentration. The results that synthesized hydraulic loading, effluent concentrations, removal efficiencies, and other conditions showed that the best hydraulic loading was 40 cm/d. When the hydraulic load was 40 cm/d, the effluent average concentrations of COD, TOC, NH4+-N, TN, TP, Cu2+ and the removal efficiencies were 27.31 ± 16.40 mg/L, 86.11%, 10.55 ± 5.25 mg/L, 84.64%, 0.59 ± 0.87 mg/L, 99.60%, 143.31 ± 14.77 mg/L, 7.04%, 5.64 ± 1.38 mg/L, 79.20%, and 0.13 ± 0.47 mg/L, 97.51%, respectively. According to a kinetic study of the primary pollutants, the MRR increased with an increase in the hydraulic loading, except for ammonia nitrogen. CRI-3, CRI-4 were high significant correlated with ammonia nitrogen (with R2 = 93.65% and R2 = 95.03%, respectively), while CRI-2, CRI-3, and CRI-4 were high significant correlated with total nitrogen (with R2 = 94.56%, R2 = 96.70% and R2 = 96.56% respectively).
Collapse
Affiliation(s)
- Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Yaqiong Zeng
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Li C, Feng L, Lian J, Yu X, Fan C, Hu Z, Wu H. Enhancement of organics and nutrient removal and microbial mechanism in vertical flow constructed wetland under a static magnetic field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117192. [PMID: 36621318 DOI: 10.1016/j.jenvman.2022.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low and unstable pollutant removal is regarded as the bottleneck problem in constructed wetlands (CWs) for wastewater treatment. This study investigated the effect of static magnetic field (MF) on enhancing the purification efficiency and microbial mechanism in vertical flow CW systems for treating domestic wastewater. The results showed that MF-CWs outperformed control systems in terms of treatment performance, with average removal efficiencies of COD, NH4+-N, TN, and TP reaching 92.58%, 73.58%, 72.53%, and 95.83%, respectively. The change of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity indicated that MF application was beneficial for plant health. Additionally, higher ammonia monooxygenase (AMO) activity in MF-CWs suggested the removal of NH4+-N was facilitated. The high-throughput sequencing results demonstrated that MF application could enrich the functional bacteria such as Patescibacteria phylum, mainly, including Gammaproteobacteria, Betaproteobacteria, and Alphaproteobacteria, which further accelerated pollutants transformation. These findings would be beneficial in understanding pollutant removal processes and their mechanism in CWs with MF application.
Collapse
Affiliation(s)
- Cong Li
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, PR China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, PR China
| | - Xiaoting Yu
- Liaocheng City Ecological Environment Bureau, Liaocheng 252000, PR China
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
14
|
Wang G, Yu G, Chi T, Li Y, Zhang Y, Wang J, Li P, Liu J, Yu Z, Wang Q, Wang M, Sun S. Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130148. [PMID: 36265377 DOI: 10.1016/j.jhazmat.2022.130148] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Biochar has been increasingly applied in constructed wetlands (CWs) to remediate heavy metal (HM)-polluted water. Nevertheless, only few studies have elucidated the enhanced mechanism and potential synergies related to the HM removal from biochar-based CWs (BC-CWs) for HMs removal. This study used cadmium (Cd) as the target HM and added biochar into CWs to monitor physicochemical parameters, plant' physiological responses, substrate accumulation, and microbial metabolites and taxa. In comparison with the biochar-free CW (as CWC), a maximum Cd2+ removal of 99.7% was achieved in the BC-CWs, associated with stable physicochemical parameters. Biochar preferentially adsorbed the available Cd2+ and significantly accumulated Fe/Mn oxides-bond and the exchangeable Cd fraction. Moreover, biochar alleviated the lipid peroxidation (decreased by 36.4%) of plants, resulting in improved growth. In addition, extracellular polymeric substances were increased by 376.9-396.8 mg/L in BC-CWs than compared to CWC, and N and C cycling was enhanced through interspecific positive connectivity. In summary, this study explored comprehensively the performance and mechanism of BC-CWs in the treatment of Cd2+-polluted water, suggesting a promising approach to promote the plant-microbe-substrate synergies under HM toxicity.
Collapse
Affiliation(s)
- Guoliang Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| | - Tianying Chi
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yameng Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Peiyuan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jiaxin Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Zhi Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Qi Wang
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Miaomiao Wang
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
15
|
Suthar S, Chand N, Singh V. Fate and toxicity of triclosan in tidal flow constructed wetlands amended with cow dung biochar. CHEMOSPHERE 2023; 311:136875. [PMID: 36270527 DOI: 10.1016/j.chemosphere.2022.136875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Triclosan (TC) is one of the threats to the environment due to its bioaccumulative nature, persistency, combined toxicity in aquatic biota, and endocrine-disrupting nature. This study revealed the removal of TC via three distinct setups of vertical flow constructed wetlands (VFCW: B-VFCW (with biochar); PB-VFCW (with plant Colocasia and biochar); C-VFCW (without biochar but with plant)) operated with normal flow and tidal-flow (flooding/drying cycles of 72 h/24 h: B-TFCW; PB-TFCW; C-TFCW) mode for 216 h of the operation cycle. The effluent was analyzed for changes in TC load and wastewater parameters (COD, NO3-N, NH4+-N, and DO). TC reduction efficiency (%) was found to be higher in PB-TFCW (98.41) followed by, C-TFCW (82.41), B-TFCW (77.51), PB-VFCW (71.83), C-VFCW (64.25), and B-VFCW (52.19) (p < 0.001). Reduction efficiency for COD (29-75 - 53.10%), and NH4+-N (86.5-97.9%) was better in TFCWs than that of setups with a normal mode of operation. TFCWs showed higher DO (3.87-4.89 mg L-1) during the operation period than that of VFCWs. The toxic impact of TC in plant stand was also assessed and results suggested low phototoxic and oxidative enzyme activities (catalase, CAT; superoxide dismutase, SOD; hydrogen peroxide, H2O2; malondialdehyde, MDA) in TFCWs. In summary, biochar addition and tidal flow operation played a significant role in oxidative- and microbial-mediated removals of TC in wastewater. This study provides an alternative strategy for the efficient removals of TC in constructed wetland systems and new insights into the toxic impact of pharmaceuticals on wetland plants.
Collapse
Affiliation(s)
- Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun-248001, Uttarakhand, India.
| | - Naveen Chand
- Environmental Engineering Research Group, National Institute of Technology Delhi, New Delhi-110040, India
| | - Vineet Singh
- School of Environment & Natural Resources, Doon University, Dehradun-248001, Uttarakhand, India
| |
Collapse
|
16
|
Zou Y, Yang Y, Wu S, Chen F, Zhu R. Effect of steel slag on ammonia removal and ammonia-oxidizing microorganisms in zeolite-based tidal flow constructed wetlands. CHEMOSPHERE 2022; 309:136727. [PMID: 36209854 DOI: 10.1016/j.chemosphere.2022.136727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The ammonia removal performance of tidal flow constructed wetlands (TFCWs) requires to be improved under high hydraulic loading rates (HLRs). The pH decrease caused by nitrification may adversely affect the NH4+-N removal and ammonia-oxidizing microorganisms (AOMs) of TFCWs. Herein, TFCWs with zeolite (TFCW_Z) and a mixture of zeolite and steel slag (TFCW_S) were built to investigate the influence of steel slag on NH4+-N removal and AOMs. Both TFCWs were operated under short flooding/drying (F/D) cycles and high HLRs (3.13 and 4.69 m3/(m2 d)). The results revealed that a neutral effluent pH (6.98-7.82) was achieved in TFCW_S owing to the CaO dissolution of steel slag. The NH4+-N removal efficiencies in TFCW_S (91.2 ± 5.1%) were much higher than those in TFCW_Z (73.2 ± 7.1%). Total nitrogen (TN) removal was poor in both TFCWs mainly due to the low influent COD/TN. Phosphorus removal in TFCW_S was unsatisfactory because of the short hydraulic retention time. The addition of steel slag stimulated the flourishing AOMs, including Nitrosomonas (ammonia-oxidizing bacteria, AOB), Candidatus_Nitrocosmicus (ammonia-oxidizing archaea, AOA), and comammox Nitrospira, which may be responsible for the better ammonia removal performance in TFCW_S. PICRUSt2 showed that steel slag also enriched the relative abundance of functional genes involved in nitrification (amoCAB, hao, and nxrAB) but inhibited genes related to denitrification (nirK, norB, and nosZ). Quantitative polymerase chain reaction (qPCR) revealed that complete AOB (CAOB) and AOB contributed more to the amoA genes in TFCW_S and TFCW_Z, respectively. Therefore, this study revealed that the dominant AOMs could be significantly changed in zeolite-based TFCW by adding steel slag to regulate the pH in situ, resulting in a more efficient NH4+-N removal performance.
Collapse
Affiliation(s)
- Yuhuan Zou
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China.
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China
| |
Collapse
|
17
|
Zhou M, Cao J, Lu Y, Zhu L, Li C, Wang Y, Hao L, Luo J, Ren H. The performance and mechanism of iron-modified aluminum sludge substrate tidal flow constructed wetlands for simultaneous nitrogen and phosphorus removal in the effluent of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157569. [PMID: 35882329 DOI: 10.1016/j.scitotenv.2022.157569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Aiming at the poor N and P removal performance in the effluent of wastewater treatment plants by constructed wetlands (CWs), aluminum sludge (AS) from water supply plants was used to prepare iron-modified aluminum sludge (IAS), and tidal flow constructed wetlands (TFCWs) using IAS as substrates were constructed. By means of high-throughput sequencing, X-ray diffractometer (XRD), etc., the removal mechanism of N and P in the system and fate analysis of key elements were also interpreted. Results showed that an interlayer structure beneficial to adsorbing pollutants was formed in the IAS, due to the iron scraps entering into the molecular layers of AS. The removal rates of TP and TN by IAS-TFCWs reached 95 % and 47 %, respectively, when the flooding/resting time (F/R) and C/N were 6 h/2 h and 6. During the three-year operation of the IAS-TFCWs, the effluent concentrations of CODCr, NH4+-N, and TP could comply with Class IV Standard of "Environmental Quality Standards for Surface Water" (GB3838-2002). The mechanism analysis showed that the N removal was effectuated through Fe2+ as the electron donor of Fe(II)-driven the autotrophic denitrifying bacteria to reduce nitrate, while the P removal mainly depended on the adsorption reaction between FeOOH in IAS and phosphate. In conclusion, the stable Fe-N cycle in the IAS-TFCWs achieved simultaneous and efficient N and P removal.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqiang Ren
- College of Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
Lu X, Gao M, Yang S, Tang D, Yang F, Deng Y, Zhou Y, Wu X, Zan F. Effects of the aeration mode on nitrogen removal in a compact constructed rapid infiltration system for advanced wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74677-74687. [PMID: 35641746 DOI: 10.1007/s11356-022-21049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The configuration and the effective operation of constructed rapid infiltration (CRI) systems are of significance for advanced wastewater treatment. In this study, a novel CRI system was developed with a compact structure consisting of two stages, i.e., oxic and anoxic stages. The CRI system was continuously operated for about 140 days under different aeration modes, i.e., tidal flow, continuous aeration, and intermittent aeration. Nitrogen removal was not desirable with tidal flow due to the insufficient oxygen supply in the oxic stage for nitrification, while continuous aeration could achieve good performance for chemical oxygen demand (COD), ammonium, total nitrogen (TN), and total phosphorus (TP) removal. By comparison, the CRI system operated with intermittent aeration was more favorable due to the effective removal ability for pollutants and relatively lower energy demand. The microbial community analysis revealed that Proteobacteria was the dominant phylum in both oxic and anoxic stages of the developed CRI system. Functional microbial groups (Plasticicumulans, Pseudomonas, and Nitrospira in the oxic stage; Thauera, Candidatus_Competibacter, and Dechloromonas in the anoxic stage) were identified for the mediation of carbon, nitrogen, and phosphorus in the system. This study evaluated the feasibility and the optimal aeration mode of the developed CRI system for advanced wastewater treatment, which could satisfy the requirement for the high standard of effluent quality.
Collapse
Affiliation(s)
- Xiejuan Lu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Minggang Gao
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Si Yang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Dingding Tang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Fan Yang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yan Zhou
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Huo J, Hu X, Cheng S, Xie H, Hu Z, Wu H, Liang S. Effects and mechanisms of constructed wetlands with different substrates on N 2O emission in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19045-19053. [PMID: 34713400 DOI: 10.1007/s11356-021-17219-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Nitrous oxide (N2O) emissions from constructed wetlands (CWs) are accompanying problems and have attracted much attention in recent years. CWs filled with different substrates (gravel, biochar, zeolite, and pyrite) were constructed to investigate the nitrogen removal performance and N2O emissions, which named C-CWs, B-CWs, Z-CWs, and P-CWs, respectively. C-CWs showed the poorest nitrogen removal performance in all CWs. Although B-CWs exhibited the highest fluxes of N2O emissions, the percentage of N2O emissions in nitrogen removal (0.15%) was smaller than that of C-CWs (0.18%). In addition, microbiological analysis showed that compared with C-CWs, CWs filled with biochar, zeolite, and pyrite had higher abundance of nitrifying and denitrifying microorganisms and lower abundance of N2O producing bacteria. In conclusion, biochar, zeolite, and pyrite were more favorable kinds of substrate than the conventional substrates of gravel for the nitrogen removal and reduction of N2O emissions from CWs.
Collapse
Affiliation(s)
- Junyu Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaojin Hu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shiyi Cheng
- Environment Research Institute, Shandong University, Qingdao, 266237, China
- Jiangsu Ecological Environmental Monitoring Co., Ltd., Nanjing, 320100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|