1
|
Tao HZ, He WB, Ding L, Wen L, Xu Z, Cheng YH, Chen ML. Enrichment of antioxidant peptide from rice protein hydrolysates via rice husk derived biochar. Food Chem 2025; 463:141050. [PMID: 39236384 DOI: 10.1016/j.foodchem.2024.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly). The vitro analysis and molecular docking revealed that peptides P1-P4 possessed remarkable scavenging ability against radicals and Fe2+ chelating ability. Notably, peptide P4 showed radical scavenging activity comparable to glutathione (GSH) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals. Cellular experiments further confirmed that peptide P4 effectively protected HepG2 cells from oxidative stress-induced damage. The modified rice husk biochar proved to be an effective means for enriching rice antioxidant peptides from protein hydrolysates.
Collapse
Affiliation(s)
- Hui-Zhen Tao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Wen-Bin He
- Hunan Provincial Institute of Product and Goods Quality Inspection, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha, Hunan, China 410007
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
2
|
Pal CA, Choi YL, Lingamdinne LP, Kulkarni R, Karri RR, Koduru JR, Chang YY. Plasma-assisted MnO surface engineered activated carbon felt for enhanced heavy metal adsorption. Sci Rep 2025; 15:901. [PMID: 39762457 PMCID: PMC11704355 DOI: 10.1038/s41598-024-84872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study explores the enhanced adsorption performance of activated carbon felt (ACF) for Cu(II) and Cd(II) ions, achieved using a dual-synergistic approach combining MnO coating and plasma treatment. ACF's intrinsic properties, including a high surface area (~ 1000-2000 m²/g), large porosity, and excellent mechanical stability, make it a promising material for environmental applications. However, its limited surface functional groups hinder its adsorption efficiency for heavy metals. Conventional acid treatments, though effective in introducing functional groups, compromise ACF's structural integrity and pose environmental hazards. The non-thermal plasma method addresses these challenges by introducing oxygen-rich functional groups and MnO species without using harmful chemicals, preserving the material's mechanical and morphological properties. This study addresses key challenges in adsorption technologies, such as inefficiencies in multi-contaminant systems and adsorbent degradation through plasma-aided modifications. The synergistic modification enhances adsorption performance by leveraging mechanisms such as ion exchange, complexation, and co-precipitation. Adsorption experiments revealed maximum adsorption capacities of 163.39 mg/g for Cu(II) and 214.59 mg/g for Cd(II), with an extended equilibrium time of 720 min at pH 5. This research highlights the significance of plasma-aided modification strategies for developing sustainable and efficient heavy metal adsorbents, contributing to advancements in wastewater treatment technologies.
Collapse
Affiliation(s)
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Rakesh Kulkarni
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
3
|
Bui VKH, Nguyen TP, Tran TCP, Nguyen TTN, Duong TN, Nguyen VT, Liu C, Nguyen DD, Nguyen XC. Biochar-based fixed filter columns for water treatment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176199. [PMID: 39278474 DOI: 10.1016/j.scitotenv.2024.176199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Biochar used in fixed filter columns (BFCs) has garnered significant attention for its capabilities in material immobilization and recovery, filtration mechanisms, and potential for scale-up, surpassing the limitations of batch experiments. This review examines the efficacy of biochar in BFCs, either as the primary filtering material or in combination with other media, across various wastewater treatment scenarios. BFCs show high treatment efficiency, with an average COD removal of 80 % ±15.3 % (95 % confidence interval: 72 %, 86 %). Nutrient removal varies, with nitrogen-ammonium and phosphorus-phosphate removal averaging 71 ± 17.1 % (60 %, 80 %) and 57 % ± 25.6 % (41 %, 74 %), respectively. Pathogen reduction is notable, averaging 2.4 ± 1.12 log10 units (1.9, 2.9). Biochemical characteristics, pollutant concentrations, and operational conditions, including hydraulic loading rate and retention time, are critical to treatment efficiency. The pyrolysis temperature (typically 300 to 800 °C) and duration (1.0 to 4.0 h) influence biochar's specific surface area (SSA), with higher temperatures generally increasing SSA. This review supports the biochar application in wastewater treatment and guides the design and operation of BFCs, bridging laboratory research and field applications. Further investigation is needed into biochar reuse as a fertilizer or energy source, along with research on BFC models under real-world conditions to fully assess their efficacy, service life, and costs for practical implementation.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - T Phuong Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam.
| | - T C Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam
| | - T T Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam
| | - T Nghi Duong
- Institute of Marine Environment and Resources, Vietnam Academic Science and Technology, 246 Danang, Haiphong 100000, Viet Nam; Faculty of Marine Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - V-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam
| | - Chong Liu
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China; Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
4
|
Eleryan A, Aigbe UO, Ukhurebor KE, Onyancha RB, Eldeeb TM, El-Nemr MA, Hassaan MA, Ragab S, Osibote OA, Kusuma HS, Darmokoesoemo H, El Nemr A. Copper(II) ion removal by chemically and physically modified sawdust biochar. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:9283-9320. [DOI: 10.1007/s13399-022-02918-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2025]
Abstract
Abstract
The difference between physical activations (by sonications) and chemical activations (by ammonia) on sawdust biochar has been investigated in this study by comparing the removal of Cu(II) ions from an aqueous medium by adsorption on sawdust biochar (SD), sonicated sawdust biochar (SSD), and ammonia-modified sawdust biochar (SDA) with stirring at room temperature, pH value of 5.5–6.0, and 200 rpm. The biochar was prepared by the dehydrations of wood sawdust by reflux with sulfuric acid, and the biochar formed has been activated physically by sonications and chemically by ammonia solutions and then characterized by the Fourier transform infrared (FTIR); Brunauer, Emmett, and Teller (BET); scanning electron microscope (SEM); thermal gravimetric analysis (TGA); and energy-dispersive spectroscopy (EDX) analyses. The removal of Cu(II) ions involves 100 mL of sample volume and initial Cu(II) ion concentrations (conc) 50, 75, 100, 125, 150, 175, and 200 mg L−1 and the biochar doses of 100, 150, 200, 250, and 300 mg. The maximum removal percentage of Cu(II) ions was 95.56, 96.67, and 98.33% for SD, SSD, and SDA biochars, respectively, for 50 mg L−1 Cu(II) ion initial conc and 1.0 g L−1 adsorbent dose. The correlation coefficient (R2) was used to confirm the data obtained from the isotherm models. The Langmuir isotherm model was best fitted to the experimental data of SD, SSD, and SDA. The maximum adsorption capacities (Qm) of SD, SSD, and SDA are 91.74, 112.36, and 133.33 mg g−1, respectively. The degree of fitting using the non-linear isotherm models was in the sequence of Langmuir (LNR) (ideal fit) > Freundlich (FRH) > Temkin (SD and SSD) and FRH (ideal fit) > LNR > Temkin (SDA). LNR and FRH ideally described the biosorption of Cu(II) ions to SD and SSD and SDA owing to the low values of χ2 and R2 obtained using the non-linear isotherm models. The adsorption rate was well-ordered by the pseudo-second-order (PSO) rate models. Finally, chemically modified biochar with ammonia solutions (SDA) enhances the Cu(II) ions’ adsorption efficiency more than physical activations by sonications (SSD). Response surface methodology (RSM) optimization analysis was studied for the removal of Cu(II) ions using SD, SSD, and SDA biochars.
Collapse
|
5
|
Lingamdinne LP, Angaru GKR, Pal CA, Koduru JR, Karri RR, Mubarak NM, Chang YY. Insights into kinetics, thermodynamics, and mechanisms of chemically activated sunflower stem biochar for removal of phenol and bisphenol-A from wastewater. Sci Rep 2024; 14:4267. [PMID: 38383598 PMCID: PMC10881974 DOI: 10.1038/s41598-024-54907-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.
Collapse
Affiliation(s)
| | | | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
6
|
Sharma M, Sharma P, Janu VC, Gupta R. Evaluation of Adsorptive Capture and Release Efficiency of MNPs-SA@Cu MOF Composite Beads Toward U(VI) and Th(IV) Ions from an Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:541-553. [PMID: 38109877 DOI: 10.1021/acs.langmuir.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Effluent from nuclear power plants, rocks, and minerals contains hazardous radionuclides that adversely affect human health and seriously threaten the environment. To address this issue, simple, economic, and sustainable magnetite nanoparticle loaded sodium alginate copper metal-organic framework composite beads (MNPs-SA@Cu MOF composite beads) have been designed, and their performance has been evaluated under varying conditions of pH, time, adsorbent dose, and initial concentration and have been studied by batch adsorption studies for optimizing the adsorption conditions. In this work, MNPs-SA@Cu MOF composite beads have been prepared in situ for the adsorptive removal of uranium [U(VI)] and thorium [Th(IV)] ions from an aqueous solution. The synthesized MNPs-SA@Cu MOF composite beads were characterized by model analytical techniques like Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Brunauer-Emmett-Teller, and thermal gravimetric analysis. Here, 6 mg of adsorbent with 10 mL of 50 mg/L uranium and thorium ion solution at pH 5 was capable of removing the U(VI) and Th(IV) ions with 99.9 and 97.7% removal efficiencies, respectively. The obtained results showed that the adsorption behavior of the adsorbent for U(VI) and Th(IV) follows pseudo-second-order kinetics, and Langmuir isotherm fitted well with a maximum adsorption capacity of 454.54 and 434.78 mg/g, respectively. The adsorption mechanism indicated that electrostatic interaction and hydrogen bonding are the main driving forces for removing the U(VI) and Th(IV) ions. It can be reused for up to 10 adsorption-desorption cycles with minimal loss of removal efficiency. The easy synthesis method of MNPs-SA@Cu MOF composite beads and the high removal efficiency of U(VI) and Th(IV) ions reveal that they can potentially treat radionuclide waste effectively.
Collapse
Affiliation(s)
- Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Vikash Chandra Janu
- Defence Research and Development Organization Jodhpur, Jodhpur 342011, India
| | - Ragini Gupta
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
7
|
Momin ZH, Lingamdinne LP, Kulkarni R, Pal CAK, Choi YL, Koduru JR, Chang YY. Improving U(VI) retention efficiency and cycling stability of GCN-supported calcined-LDH composite: Mechanism insight and real water system applications. CHEMOSPHERE 2024; 346:140551. [PMID: 38303398 DOI: 10.1016/j.chemosphere.2023.140551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
The synthesis and characterization of graphitic carbon nitride (GCN) and its composites with calcined layered double hydroxide (CLDH) were examined in this investigation. The goal was to assess these composites' maximum adsorption capacity (qmax) for U(VI) ions in wastewater. Several different characterization methodologies were utilized to examine the fabricated substances. These methods encompass X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The GCN-CLDH composite displayed enhanced adsorption ability towards U(VI) ions due to its high surface functionality. Langmuir adsorption isotherm analysis showed that more than 99% of U(VI) ions were adsorbed, with a qmax of 196.69 mg/g. The kinetics data exhibited a good fit for a pseudo-second-order (PSO) model. Adsorption mechanisms involving precipitation and surface complexation via Lewis's acid-base interactions were proposed. The application of the GCN-CLDH composite in groundwater demonstrated adsorption below the maximum permissible limit established by USEPA, indicating improved cycling stability. These observations underscore the capacity of the GCN-CLDH composite's proficiency in adsorbing U(VI) aqueous solutions containing radioactive metals.
Collapse
Affiliation(s)
- Zahid Husain Momin
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | | | - Rakesh Kulkarni
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | | | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea.
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea.
| |
Collapse
|
8
|
Mahmoud ME, Ibrahim GAA. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO 2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol 2023; 253:126489. [PMID: 37625740 DOI: 10.1016/j.ijbiomac.2023.126489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Biodegradable polymers, biochars and metal organic frameworks (MOFs) have manifested as top prospects for elimination of harmful pollutants. In the current study, Ti-MOF was synthesized and decorated with TiO2 nanoparticles, then embedded into watermelon peel biochar and functionalized with chitosan hydrogel to produce Ti-MOF@TiO2@WMPB@CTH. Various instruments were employed to assure the effective production of the bionanocomposite. The HR-TEM and SEM studies referred to excellent surface porosity and homogeneity of Ti-MOF@TiO2@WMPB@CTH bionanocomposite, with 51.02-74.23 nm. Based on the BET analysis, the mesoporous structure has a significant surface area of 366.04 m2 g-1 and a considerable total pore volume of 11.38 × 10-2 cm3 g-1, with a mean pore size of 12.434 nm. Removal of doxorubicin (DOX) and hexavalent chromium (Cr(VI)) was examined under various experimentations. Pseudo-second order kinetic models in addition to Langmuir isotherm offered the best fitting. Thermodynamic experiments of the two contaminants demonstrated spontaneous and endothermic interactions. After five subsequent adsorption and desorption cycles, Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated an exceptional recyclability for the elimination of DOX and Cr(VI) ions, reaching 97.96 % and 95.28 %, respectively. Finally, the newly designed Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated a high removing efficiency of Cr(VI) ions and DOX from samples of real water.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| | - Ghada A A Ibrahim
- Faculty of Education, Physics and Chemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Liu Y, Yuan W, Lin W, Yu S, Zhou L, Zeng Q, Wang J, Tao L, Dai Q, Liu J. Efficacy and mechanisms of δ-MnO 2 modified biochar with enhanced porous structure for uranium(VI) separation from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122262. [PMID: 37506804 DOI: 10.1016/j.envpol.2023.122262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Even though uranium (U) is considered to be an essential strategic resource with vital significance to nuclear power development and climate change mitigation, U exposure to human and ecological environment has received growing concerns due to its both highly chemically toxic and radioactively hazardous property. In this study, a composite (M-BC) based on Ficus macrocarpa (banyan tree) aerial roots biochar (BC) modified by δ-MnO2 was designed to separate U(VI) from synthetic wastewater. The results showed that the separation capacity of M-BC was 61.53 mg/g under the solid - liquid ratio of 1 g/L, which was significantly higher than that of BC (12.39 mg/g). The separation behavior of U(VI) both by BC and M-BC fitted well with Freundlich isothermal models, indicating multilayer adsorption occurring on heterogeneous surfaces. The reaction process was consistent with the pseudo-second-order kinetic model and the main rate-limiting step was particle diffusion process. It is worthy to note that the removal of U(VI) by M-BC was maintained at 94.56% even after five cycles, indicating excellent reusability and promising application potential. Multiple characterization techniques (e.g. Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS)) uncovered that U(VI) complexation with oxygen-containing functional groups (e.g. O-CO and Mn-O) and cation exchange with protonated ≡MnOH were the dominant mechanisms for U(VI) removal. Application in real uranium wastewater treatment showed that 96% removal of U was achieved by M-BC and more than 92% of co-existing (potentially) toxic metals such as Tl, Co, Pb, Cu and Zn were simultaneously removed. The work verified a feasible candidate of banyan tree aerial roots biowaste based δ-MnO2-modified porous BC composites for efficient separation of U(VI) from uranium wastewater, which are beneficial to help address the dilemma between sustainability of nuclear power and subsequent hazard elimination.
Collapse
Affiliation(s)
- Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenli Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Luoheng Tao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Yao J, Wang Z, Liu M, Bai B, Zhang C. Nitrate-Nitrogen Adsorption Characteristics and Mechanisms of Various Garden Waste Biochars. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5726. [PMID: 37630017 PMCID: PMC10456472 DOI: 10.3390/ma16165726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Nitrate-nitrogen (NO3--N) removal and garden waste disposal are critical concerns in urban environmental protection. In this study, biochars were produced by pyrolyzing various garden waste materials, including grass clippings (GC), Rosa chinensis Jacq. branches (RC), Prunus persica branches (PP), Armeniaca vulgaris Lam. branches (AV), Morus alba Linn. sp. branches (MA), Platycladus orientalis (L.) Franco branches (PO), Pinus tabuliformis Carrière branches (PT), and Sophorajaponica Linn. branches (SL) at three different temperatures (300 °C, 500 °C, and 700 °C). These biochars, labeled as GC300, GC500, GC700, and so on., were then used to adsorb NO3--N under various conditions, such as initial pH value, contact time, initial NO3--N concentration, and biochar dosage. Kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. The equilibrium adsorption data were evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. The results revealed that the biochar yields varied between 14.43% (PT700) and 47.09% (AV300) and were significantly influenced by the type of garden waste and decreased with increasing pyrolysis temperature, while the pH and ash content showed an opposite trend (p < 0.05). The efficiency of NO3--N removal was significantly influenced by the type of feedstock, preparation process, and adsorption conditions. Higher pH values had a negative influence on NO3--N adsorption, while longer contact time, higher initial concentration of NO3--N, and increased biochar dosage positively affected NO3--N adsorption. Most of the kinetic data were better fitted to the pseudo-second-order kinetic model (0.998 > R2 > 0.927). Positive b values obtained from the Temkin model indicated an exothermic process of NO3--N adsorption. The Langmuir model provided better fits for more equilibrium adsorption data than the Freundlich model, with the maximum NO3--N removal efficiency (62.11%) and adsorption capacity (1.339 mg·g-1) in PO700 under the conditions of pH = 2, biochar dosage = 50 mg·L-1, and a reaction time of 24 h. The outcomes of this study contribute valuable insights into garden waste disposal and NO3--N removal from wastewater, providing a theoretical basis for sustainable environmental management practices.
Collapse
Affiliation(s)
- Jingjing Yao
- Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing 100081, China;
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China; (M.L.); (B.B.); (C.Z.)
- The National Engineering Laboratory of Circular Economy (Industrial Wastewater Utilization and Industrial Water Conservation), Beijing 100095, China
| | - Zhiyi Wang
- Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing 100081, China;
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Mengfan Liu
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China; (M.L.); (B.B.); (C.Z.)
- The National Engineering Laboratory of Circular Economy (Industrial Wastewater Utilization and Industrial Water Conservation), Beijing 100095, China
| | - Bing Bai
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China; (M.L.); (B.B.); (C.Z.)
- The National Engineering Laboratory of Circular Economy (Industrial Wastewater Utilization and Industrial Water Conservation), Beijing 100095, China
| | - Chengliang Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China; (M.L.); (B.B.); (C.Z.)
- The National Engineering Laboratory of Circular Economy (Industrial Wastewater Utilization and Industrial Water Conservation), Beijing 100095, China
| |
Collapse
|
11
|
Wang H, Chen D, Wen Y, Zhang Y, Liu Y, Xu R. Iron-rich red mud and iron oxide-modified biochars: A comparative study on the removal of Cd(II) and influence of natural aging processes. CHEMOSPHERE 2023; 330:138626. [PMID: 37028717 DOI: 10.1016/j.chemosphere.2023.138626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Red mud (RM) is a byproduct of various processes in the aluminum industry and has recently been utilized for synthesizing RM-modified biochar (RM/BC), which has attracted significant attention in terms of waste reutilization and cleaner production. However, there is a lack of comprehensive and comparative studies on RM/BC and the conventional iron-salt-modified biochar (Fe/BC). In this study, RM/BC and Fe/BC were synthesized and characterized, and the influence on environmental behaviors of these functional materials with natural soil aging treatment was analyzed. After aging, the adsorption capacity of Fe/BC and RM/BC for Cd(II) decreased by 20.76% and 18.03%, respectively. The batch adsorption experiments revealed that the main removal mechanisms of Fe/BC and RM/BC are co-precipitation, chemical reduction, surface complexation, ion exchange, and electrostatic attraction, etc. Furthermore, practical viability of RM/BC and Fe/BC was evaluated through leaching and regenerative experiments. These results can not only be used to evaluate the practicality of the BC fabricated from industrial byproducts but can also reveal the environmental behavior of these functional materials in practical applications.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China.
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China.
| |
Collapse
|
12
|
Zhang Y, Mei B, Shen B, Jia L, Liao J, Zhu W. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr Polym 2023; 312:120834. [PMID: 37059560 DOI: 10.1016/j.carbpol.2023.120834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Binhao Shen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| |
Collapse
|
13
|
Zhao Z, Huang F, Liu Z, Yang J, Wang Y, Wang P, Xiao R. Quantification adsorption mechanisms of arsenic by goethite-modified biochar in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27585-y. [PMID: 37208507 DOI: 10.1007/s11356-023-27585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
In this study, rice straw biochar (BC), goethite (GT), and goethite-modified biochar (GBC) were prepared and their differences in adsorption characteristics and mechanisms of arsenic were explored to provide theoretical and data reference for future design of modified biochar, aiming to address adsorption mechanism weakness and improve the efficiency of arsenic removal in water. Various characterization methods were employed to evaluate the influence of pH, adsorption kinetics, isotherms, and chemical analyses of the materials. At temperatures of 283 K, 298 K, and 313 K, the maximum actual adsorption capacity followed the order GBC > GT > BC, while at 313 K, the maximum Langmuir adsorption capacity of GBC reached 149.63 mg/g which was 95.92 times that of BC and 6.27 times of GT. Due to precipitation and complexation mechanisms, GBC exhibited more superior arsenic adsorption capacities than BC and GT, contributing to total adsorption ranging from 88.9% to 94.2%. BC was dominated by complexation and ion exchange mechanisms in arsenic adsorption, with contribution proportions of 71.8%-77.6% and 19.1%-21.9%, respectively. In GT, the precipitation mechanism played a significant role in total adsorption, contributing from 78.0% to 84.7%. Although GBC has significant potential for removing arsenic from aqueous solutions, the findings suggest that its ion exchange capacity needs improvement.
Collapse
Affiliation(s)
- Zilin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zetian Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiexin Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yishuo Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rongbo Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
14
|
Kumar L, Yadav V, Yadav M, Saini N, Jagannathan K, Murugesan V, Ezhilselvi V. Systematic studies on the effect of structural modification of orange peel for remediation of phenol contaminated water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10872. [PMID: 37113106 DOI: 10.1002/wer.10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
In the present study, orange peel biochar has been utilized as the adsorbent for the removal of phenol from contaminated water. The biochar was prepared by thermal activation process at three different temperature 300, 500 and 700°C and are defined as B300, B500, and B700 respectively. The synthesized biochar has been characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), RAMAN spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. SEM analysis revealed a highly irregular and porous structure for B700 as compared with others. The parameters such as initial phenol concentration, pH, adsorption dosage, and contact time were optimized, and the maximum adsorption efficiency and capacity of about 99.2% and 31.0 mg/g was achieved for B700 for phenol adsorption. The Branauer-Emmett-Teller (BET) surface area and Berrate-Joyner-Halenda (BJH) pore diameter obtained for B700 were about 67.5 m2 /g and 3.8 nm. The adsorption of phenol onto the biochar followed Langmuir isotherm showing linear fit with R2 = 0.99, indicating monolayer adsorption. The kinetic data for adsorption is best fitted for pseudo-second order. The thermodynamic parameters ΔG°, ΔH°, and ΔS° values obtained are negative, which means that the adsorption process is spontaneous and exothermic. The adsorption efficiency of phenol marginally declined from 99.2% to 50.12% after five consecutive reuse cycles. The study shows that the high-temperature activation increased the porosity and number of active sites over the orange peel biochar for efficient adsorption of phenol. PRACTITIONER POINTS: Orange peel is thermally activated at 300, 500, and 700°C for structure modification. Orange peel biochars were characterized for its structure, morphology, functional groups, and adsorption behavior. High-temperature activation improved the adsorption efficiency up to 99.21% due to high porosity.
Collapse
Affiliation(s)
- Lalit Kumar
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikas Yadav
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meenakshi Yadav
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neha Saini
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Vajjiravel Murugesan
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai, India
| | - V Ezhilselvi
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
15
|
Na4P2O7-Modified Biochar Derived from Sewage Sludge: Effective Cu(II)-Adsorption Removal from Aqueous Solution. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/8217910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of industrialization, the amount of copper-containing wastewater is increasing, thereby posing a threat to the aquatic ecological environment and human health. Sludge biochar has received extensive concern in recent years due to its advantages of low cost and sustainability for the treatment of heavy-metal-containing wastewater. However, the heavy-metal-adsorption capacity of sludge biochar is limited. This study prepared a sodium pyrophosphate- (Na4P2O7-) modified municipal sludge-based biochar (SP-SBC) and evaluated its adsorption performance for Cu(II). Results showed that SP-SBC had higher yield, ash content, pH, Na and P content, and surface roughness than original sewage sludge biochar (SBC). The Cu(II)-adsorption capacity of SP-SBC was 4.55 times than that of SBC at room temperature. For Cu(II) adsorption by SP-SBC, the kinetics and isotherms conformed to the pseudo-second-order model and the Langmuir–Freundlich model, respectively. The maximum adsorption capacity of SP-SBC was 38.49 mg·g−1 at 35°C. Cu(II) adsorption by SP-SBC primarily involved ion exchange, electrostatic attraction, and precipitation. The desired adsorption performance for Cu(II) in the fixed-bed column experiment indicated that SP-SBC can be reused and had good application potential to treat copper-containing wastewater. Overall, this study provided a desirable sorbent (SP-SBC) for Cu(II) removal, as well as a new simple chemical-modification method for SBC to enhance Cu(II)-adsorption capacity.
Collapse
|
16
|
Smječanin N, Nuhanović M, Sulejmanović J, Mašić E, Sher F. Highly effective sustainable membrane based cyanobacteria for uranium uptake from aqueous environment. CHEMOSPHERE 2023; 313:137488. [PMID: 36528157 DOI: 10.1016/j.chemosphere.2022.137488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wastewater from industrial process of uranium ore mining contains a large amount of this radioactive pollutant. Regarding the advantages of biosorption, it was found that varieties of biomasses such as agricultural waste, algae and fungi are effective for uranium removal. However, there is limited research on cyanobacteria, therefore, cyanobacteria, Anagnostidinema amphibium (CAA) was investigated by batch method for the first time for biosorption of uranium (VI). Optimization of biosorption parameters showed that maximum removal efficiency of 92.91% was reached at pH range of 9-11 with 50 mg of cyanobacteria to 100 mg/L U(VI) initial concentration, at 25 °C within 40 min. Used biosorbent exhibited very good selectivity for U(VI) ions and reusability in IV sorption/desorption cycles. Characterization of CAA surface was performed by FTIR, EDS, EDXRF and SEM analysis and it has shown various functional groups (CONH, COOH, OH, PO alkyl group) and that it is very rich in elements such as iron, potassium and calcium. In binary systems, contained of U(VI) and selected ions, CAA exhibits very good selectivity towards U(VI) ions. Kinetic data revealed the best accordance of experimental data with the pseudo-second-order model and isotherms data agreed with Freundlich model. Thermodynamic data implied that U(VI) biosorption process by A. amphibium exhibited spontaneity and modelling of the investigated process showed that the adsorption of uranium ions occurs mainly via peptidoglycan carboxyl groups. Overall results show that these cyanobacteria with a maximum sorption capacity of 324.94 mg/g have great potential for the processing of wastewater polluted with uranium (VI).
Collapse
Affiliation(s)
- Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Mirza Nuhanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ermin Mašić
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
17
|
Dhanya V, Rajesh N. A cradle to cradle approach towards remediation of uranium from water using carbonized arecanut husk fiber. RSC Adv 2023; 13:4394-4406. [PMID: 36744280 PMCID: PMC9890654 DOI: 10.1039/d2ra08333g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Sustainable materials for remediation of pollutants from water is the need of the hour. In this study two carbonaceous adsorbents prepared through hydrothermal carbonisation and pyrolysis from arecanut husk fiber, an agricultural waste material were used for the adsorption of uranium from water. Batch adsorption data as interpreted using the Langmuir model showed adsorption capacities of 250 mg g-1 and 200 mg g-1 respectively at pH 6 for the hydrochar (AHFC) and the pyrochar (AHFT) exceeding that reported for most of the unmodified biochars. The adsorption followed pseudo-second order kinetics and was exothermic in nature. The high selectivity and excellent removal efficiencies on application to environmental ground water samples and good regeneration capacity make these sorbents promising eco-friendly materials for uranium remediation from water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| |
Collapse
|
18
|
Sime T, Fito J, Nkambule TTI, Temesgen Y, Sergawie A. Adsorption of Congo Red from Textile Wastewater Using Activated Carbon Developed from Corn Cobs: The Studies of Isotherms and Kinetics. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Lingamdinne LP, Lebaka VR, Koduru JR, Chang YY. Insights into manganese ferrite anchored graphene oxide to remove Cd(II) and U(VI) via batch and semi-batch columns and its potential antibacterial applications. CHEMOSPHERE 2023; 310:136888. [PMID: 36265706 DOI: 10.1016/j.chemosphere.2022.136888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The bioaccumulation, non-biodegradability, and high toxicity of Cd(II) and U(VI) in water is a serious concerns. Manganese ferrite/graphene oxide (GMF) nanocomposites were synthesized, characterized, and used to efficiently remove Cd(II) and U(VI) from an aqueous solution in this study. X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) analyses, respectively, confirmed the formation of GMF and the adsorptive removal mechanism. The XRD results revealed an amorphous structure when MnFe2O4 was loaded onto the GO surface. XPS results suggest that C = C, C-OorOH, and metal oxides are responsible for the removal of Cd(II) and U(VI) via electrostatic and chemical interaction. According to the Brunauer Emmett and Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterization analysis, GMF has a high surface area (117.78 m2/g) and a spherical shape with even distribution. The kinetics data were successfully reproduced by a pseudo-second-order non-linear model indicating the complexity of the sorption mechanism was rate-limiting. The maximum Langmuir uptake ability of GMF for Cd(II) and U(VI) was calculated to be 232.56 mg/g and 201.65 mg/g, respectively. Using external magnetic power, the prepared GMF can easily separate from the aqueous solution and can keep both metal ions under Environmental protection agency standards in water for up to six cycles of re-use of GMF. Finally, the GMF nanocomposite demonstrated significant promise as an adsorbent for removing Cd(II) and U(VI) from actual contaminated water samples. The antibacterial test was expanded to include gram-negative E. coli and gram-positive S. aureus to better understand GMF's bacterial inhibition efficacy.
Collapse
Affiliation(s)
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
20
|
Sun Y, Yuan N, Ge Y, Ye T, Yang Z, Zou L, Ma W, Lu L. Adsorption behavior and mechanism of U(VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Lingamdinne LP, Godlaveeti SK, Angaru GKR, Chang YY, Nagireddy RR, Somala AR, Koduru JR. Highly efficient surface sequestration of Pb 2+ and Cr 3+ from water using a Mn 3O 4 anchored reduced graphene oxide: Selective removal of Pb 2+ from real water. CHEMOSPHERE 2022; 299:134457. [PMID: 35367227 DOI: 10.1016/j.chemosphere.2022.134457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Owing to the ubiquitous existence of detrimental heavy metals in the environment, simple adsorption-oriented approaches are becoming increasingly appealing for the effective removal of Pb2+ and Cr3+ from water bodies. These techniques use nanocomposites (NC) of reduced graphene oxide (rGO) and Mn3O4 (rGO-Mn3O4), they employ a hydrothermal technique featuring NaBH4 and NaOH solutions. Here, spectroscopic and microscopic instrumental techniques were used to evaluate the morphological and physicochemical characteristics of prepared reduced graphene oxide manganese oxide (rGO-Mn3O4), revealing that it possessed a well-defined porous structure with a specific surface area of 126 m2 g-1. The prepared rGO-Mn3O4 had significant adsorption efficiencies for Pb2+ and Cr3+, achieving maximum sequestration capacities of 130.28 and 138.51 mg g-1 for Pb2+ and Cr3+, respectively, according to the Langmuir model. These adsorption capacities are comparable to or greater than those of previously reported graphene-based materials. The Langmuir isotherm and pseudo-second-order models adequately represented the experimental results. Thermodynamic analysis revealed that adsorption occurred through spontaneous endothermic reactions. Recycling studies showed that the developed r-GO-Mn3O4 had excellent recyclability, with <70% removal at the 5th cycle; its feasibility was evaluated using industrial wastewater, suggesting that Pb2+ was selectively removed from Pb2+ and Cr3+ contaminated water. The instrumental analysis and surface phenomena studies presented here revealed that the adsorptive removal processes of both heavy metals involved π electron donor-acceptor interactions, ion exchange, and electrostatic interactions, along with surface complexation. Overall, the developed rGO-Mn3O4 has the potential to be a high-value adsorbent for removing heavy metals.
Collapse
Affiliation(s)
| | - Sreenivasa Kumar Godlaveeti
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | | | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ramamanohar Reddy Nagireddy
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Adinarayana Reddy Somala
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
22
|
Gandhi TP, Sampath PV, Maliyekkal SM. A critical review of uranium contamination in groundwater: Treatment and sludge disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153947. [PMID: 35189244 DOI: 10.1016/j.scitotenv.2022.153947] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Dissolved uranium in groundwater at high concentrations is an emerging global threat to human and ecological health due to its radioactivity and chemical toxicity. Uranium can enter groundwater by geochemical reactions, natural deposition from minerals, mining, uranium ore processing, and spent fuel disposal. Although much progress has been made in uranium remediation in recent years, most published reviews on uranium treatment have focused on specific methods, particularly adsorption. This article systematically reviews the major treatment technologies, explains their mechanism and progress of uranium removal, and compares their performance under various environmental conditions. Of all treatment methods, adsorption has received much attention due to its ease of use and adaptability under various conditions. However, salinity and competition from other ions limit its application in actual field conditions. Biosorption and bioremediation are also promising methods due to their low-cost and chemical-free operation. Strong base anion exchange resins are more effective at typical groundwater pH conditions. Advanced oxidation processes like photocatalysis produce less sludge and are effective even at low uranium concentrations. Electrocoagulation shows significantly improved performance when organic ligands are added prior to treatment. The significant advantages of membrane filtration are high removal efficiency and the ability to recover uranium. While each technology has its merits and demerits, no single technology is entirely suitable under all conditions. One major area of concern with all technologies is the need to dispose of liquid and solid waste generated after treatment safely. Future research must focus on developing hybrid and state-of-the-art technologies for effective and sustainable uranium removal from groundwater. Developing holistic management strategies for uranium removal will hinge on understanding its speciation, mechanisms of fate and transport, and socio-economic conditions of the affected areas.
Collapse
Affiliation(s)
- T Pushparaj Gandhi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - Prasanna Venkatesh Sampath
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - Shihabudheen M Maliyekkal
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India.
| |
Collapse
|
23
|
Oymak T, Şafak ES. Removal of sulfadiazine from aqueous solution by magnetic biochar prepared with pomegranate peel. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tülay Oymak
- Faculty of Pharmacy, Department of Analytical Chemistry, Sivas Cumhuriyet University, Turkey
| | - Elif Sena Şafak
- Faculty of Pharmacy, Department of Analytical Chemistry, Sivas Cumhuriyet University, Turkey
| |
Collapse
|
24
|
Yang S, Yin J, Li Q, Wang C, Hua D, Wu N. Covalent organic frameworks functionalized electrodes for simultaneous removal of UO 22+ and ReO 4- with fast kinetics and high capacities by electro-adsorption. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128315. [PMID: 35077974 DOI: 10.1016/j.jhazmat.2022.128315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The recovery of radioactive ions from high salinity low-level radioactive wastewater (LLRW) is important for the sustainable utilization of nuclear energy. Previous work primarily focuses on developing adsorbents that remove individual types of ions via physicochemical adsorption. Here, we report a new strategy for the simultaneous recovery of uranium (UO22+) and rhenium (ReO4-) as a non-radioactive surrogate of technetium from LLRW via electro-adsorption. Carboxyl functionalized covalent organic frameworks (COF-1) and cationic covalent organic frameworks (COF-2) were prepared as cathode and anode materials, respectively. The adsorption capacities were 411 mg U/g for COF-1 and 984 mg Re/g for COF-2 under 1.2 direct-current (DC) volts, 2.5 and 2.1 times higher than the capacities of the same adsorbents obtained by physicochemical adsorption. We also found that the electro-adsorption of uranium and rhenium follows pseudo-second-order kinetics with the adsorption rates of 0.45 and 1.05 g/mg/h at pH 7.0 and 298.15 K, again two times faster than those measured in physicochemical adsorption. Therefore, electro-adsorption improves both adsorption capacity and kinetics by maximizing the utility of available active sites in adsorbents and facilitating ion migration towards the adsorbents. The adsorption efficiencies for uranium and rhenium reached 65.9% and 89.2%, respectively, after electro-adsorption for 2 h. The high efficiencies can be maintained after five adsorption-desorption cycles. Furthermore, the electrodes showed high selectivity for uranium(VI) and rhenium(VII) and excellent salt resistance even in 1 mol/L NaCl solution. XPS studies revealed that covalent bonds were formed between uranium(VI) and carboxyl groups on COF-1, and rhenium(VII) was bound to cationic COF-2 through electrostatic interaction. Our asymmetric electrodes design can be extended to simultaneously and efficiently remove other types of radioactive or heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| | - Jia Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Qian Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Chaoyi Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
25
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
26
|
Priyan V V, Kumar N, Narayanasamy S. Toxicological assessment and adsorptive removal of lead (Pb) and Congo red (CR) from water by synthesized iron oxide/activated carbon (Fe 3O 4/AC) nanocomposite. CHEMOSPHERE 2022; 294:133758. [PMID: 35101427 DOI: 10.1016/j.chemosphere.2022.133758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and dyes are the persistent pollutants causing harmful effects on living organisms in different ecosystems. In current study, removal of Lead (Pb) and Congo Red (CR) from water was performed using Iron oxide/Activated Carbon (Fe3O4/AC) nanocomposite. Ferromagnetic behavior of the nanocomposite is the crucial advantage in separation of nanocomposite after biosorption process. The biosorbent was thermally stable till 800 °C of temperature. The synthesized biosorbent was polycrystalline in nature comprising of elements like C, O, Fe. The influence of various experimental conditions was optimized through batch study with the biosorption capacity of 144.92 mg/g (Pb) and 122.22 mg/g (CR) at pH 5-6, Fe3O4/AC dosage (0.04 g) for 40 mg/L of Pb and CR. Toxicological assessment was performed using Danio rerio and seeds to evaluate the harmful effects of pollutants on these organisms. The phytotoxicity results revealed that growth inhibition of seeds lies between 85.64% and 55.92% (Pb) and 77.94%-51.85% (CR). The LC50 value of Pb on the Danio rerio was found to be 20.98 mg/L. In contrast, we observed significant increase in LC50 value about 86.82 mg/L after biosorption of Pb onto biosorbent.
Collapse
Affiliation(s)
- Vishnu Priyan V
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nitesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
27
|
Amesh P, Venkatesan KA, Suneesh AS, Chandra M, Gupta DK, Thoguluva RR. Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The iron oxide surface was modified with succinic acid moiety and the adsorbent obtained, Fe-SUC, was evaluated for the adsorption of U(VI) (Uranium (VI)) from aqueous solution. The Fe-SUC was characterized by FT-IR (Fourier Transform Infrared Spectroscopy), Raman spectroscopy, thermogravimetry, X-ray diffraction, SEM-EDX (Scanning Electron Microscope - Energy-dispersive X-ray Spectroscopy), and particle size analysis. The adsorption behavior of U(VI) on Fe-SUC was studied as a function of pH, contact time, and concentration of U(VI) in the aqueous phase. The adsorption of U(VI) increased with increase in the pH of aqueous phase, and the adsorption saturation occurred at pH = 6. The kinetic data obtained for the adsorption of U(VI) on Fe-SUC were modeled with the pseudo-first-order and pseudo-second-order rate models. Similarly, the U(VI) adsorption isotherm was fitted with Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherm models. The Langmuir adsorption capacity of U(VI) on Fe-SUC was about ∼176 mg g−1. The selectivity of the adsorbent toward U(VI) was evaluated in the presence of several possible interfering ions. The adsorbed U(VI) was recovered by 0.5 M sodium carbonate solution and the spent adsorbent was tested for its reusability.
Collapse
Affiliation(s)
- Pamarthi Amesh
- Reprocessing Research and Development Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
- Homi Bhabha National Institute , Anushaktinagar , Mumbai , Maharashtra 400094 , India
| | - Konda Athmaram Venkatesan
- Reprocessing Research and Development Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
- Homi Bhabha National Institute , Anushaktinagar , Mumbai , Maharashtra 400094 , India
| | - Asokan Sudha Suneesh
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - Manish Chandra
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - Deepak K. Gupta
- Materials Science Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - Ravindran R. Thoguluva
- Materials Science Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| |
Collapse
|
28
|
Abstract
The growth of the world population has increased the production of wastes. These are generally incinerated or deposited in outdoor landfills, which impacts the environment and affects human health. A technique that allows to reuse of wastes and diminishes adverse effects on the environment is pyrolysis. Through this technique, a material known as Biochar (BC) is produced, which has proven to have interesting physical-chemical properties for it to be used as an asphalt modifier, and simultaneously, helps to mitigate negative impacts on the environment. The foregoing article presents a bibliographical review on the use of BC as a modifier for asphalt binders and asphalt mixes. This has the purpose of becoming a starting point for future research efforts. In the reviewed literature, there was no review found on this topic. In general terms, BC increases the performance of asphalt binders in high-temperature climates, and tends to reduce its performance in low-temperature ones. Few studies have evaluated the performance of BC on asphalt mixes and the long-term properties associated with durability. Based on the reviewed literature, at the end of the article, recommendations are provided for future study topics.
Collapse
|
29
|
Angaru GKR, Choi YL, Lingamdinne LP, Koduru JR, Yang JK, Chang YY, Karri RR. Portable SA/CMC entrapped bimetallic magnetic fly ash zeolite spheres for heavy metals contaminated industrial effluents treatment via batch and column studies. Sci Rep 2022; 12:3430. [PMID: 35236886 PMCID: PMC8891350 DOI: 10.1038/s41598-022-07274-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/16/2022] [Indexed: 12/28/2022] Open
Abstract
Heavy metals are perceived as a significant environmental concern because of their toxic effect, bioaccumulation, and persistence. In this work, a novel sodium alginate (SA) and carboxymethylcellulose (CMC) entrapped with fly ash derived zeolite stabilized nano zero-valent iron and nickel (ZFN) (SA/CMC-ZFN), followed by crosslinking with CaCl2, is synthesized and applied for remediation of Cu(II) and Cr(VI) from industrial effluent. The characterization of the adsorbent and its surface mechanism for removing metals were investigated using advanced instrumental techniques, including XRD, FT-IR, SEM-EDX, BET, and XPS. The outcomes from the batch experiments indicated that monolayer adsorption on homogeneous surfaces (Langmuir isotherm model) was the rate-limiting step in both heavy metals sorption processes. The maximum adsorption capacity of as-prepared SA/CMC-ZFN was 63.29 and 10.15 mg/g for Cu(II) and Cr(VI), respectively. Owing to the fact that the wastewater released from industries are large and continuous, a continuous column is installed for simultaneous removal of heavy metal ions from real industrial wastewater. The outcomes revealed the potential of SA/CMC-ZFN as an efficient adsorbent. The experimental breakthrough curves fitted well with the theoretical values of Thomas and Yoon-Nelson models. Overall, the results indicated that SA/CMC-ZFN is a viable, efficient, and cost-effective water treatment both interms of batch and column processes.
Collapse
Affiliation(s)
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE 1410, Brunei Darussalam.
| |
Collapse
|
30
|
Dong H, Zhang L, Shao L, Wu Z, Zhan P, Zhou X, Chen J. Versatile Strategy for the Preparation of Woody Biochar with Oxygen-Rich Groups and Enhanced Porosity for Highly Efficient Cr(VI) Removal. ACS OMEGA 2022; 7:863-874. [PMID: 35036752 PMCID: PMC8756790 DOI: 10.1021/acsomega.1c05506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 05/25/2023]
Abstract
Biochar is widely used to remove hexavalent chromium [Cr(VI)] from wastewater through adsorption, which is recognized as a facile, cost-efficient, and high-selectivity approach. In this study, a versatile strategy that combines delignification with subsequent carbonization and KOH activation is proposed to prepare a novel woody biochar from waste poplar sawdust. By virtue of the unique multilayered and honeycomb porous structure induced by delignification and activation processes, the resultant activated carbonized delignified wood (ACDW) exhibits a high specific surface area of 970.52 m2 g-1 with increasing meso- and micropores and abundant oxygen-containing functional groups. As a benign adsorbent for the uptake of Cr(VI) in wastewater, ACDW delivers a remarkable adsorption capacity of 294.86 mg g-1 in maximum, which is significantly superior to that of unmodified counterparts and other reported biochars. Besides, the adsorption behaviors fit better with the Langmuir isotherm, the pseudo-second-order kinetic model, and the adsorption diffusion model in batch experiments. Based on the results, we put forward the conceivable adsorption mechanism that the synergistic contributions of the capillary force, electrostatic attraction, chemical complexation, and reduction action facilitate the Cr(VI) capture by ACDW.
Collapse
Affiliation(s)
- Hongping Dong
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Lin Zhang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Lishu Shao
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Zhiping Wu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Peng Zhan
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Xiaoxun Zhou
- College
of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jienan Chen
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| |
Collapse
|
31
|
Chen X, Wang Y, Lv J, Feng Z, Liu Y, Xia H, Li Y, Wang C, Zeng K, Liu Y, Yuan D. Simple one-pot synthesis of manganese dioxide modified bamboo-derived biochar composite for uranium(VI) removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploitation of bamboo-derived biochar offers a lucrative opportunity for using moso bamboo due to its short growth cycle, large quantity and universality. Novel MnO2 modified bamboo-derived biochar composites (MnO2@BBC) were...
Collapse
|
32
|
Ullah R, Ahmad W, Yaseen M, Khan M, Iqbal Khattak M, Mohamed Jan B, Ikram R, Kenanakis G. Fabrication of MNPs/rGO/PMMA Composite for the Removal of Hazardous Cr(VI) from Tannery Wastewater through Batch and Continuous Mode Adsorption. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6923. [PMID: 34832323 PMCID: PMC8620348 DOI: 10.3390/ma14226923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of magnetic nanoparticle (MNP)-reduced graphene oxide (rGO) and polymethylmethacrylate (PMMA) composite (MNPs/rGO/PMMA) as adsorbent via an in situ fabrication strategy and, in turn, the application for adsorptive removal and recovery of Cr(VI) from tannery wastewater. The composite material was characterized via XRD, FTIR and SEM analyses. Under batch mode experiments, the composite achieved maximum adsorption of the Cr(VI) ion (99.53 ± 1.4%, i.e., 1636.49 mg of Cr(VI)/150 mg of adsorbent) at pH 2, adsorbent dose of 150 mg/10 mL of solution and 30 min of contact time. The adsorption process was endothermic, feasible and spontaneous and followed a pseudo-2nd order kinetic model. The Cr ions were completely desorbed (99.32 ± 2%) from the composite using 30 mL of NaOH solution (2M); hence, the composite exhibited high efficiency for five consecutive cycles without prominent loss in activity. The adsorbent was washed with distilled water and diluted HCl (0.1M), then dried under vacuum at 60 °C for reuse. The XRD analysis confirmed the synthesis and incorporation of magnetic iron oxide at 2θ of 30.38°, 35.5°, 43.22° and 57.36°, respectively, and graphene oxide (GO) at 25.5°. The FTIR analysids revealed that the composite retained the configurations of the individual components, whereas the SEM analysis indicated that the magnetic Fe3O4-NPs (MNPs) dispersed on the surface of the PMMA/rGO sheets. To anticipate the behavior of breakthrough, the Thomas and Yoon-Nelson models were applied to fixed-bed column data, which indicated good agreement with the experimental data. This study evaluates useful reference information for designing a cost-effective and easy-to-use adsorbent for the efficient removal of Cr(VI) from wastewater. Therefore, it can be envisioned as an alternative approach for a variety of unexplored industrial-level operations.
Collapse
Affiliation(s)
- Rahman Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Mehmood Iqbal Khattak
- Material Science Center (PCSIR) Laboratories Complex, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan;
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Crete, Greece;
| |
Collapse
|
33
|
Lingamdinne LP, Koduru JR, Chang YY, Naushad M, Yang JK. Polyvinyl Alcohol Polymer Functionalized Graphene Oxide Decorated with Gadolinium Oxide for Sequestration of Radionuclides from Aqueous Medium: Characterization, Mechanism, and Environmental Feasibility Studies. Polymers (Basel) 2021; 13:3835. [PMID: 34771391 PMCID: PMC8587516 DOI: 10.3390/polym13213835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO-Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO-Gd were examined. The PGO-Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g-1 at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo-second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO-Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO-Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.
Collapse
Affiliation(s)
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| |
Collapse
|