1
|
Yan J, Guo Z, Sun Y, Yan Z, Liu R, Chen Y, Song J. Mechanism insight into sulfidated nano zero-valent iron/biochar activated persulfate for highly efficient degradation of p-chloroaniline. CHEMOSPHERE 2025; 375:144229. [PMID: 40015011 DOI: 10.1016/j.chemosphere.2025.144229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Nano zero-valent iron (nZVI) and its composites utilized as persulfate (PS) activators has attracted extensive attention for the complete oxidative degradation of organic contaminants. However, the intrinsic agglomeration and the passivation layer on nZVI surface seriously impeded the electronic transmission performance, which significantly decreased the utilization efficiency of nZVI. Herein, sulfidated nano zero-valent iron/biochar (S-nZVI/BC) was prepared by the co-sulfuration method via liquid phase reduction approach to promote PS activation for p-chloroaniline (PCA) degradation. The PCA removal efficiency reached 96.43% after 10 min of reaction, and the reaction rate constant (k) and the reaction stoichiometric efficiency (RSE) were 0.337 min-1 and 3.50% in the S-nZVI/BC500 activated PS system, which were 10.3 fold and 9.5 fold with respect to nZVI/BC, respectively. The reactive oxygen species (ROSS) of SO4•-, •OH and O2•- were generated and accounted for PCA degradation. The intermediates of p-chloronitrobenzene, chlorobutane, butanol and butyric acid were identified and the oxidative degradation pathways of PCA were proposed. The excellent performance of S-nZVI/BC for PS activation was attributed to the improved electron transfer capacity, enhanced conversion of Fe(III) to Fe(II), lower decomposition energy barrier of PS and less dissociation of Fe atom by S doping. This study provides an insight mechanism into S-nZVI/BC activated PS for highly efficient degradation of PCA in water.
Collapse
Affiliation(s)
- Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zihan Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuyuan Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; Changzhou University, Changzhou, 213164, China.
| | - Zichen Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yudong Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing, 210042, China.
| | - Jing Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
2
|
Rout V, Maji B, Annadata HV, Maharana RR, Panda DK, Samantaray J, Goutam UK, Samanta K, Mishra M, Dash P. Solar Assisted Mitigation of Chloramphenicol and H 2 Evolution Using CuNi Alloy Nanoparticles on h-BN Doped g-C 3N 4: A Comprehensive Approach Combining Synchrotron and DFT Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69333-69358. [PMID: 39655888 DOI: 10.1021/acsami.4c15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A simple one-step deposition-precipitation method was used to synthesize highly active and well-defined CuNi alloy bimetallic nanoparticles supported on h-BN/g-C3N4. The nanocomposite was applied for hydrogen gas evolution via seawater splitting and photocatalytic chloramphenicol (CHP) removal. Through TEM and synchrotron studies, the formation of CuNi alloy and uniform distribution of CuNi bimetallic nanoparticles on the h-BN/g-C3N4 surface was observed. The EXAFS analysis verified the successful formation of the alloy, while the XPS and XANES spectra showed that the bimetallic nanoparticles are in a metallic state. Additionally, XANES revealed nanoparticle distortion upon interaction with the support, confirming the effective formation of the nanocomposite. The nanocomposite achieved a maximum hydrogen evolution rate of 3658.9 μmol g-1 h-1 for 5 wt % CuNi(3:1)/h-BN/g-C3N4, outperforming CuNi(3:1) nanoparticles and pristine g-C3N4 by 1.82 and 4.31 times, respectively. Additionally, it degraded chloramphenicol with a rate constant (kapp) of 0.018 min-1. Optical and electrochemical analysis revealed enhanced charge mobility, extended lifetime, improved photostability, and superior photoresponse. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations attributed the performance to the synergy between the bimetallic nanoparticles and the h-BN/g-C3N4 sheet. DFT calculations demonstrated the effective breakdown of chloramphenicol and the promotion of hydrogen gas evolution, aligning with experimental observations. Cytotoxicity of CHP post-treatment was analyzed using Drosophila melanogaster (fruit fly) and the Oregon-R strain of D. melanogaster.
Collapse
Affiliation(s)
- Vishal Rout
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Banalata Maji
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Harshini V Annadata
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajat Rajiv Maharana
- Quantum Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology, Argul, Jatni, Khurda, Bhubaneswar, Odisha 752050, India
| | - Deepak Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | | | - Uttam K Goutam
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kousik Samanta
- Quantum Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology, Argul, Jatni, Khurda, Bhubaneswar, Odisha 752050, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Priyabrat Dash
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Chung HS, Jeon D, Hwang I. In situ treatment of contaminated soil using persulfate activated by sulfidated zero-valent iron. CHEMOSPHERE 2024; 366:143440. [PMID: 39369747 DOI: 10.1016/j.chemosphere.2024.143440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Soil contamination with hazardous substances like phenol poses significant environmental and health risks. In situ soil mixing can be a promising technological solution to this challenge. A persulfate and sulfidated zero-valent iron (S-ZVIbm) system for remediating contaminated soil was developed and tested to be suited to in situ soil mixing. S-ZVIbm was synthesized using a ball mill process, and the optimal sulfur to iron molar ratio for effectively removing phenol from soil removal without pyrophoric risks was 0.12. Soil slurry experiments were performed, and the best phenol oxidation results (high stoichiometric efficiency and sustained oxidation after mixing) were achieved at a persulfate to S-ZVIbm molar ratio of 2:1 and a persulfate to phenol molar ratio of 8:1. A high organic matter content of the silty clay fraction of the soil strongly suppressed persulfate activation, so suppressed phenol removal and increased persulfate consumption. Electron spin resonance and radical scavenging tests confirmed that hydroxyl and sulfate radicals were present during the degradation of phenol. While sulfate radicals predominantly facilitated degradation in the soil, both sulfate and hydroxyl radicals were crucial in the aqueous phase in the absence of soil organic matter. In situ soil mixing simulation tests indicated that the persulfate and S-ZVIbm doses and the mixing rate and duration strongly affected the efficacy of the system, and the optimal conditions for phenol removal were determined. The results indicated that the persulfate/S-ZVIbm system could be tuned to achieve sustained persulfate activation and to remediate contaminated soil employing in situ soil mixing technique.
Collapse
Affiliation(s)
- Hyuk Sung Chung
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Daeun Jeon
- National Institute of Chemical Safety, Hazard Management Division, Hwangyeong-ro 42, Seo-gu, Incheon, 404-708, Republic of Korea.
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Adjei JK, Acquah H, Essumang DK. Occurrence, efficiency of treatment processes, source apportionment and human health risk assessment of pharmaceuticals and xenoestrogen compounds in tap water from some Ghanaian communities. Heliyon 2024; 10:e31815. [PMID: 38845891 PMCID: PMC11153180 DOI: 10.1016/j.heliyon.2024.e31815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The occurrence of pharmaceuticals and xenoestrogen compounds (PXCs) in drinking water presents a dire human health risk challenge. The problem stems from the high anthropogenic pollution load on source water and the inefficiencies of the conventional water treatment plants in treating PXCs. This study assessed the PXCs levels and the consequential health risks of exposure to tap water from selected Ghanaian communities as well as that of raw water samples from the respective treatment plants. Thus the PXCs treatment efficiency of two drinking water treatment plants in the metropolises studied was also assessed. The study also conducted source apportionment of the PXCs in the tap water. Twenty six (26) tap and raw water samples from communities in the Cape Coast and Sekondi-Takoradi metropolises were extracted using SPE cartridges and analysed for PXCs using Ultra-fast-HPLC-UV instrument. Elevated levels of PXCs up to 24.79 and 22.02 μg/L were respectively recorded in raw and tap water samples from the metropolises. Consequently, elevated non-cancer health risk (HI > 1) to residential adults were found for tap water samples from Cape Coast metropolis and also for some samples from Sekondi-Takoradi metropolis. Again, elevated cumulative oral cancer risks >10-5 and dermal cancer risk up to 4 × 10-5 were recorded. The source apportionment revealed three significant sources of PXCs in tap water samples studied. The results revealed the inefficiency of the treatment plants in removing PXCs from the raw water during treatments. The situation thus requires urgent attention to ameliorate it, safeguarding public health. It is recommended that the conventional water treatment process employed be augmented with advanced treatment technologies to improve their efficacy in PXCs treatment.
Collapse
Affiliation(s)
- Joseph K. Adjei
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - Henrietta Acquah
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - David K. Essumang
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| |
Collapse
|
5
|
Wang Z, Meng L, Luo T. Electrochemical-enhanced nanoscale oxygen-vacancy CuFe 2O 4 to activate persulfate (E/oxygen-vacancy CuFe 2O 4/PS) for separation of Ebselen from wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:2144-2155. [PMID: 36599035 DOI: 10.1080/09593330.2023.2165456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
To enhance the catalytic activity of CuFe2O4 on PS, a nanoscale oxygen-vacancy CuFe2O4 was prepared by hydrogenation reduction technique to construct an advanced oxidation system of electrochemical-enhanced nanoscale oxygen-vacancy CuFe2O4-activated persulfate. Using Ebselen (EBS) as a model pollutant, the degradation efficiency, activation mechanism and degradation pathway were studied. The oxygen-vacancy CuFe2O4 was characterized and analysed by FESEM, EDS and XPS. The results show that under the optimal reaction conditions (PS = 0.8 g/L, oxygen-vacancy CuFe2O4 = 0.3 g/L, initial pH = 6.5), the removal rate of 20 mg/L EBS can reach 92% after reaction for 60 min, which proves that the formation of oxygen-vacancy changed the catalytic inertness of CuFe2O4 on PS. It is speculated that in the E/oxygen-vacancy CuFe2O4/PS system, the existence of oxygen holes enhances the electron transfer ability and reducibility of the catalyst, so the oxygen-vacancy CuFe2O4 can efficiently activate PS to degrade EBS. The quenching experiments show that both SO 4 ⋅ - and ⋅ OH are involved in the oxidation reaction as reactive radicals in the system, with SO 4 ⋅ - being the main reactive radical. In addition, both dissolved oxygen (DO) and anions in the solution inhibit the oxidative degradation of EBS by oxygen-vacancy CuFe2O4/PS system. Through GC-MS detection, a possible degradation pathway is proposed.
Collapse
Affiliation(s)
- Zhenjun Wang
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, People's Republic of China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, People's Republic of China
| | - Tianlie Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Xue W, Shi X, Guo J, Wen S, Lin W, He Q, Gao Y, Wang R, Xu Y. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: A critical review. WATER RESEARCH 2024; 253:121309. [PMID: 38367381 DOI: 10.1016/j.watres.2024.121309] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Antibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs. However, given the current increasingly fragmented research focus and results, a comprehensive review is still lacking. In this work, we first introduce the origin and transmission of antibiotics and ARGs in various environmental media, and then discuss the affecting factors during the degradation of antibiotics and the control of ARGs by nZVI and modified nZVI, including pH, nZVI dose, and oxidant concentration, etc. Then, the mechanisms of antibiotic and ARGs removal promoted by nZVI are also summarized. In general, the mechanism of antibiotic degradation by nZVI mainly includes adsorption and reduction, while promoting the biodegradation of antibiotics by affecting the microbial community. nZVI can also be combined with persulfates to degrade antibiotics through advanced oxidation processes. For the control of ARGs, nZVI not only changes the microbial community structure, but also affects the proliferation of ARGs through affecting the fate of mobile genetic elements (MGEs). Finally, some new ideas on the application of nZVI in the treatment of antibiotic resistance are proposed. This paper provides a reference for research and application in this field.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng yang 421001, PR China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
7
|
Xue Y, Kamali M, Liyakat A, Bruggeman M, Muhammad Z, Rossi B, Costa MEV, Appels L, Dewil R. A walnut shell biochar-nano zero-valent iron composite membrane for the degradation of carbamazepine via persulfate activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165535. [PMID: 37453707 DOI: 10.1016/j.scitotenv.2023.165535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, novel walnut shell biochar-nano zero-valent iron nanocomposites (WSBC-nZVI) were synthesized using a combined pyrolysis/reduction process. WSBC-nZVI displayed a high removal efficiency (86 %) for carbamazepine (CBZ) compared with walnut shell biochar (70 %) and nano zero-valent iron (76 %) in the presence of persulfate (PS) (0.5 g/L catalyst, 10 mg/L CBZ, 1 mM persulfate). Subsequently, WSBC-nZVI was applied for the fabrication of the membrane using a phase inversion method. The membrane demonstrated an excellent removal efficiency of 91 % for CBZ in a dead-end system (2 mg/L CBZ, 1 mM persulfate). In addition, the effect of various operating conditions on the degradation efficiency in the membrane/persulfate system was investigated. The optimum pH was close to neutral, and an increase in CBZ concentration from 1 mg/L to 10 mg/L led to a drop in removal efficiency from 100 % to 24 %. The degradation mechanisms indicated that oxidative species, including 1O2, OH, SO4-, and O2-, all contribute to the degradation of CBZ, while the role of 1O2 is highlighted. The CBZ degradation products were also investigated, and the possible pathways and the predicted toxicity of intermediates were proposed. Furthermore, the practical use of the membrane was validated by the treatment of real wastewater.
Collapse
Affiliation(s)
- Yongtao Xue
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Alina Liyakat
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Maud Bruggeman
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Zeeshan Muhammad
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Barbara Rossi
- University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Maria Elisabete V Costa
- University of Aveiro, Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, 3810-193 Aveiro, Portugal
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
8
|
Luo CW, Cai L, Xie C, Jiang TJ. Sulfur-doped α-Fe 2O 3 as an efficient and recycled peroxydisulfate activator toward organic pollutant degradation: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117846-117861. [PMID: 37875758 DOI: 10.1007/s11356-023-30163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
Sulfur (S)-doped α-Fe2O3 has been regarded as an excellent catalyst for eliminating organic pollutants in the photo-Fenton-like reaction. Yet, the synthetic complexity and extremely low activity in the dark Fenton-like reaction still need to be solved. In this study, magnetic α-Fe2O3 with sulfide was successfully fabricated via hydrothermal and calcination processes, for the first time, where thiourea acted as both S source and reducing agent, and then, it was applied for activating peroxydisulfate (PDS) to degrade organic contaminants. Important influencing factors were systemically investigated, and the results showed that this catalyst activating PDS was highly effective in the removal of organic pollutants in dark- and photo-Fenton-like reactions. In addition, the catalyst possessed good stability and recyclable ability. The structure of catalyst was analyzed by several characterizations, such as XRD and XPS. The results revealed that sulfide had an important effect on the structure and performance of α-Fe2O3. The detected mechanism indicated that the main reactive oxygen species were altered after switching from darkness to LED illumination. This work offered a promising method to rationally design for S/α-Fe2O3 in the environmental remediation.
Collapse
Affiliation(s)
- Cai-Wu Luo
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China.
- Key Laboratory of Low-Cost Rural Environment Treatment Technology at Education Department of Sichuan Province, Sichuan University of Arts and Science, Dazhou, 635000, China.
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Lei Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China
| | - Chao Xie
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China
| | - Tian-Jiao Jiang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China
| |
Collapse
|
9
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Li L, Jin H, Luo N, Niu H, Cai Y, Cao D, Zhang S. Sulfurized nano zero-valent iron prepared via different methods: Effect of stability and types of surface corrosion products on removal of 2,4,6-trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114864. [PMID: 37011511 DOI: 10.1016/j.ecoenv.2023.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Sulfurization improves the stability and activity of nano zero-valent iron (nZVI). The sulfurized nZVI (S-nZVI) were prepared with ball milling, vacuum chemical vapor deposition (CVD) and liquid-phase reduction techniques and the corresponding products were the mixture of FeS2 and nZVI (nZVI/FeS2), well-defined core-shell structure (FeSx@Fe) or seriously oxidized (S-nZVI(aq)), respectively. All these materials were applied to eliminate 2,4,6-trichlorophenol (TCP) from water. The removal of TCP was irrelevant with the structure of S-nZVI. Both nZVI/FeS2 and FeSx@Fe showed remarkable performance for the degradation of TCP. S-nZVI(aq) possessed poor mineralization efficiency to TCP due to its bad crystallinity degree and severe leaching of Fe ions, which retarded the affinity of TCP. Desorption and quenching experiments suggested that TCP removal by nZVI and S-nZVI was based on surface adsorption and subsequent direct reduction by Fe0, oxidation by in-situ produced ROS and polymerization on the surface of these materials. In the reaction process, the corrosion products of these materials transformed into crystalline Fe3O4 and α/β-FeOOH, which enhanced the stability of nZVI and S-nZVI materials and was conductive to the electron transferring from Fe0 to TCP and strong affinity of TCP onto Fe or FeSx phases. All these were contributed to high performance of nZVI and sulfurized nZVI in removal and minerazilation of TCP in continuous recycle test.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiwen Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Science, North China University of Science and Technology, Tangshan, Hebei Province 063210, China
| | - Na Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China.
| |
Collapse
|
11
|
Li X, Zheng S, Li Y, Ding J, Qin W. Effectively facilitating the degradation of chloramphenicol by the synergism of Shewanella oneidensis MR-1 and the metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131545. [PMID: 37148794 DOI: 10.1016/j.jhazmat.2023.131545] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Electroactive bacteria (EAB) and metal oxides are capable of synergistically removing chloramphenicol (CAP). However, the effects of redox-active metal-organic frameworks (MOFs) on CAP degradation with EAB are not yet known. This study investigated the synergism of iron-based MOFs (Fe-MIL-101) and Shewanella oneidensis MR-1 on CAP degradation. 0.5 g/L Fe-MIL-101 with more possible active sites led to a three-fold higher CAP removal rate in the synergistic system with MR-1 (initial bacterial concentration of 0.2 at OD600), and showed a superior catalytic effect than exogenously added Fe(III)/Fe(II) or magnetite. Mass spectrometry revealed that CAP was transformed into smaller molecular weight and less toxic metabolites in cultures. Transcriptomic analysis showed that Fe-MIL-101 enhanced the expression of genes related to nitro and chlorinated contaminants degradation. Additionally, genes encoding hydrogenases and c-type cytochromes associated with extracellular electron transfer were significantly upregulated, which may contribute to the simultaneous bioreduction of CAP both intracellularly and extracellularly. These results indicated that Fe-MIL-101 can be used as a catalyst to synergize with EAB to effectively facilitate CAP degradation, which might shed new light on the application in the in situ bioremediation of antibiotic-contaminated environments.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shiling Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China.
| | - Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| |
Collapse
|
12
|
Qian L, Yan S, Yong X, Selvaraj M, Ghramh HA, Assiri MA, Zhang X, Awasthi MK, Zhou J. Effective degradation of chloramphenicol in wastewater by activated peroxymonosulfate with Fe-rich porous biochar derived from petrochemical sludge. CHEMOSPHERE 2023; 310:136839. [PMID: 36244417 DOI: 10.1016/j.chemosphere.2022.136839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Excess sludge produced from biological wastewater treatment plant in petroleum industry is a kind of hazardous solid waste. Converting the sludge into biochar catalysts may help to reduce its environmental risk, recover resources and increase economic efficiency. However, the role of the sludge biochar in persulfate activation remains unclear, limiting its application in removing organic pollutants from water body. In this study, metal-rich petrochemical sludge was used to produce activated sludge biochar (ASC) via a two-step method of pyrolytic carbonization (400 °C-800 °C) and subsequent KOH activation (abbreviated as ASC 400-800). The physio-chemical properties of ASC 400-800 were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and Raman. The chloramphenicol (CAP) removal performances of ASC 400-800/peroxymonosulfate (PMS) systems were evaluated. Results showed that porous sludge biochar was successfully prepared by the two-step method. At 800 °C, the specific surface area of ASC reached the highest value of 202.92 m2 g-1. At 600-800 °C, Fe3O4, Fe0, and graphitized carbon were formed in ASC. Among ASC 400-800, ASC 800 exhibited the best CAP removal performance in ASC 800/PMS system by adsorption combined with catalytic degradation. The optimal conditions identified for 0.31 mM CAP removal were ASC 800 2.0 g L-1, PMS 6.2 mM, and pH 2.0. SO4•-, •OH, and 1O2 may contribute to CAP degradation. The degradation pathways of CAP were proposed based on the identified degradation intermediates. Overall, this study confirmed that porous biochar derived from petrochemical sludge was an effective adsorbent or PMS catalyst to remove organic pollutants from wastewater.
Collapse
Affiliation(s)
- Lina Qian
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Su Yan
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China; College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| |
Collapse
|
13
|
Xu W, Zhang J, Xu T, Hu X, Shen C, Lou L. Could sulfidation enhance the long-term performance of nano-zero valent iron in the peroxymonosulfate activation to degrade 2-chlorobiphenyl? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120631. [PMID: 36370971 DOI: 10.1016/j.envpol.2022.120631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation can enhance the hydrophobicity of nano-zero valent iron (nZVI) and improve its long-term degradation performance in reduction technology. However, whether sulfidation can enhance its long-term performance in sulfate radical-based advanced oxidation processes hasn't been systematically studied. Herein sulfide-modified nZVI (S-nZVI) was prepared by different sulfidation methods and S/Fe ratios. The behavior of S-nZVI on the peroxymonosulfatec (PMS) activation to degrade 2-chlorobiphenyl for continuous 5 rounds was investigated. The results showed that sulfidation couldn't always promote the long-term degradation performance. S-nZVI prepared by one-step sulfidation method with high S/Fe ratio (S-nZVIonestep-7%, S-nZVIonestep-14%) exhibited inferior degradation performance than unmodified nZVI (52.2%). This was because that the electron donor Fe0 was consumed rapidly and the crystalline lepidocrocite accumulated on the surface, thus inhibited PMS activation. In contrast, S-nZVI prepared by post-sulfidation method with high S/Fe ratio (S-nZVIpost-7%, S-nZVIpost-14%) exhibited more Fe0 residual, less FeOx accumulation, and more catalytic Fe2+ regeneration. Consequently, S-nZVIpost exhibited superior degradation capacity (69.3%). Moreover, the radical quenching experiments revealed that the primary free radicals involved in the degradation were transformed from SO4•- to •OH with prolongation of the degradation. Additionally, Fe (IV) contributed to the degradation through non-radical mechanism, especially in the S-nZVIpost-7%/PMS system.
Collapse
Affiliation(s)
- Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Tao Xu
- Hangzhou Zetian Chunlai Technology Co., Ltd., Hangzhou, People's Republic of China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|
14
|
Magnetic field assisted synthesis of Janus Fe3C@ Enteromorpha doped graphene aerogels for simultaneous recovery of fresh water and salt in high salinity wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts 2022. [DOI: 10.3390/catal12111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The activation of persulfate (PS) by Fe(III) for the removal of environmental organic pollutants was severely limited by the low reduction rate from Fe(III) to Fe(II). In present study, we reported that reducing sulfur species (i.e., SO32−, HSO3−, S2−, and HS−) under low concentration could significantly accelerate the Fe(III)/Fe(II) cycle in the Fe(III)/PS system. Under the condition of 1.0 mM Fe(III) and 4.0 mM PS, the removal performance of Fe(III)/PS system was poor, and only 21.6% of BPA was removed within 40 min. However, the degradation efficiency of BPA increased to 66.0%, 65.5%, 72.9% and 82.7% with the addition of 1.0 mM SO32−, HSO3−, S2−, and HS−, respectively. The degradation efficiency of BPA was highly dependent on solution pH and the concentration of reducing sulfur species. When the reductant was excessive, the removal efficiency would be significantly inhibited due to the elimination of reactive species. This study provided some valuable insights for the treatment of organic wastewater containing these inorganic reducing ions.
Collapse
|
16
|
Zhao QM, Jiang H, Wang Z. Electrochemical-enhanced MoS 2/Fe 3O 4 peroxymonosulfate (E/ MoS 2/Fe 3O 4/PMS) for degradation of sulfamerazine. CHEMOSPHERE 2022; 307:136198. [PMID: 36030935 DOI: 10.1016/j.chemosphere.2022.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seeking effective methods to degrade organic pollutants has always been a hot research field. In this work, MoS2/Fe3O4 catalyst was synthesized by hydrothermal method with MoS2 as carrier to construct an advanced oxidation system of electrochemical enhanced MoS2/Fe3O4-activated peroxymonosulfate (E/MoS2/Fe3O4/PMS). The materials were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The degradation efficiency of sulfamerazine (SM1) by E/MoS2/Fe3O4/PMS system was investigated and reaction mechanism was explored. The results showed that the removal rates of SM1 within 30 min were 31%, 20% and 89% with Fe3O4, MoS2 and MoS2/Fe3O4 as catalysts, respectively. The characterization results revealed that Fe(III) on the surface of Fe3O4 was reduced to Fe(II) and Mo(IV) was oxidized to Mo(VI) in the presence of MoS2. The synergistic effect between Fe3O4 and MoS2 enhanced the PMS decomposition and improved the SM1 removal efficiency. Free radical quenching experiments showed that SO4-⋅, ·OH, O2· and 1O2 were all involved in the degradation of SM1, and the effect of 1O2 was more significant than other active substances. Low concentrations of Cl- and humic acid (HA) had no significant inhibitory effect on the degradation of SM1, while HCO3- had a significant inhibitory effect on the E/MoS2/Fe3O4/PMS system. In addition, catalyst cycling experiments showed that MoS2/Fe3O4 maintained good stability before and after the catalytic reaction process.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Haotian Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjun Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
17
|
Falyouna O, Maamoun I, Ghosh S, Malloum A, Othmani A, Eljamal O, Amen TW, Oroke A, Bornman C, Ahmadi S, Hadi Dehghani M, Hossein Mahvi A, Nasseri S, Tyagi I, Suhas, Reddy Koduru J. Sustainable Technologies for the Removal of Chloramphenicol from Pharmaceutical Industries Effluent: A critical review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Ascorbic acid enhanced the zero-valent iron/peroxymonosulfate oxidation: Simultaneous chelating and reducing. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Guo H, Zhang X, Song J, Li H, Zou W. Green sulfidated iron oxide nanocomposites for efficient removal of Malachite Green and Rhodamine B from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1202-1217. [PMID: 35228364 DOI: 10.2166/wst.2022.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A green and facile pathway was described using Viburnum odoratissimum leaf extract in the presence of sodium thiosulfate for the synthesis of sulfidated iron oxide nanocomposites (S-Fe NCs) adsorbents. The prepared S-Fe NCs can be used for the efficient removal of Malachite Green (MG) and Rhodamine B (RhB) from aqueous solution. Analytical techniques by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) were applied to understand the morphologies and compositions of S-Fe NCs. The stability of the adsorption capacity on S-Fe NCs was studied. Results from the characterization studies showed that S-Fe NCs were mainly composed of iron oxides, iron sulfides and biomolecules. The S-Fe NCs displayed high adsorption capacity for a wide range of pH values. The Koble-Corrigan isotherm model and Elovich model well described the adsorption process. The maximum adsorption capacity for MG and RhB was 4.31 mmol g-1 and 2.88 mmol g-1 at 303 K, respectively. The adsorption mechanism may be attributed to the electrostatic interaction, the hydrogen bonding, the π-π stacking interactions, the inner-sphere surface complexation or the cation bridging among the S-Fe NCs and dye molecules.
Collapse
Affiliation(s)
- Hongbo Guo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China E-mail:
| | - Xiaoyu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China E-mail:
| | - Jiande Song
- Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang, Henan 457000, China
| | - Hongping Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China E-mail:
| | - Weihua Zou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China E-mail: ; Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
20
|
Yang S, Liu A, Liu J, Liu Z, Zhang W. Advance of Sulfidated Nanoscale Zero-Valent Iron: Synthesis, Properties and Environmental Application. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Arany P, Papp I, Zichar M, Regdon G, Béres M, Szalóki M, Kovács R, Fehér P, Ujhelyi Z, Vecsernyés M, Bácskay I. Manufacturing and Examination of Vaginal Drug Delivery System by FDM 3D Printing. Pharmaceutics 2021; 13:1714. [PMID: 34684007 PMCID: PMC8539995 DOI: 10.3390/pharmaceutics13101714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Vaginal drug delivery systems can provide a long-term and constant liberation of the active pharmaceutical ingredient even for months. For our experiment, FDM 3D printing was used to manufacture the vaginal ring samples from thermoplastic polyurethane filament, which enables fast manufacturing of complex, personalized medications. 3D printing can be an excellent alternative instead of industrial manufacturing, which is complicated and time-consuming. In our work, the 3D printed vaginal rings were filled manually with jellified metronidazole or chloramphenicol for the treatment of bacterial vaginosis. The need for manual filling was certified by the thermogravimetric and heatflow assay results. The manufactured samples were analyzed by an Erweka USP type II Dissolution Apparatus, and the dissolution profile can be distinguished based on the applied jellifying agents and the API's. All samples were considered non-similar based on the pairwise comparison. The biocompatibility properties were determined by prolonged MTT assay on HeLa cells, and the polymer could be considered non-toxic. Based on the microbiological assay on E. coli metronidazole and chitosan containing samples had bactericidal effects while just metronidazole or just chitosan containing samples bacteriostatic effect. None of these samples showed a fungistatic or fungicide effect against C. albicans. Based on our results, we successfully manufactured 3D printed vaginal rings filled with jellified metronidazole.
Collapse
Affiliation(s)
- Petra Arany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ildikó Papp
- Department of Computer Graphics and Image Processing, Faculty of Informatics, University of Debrecen, Kassai út 26, H-4028 Debrecen, Hungary; (I.P.); (M.Z.)
| | - Marianna Zichar
- Department of Computer Graphics and Image Processing, Faculty of Informatics, University of Debrecen, Kassai út 26, H-4028 Debrecen, Hungary; (I.P.); (M.Z.)
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mónika Béres
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary;
| | - Melinda Szalóki
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary;
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary;
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| |
Collapse
|