1
|
Chew JHJ, Ng ZX, Tio W, Zhang L, Yang JCE, Li Z, Sun DD. Fouling behavior of nano/microplastics and COD, TOC, and TN removal in MBR: A comparative study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70099. [PMID: 40396414 DOI: 10.1002/wer.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
The global upsurge in plastic demand has overwhelmed waste management systems, with nano/microplastic (N/MP) pollution emerging as a critical environmental challenge. With wastewater treatment plants (WWTPs) identified as a key source of MPs release to the aquatic environment, reflecting the design limitations in addressing MPs. Herein, this comparative study proposes a novel application of a complete mixed anoxic-oxidation membrane bioreactor (MBR) integrated with three varying polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes for N/MP removal. The fouling behavior of MPs within the MBR was investigated to provide insight on the NPs rejection capabilities of the MBR. The results demonstrate high organics rejection efficiency (99.43% ± 0.13%), complete removal of NPs, and a direct correlation between membrane hydrophilicity and fouling resistance. Notably, hydrophilic and smooth membranes promoted the interaction of microbial aggregation and agglomerations of NPs, enhancing their capture. This study highlights the pivotal mechanism and role of membrane selection in optimizing MBR as an adaptable and effective solution for mitigating N/MPs pollution in wastewater. PRACTITIONER POINTS: Microplastics pollution in membrane bioreactor. Fouling mechanism of microplastics in membrane bioreactor. Fouling behavior of microplastics in membrane bioreactor. Interaction of microplastics and membrane bioreactor. Fouling resistance of microplastics in membrane bioreactor.
Collapse
Affiliation(s)
- Jonathan H J Chew
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore
| | - Ze Xuan Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Wee Tio
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore
| | - Lilin Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Jia Cheng E Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Zhengtao Li
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Darren D Sun
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Pompa-Pernía A, Molina S, Cherta L, Martínez-García L, Landaburu-Aguirre J. Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling. MEMBRANES 2024; 14:174. [PMID: 39195426 DOI: 10.3390/membranes14080174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different membrane types: microfiltration (MF), commercial ultrafiltration (c-UF), and recycled ultrafiltration (r-UF) membranes. Performance was assessed using synthetic urban wastewater spiked with PS-NPs, focusing on membrane efficiency, fouling behavior, and microbial community shifts. All aMBR systems achieved high organic matter removal, exceeding a 97% COD reduction in both the control and PS-exposed reactors. While low concentrations of PS-NPs did not significantly impact the sludge settleability or soluble microbial products initially, a higher accumulation increased the carbohydrate concentrations, indicating a protective bacterial response. The microbial community composition also adapted over time under polystyrene stress. All membrane types exhibited substantial NP removal; however, the presence of nano-sized PS particles negatively affected the membrane performance, enhancing the fouling phenomena and increasing transmembrane pressure. Despite this, the r-UF membrane demonstrated comparable efficiency to c-UF, suggesting its potential for sustainable applications. Advanced characterization techniques including pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were employed for NP detection and quantification.
Collapse
Affiliation(s)
- Anamary Pompa-Pernía
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | | | | |
Collapse
|
3
|
Jin J, Wang X, Sha Y, Wang F, Huang X, Zong H, Liu J, Song N. Changes in soil properties and microbial activity unveil the distinct impact of polyethylene and biodegradable microplastics on chromium uptake by peanuts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53369-53380. [PMID: 39187679 DOI: 10.1007/s11356-024-34743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Microplastics (MPs) are emerging persistent pollutants, and heavy metals are typical environmental pollutants, with their coexistence potentially compounding pollution and ecological risks. However, the interactive impacts and the relevant mechanisms of heavy metal and different types of MPs in plant-soil systems are still unclear. This study investigated the differential impacts of polyethylene MPs (PE MPs) and biodegradable polybutylene adipate MPs (PBAT MPs) on chromium (Cr) uptake in peanuts, focusing on plant performance and rhizosphere soil microenvironment. Compared with nondegradable PE-MPs, biodegradable PBAT MPs produced less significant influences on plant phytotoxicity, soil Cr bioavailability, and soil properties such as pH, CEC, DOC, and MBC, with the exception of MBN in Cr-contaminated soils. Compared to the control, soil pH and cation exchange capacity (CEC) decreased by MPs, while soil-soluble carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN) increased by MPs. Compared to the control, soil-bioavailable Cr increased by 11.8-177.8% under PE MPs treatments, while increased by 5.1-156.9% under PBAT MPs treatments. The highest Cr content in shoots and roots was observed at 500.0 mg·kg-1 Cr level, which increased by 53.1% and 79.2% under 5% PE MPs treatments, respectively, as well as increased by 38.3% and 60.4% under 5% PBAT MPs treatments, respectively, compared with the control. The regression path analysis indicated that pH, MBC, MBN, and soil-bioavailable Cr played a vital role in the changes of soil properties and Cr uptake by peanuts induced by MPs. Soil bacterial community analysis revealed that Nocardioides, Proteobacteria, and Sphingomonas were reduced by the inhibition of MPs, which affected Cr uptake by peanuts. These results indicated that the peanut soil microenvironment was affected by PBAT and PE MPs, altering the Cr bioavailability and plant Cr uptake in Cr-contaminated soil.
Collapse
Affiliation(s)
- Jianpeng Jin
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuexia Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ying Sha
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Huang
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Haiying Zong
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Yazdanbakhsh A, Rafiee M, Mohammadi Z. Responses of activated sludge under a short-term exposure to facial scrub microbeads: implications from treatment performance and higher-life microbial population dynamics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3031-3046. [PMID: 37387428 PMCID: wst_2023_183 DOI: 10.2166/wst.2023.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
In this study, four identical laboratory-scale sequencing batch reactors (SBRs) were continuously operated with different concentrations of microbeads (MBs) (5,000-15,000 MBs/L) to investigate the stress-responses of activated sludge under the MB exposure. It was found that the overall treatment performance (organic removal) of SBRs was fairly affected by short-term exposure to low levels of MBs; however, it was adversely affected as the concentration of MBs increased. The average concentration of mixed liquor suspended solids and heterotrophic bacteria in the reactor fed with 15,000 MBs/L were 16 and 30% less than in the pristine control reactor, respectively. Batch experiments further demonstrated that fairly low concentrations of MBs favored the development of dense microbial structures. Further increasing the MB concentrations to 15,000 MBs/L, however, distinctly weakened the settling performance of sludge. Morphological observations revealed suppressed uniformity, strength, and integrity of flocs reactors with the addition of MBs. Microbial community analyses revealed that the abundance of protozoan species declined 37.5, 58, and 64%, respectively, when SBRs were exposed to 5,000; 10,000; and 15,000 MBs/L as compared with the control reactor. The present work provided new insight into the possible effects of MBs on the performances and operational parameters of activated sludge.
Collapse
Affiliation(s)
- Ahmadreza Yazdanbakhsh
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes (Basel) 2023. [DOI: 10.3390/pr11030810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Since the 1950s, plastic production has skyrocketed. Various environmental and human activities are leading to the formation and accumulation of microplastics (MPs) in aquatic and terrestrial ecosystems, causing detrimental effects on water, soil, plants, and living creatures. Wastewater treatment plants (WWTPs) are one of the primary MP management centers meant to check their entry into the natural systems. However, there are considerable limitations in effectively capturing, detecting, and characterizing these MPs in the inlet and outlet of WWTPs leading to “unaccounted MPs” that are eventually discharged into our ecosystems. In order to assess the holistic picture of the MPs’ distribution in the ecosystems, prevent the release of these omitted MPs into the environment, and formulate regulatory policies, it is vital to develop protocols that can be standardized across the globe to accurately detect and account for MPs in different sample types. This review will cover the details of current WWTP adoption procedures for MP management. Specifically, the following aspects are discussed: (i) several processes involved in the workflow of estimating MPs in the outlet of WWTPs; (ii) key limitations or challenges in each process that would increase the uncertainty in accurately estimating MPs; (iii) favorable recommendations that would lead to the standardization of protocols in the workflow and facilitate more accurate analysis of MPs; (iv) research opportunities to tackle the problem of ‘missing MPs’; and (v) future research directions for the efficient management of MPs. Considering the burgeoning research interest in the area of MPs, this work would help early scientists in understanding the current status in the field of MP analysis in the outlet of WWTPs.
Collapse
|
6
|
Hachemi C, Enfrin M, Rashed AO, Jegatheesan V, Hodgson PD, Callahan DL, Lee J, Dumée LF. The impact of PET microplastic fibres on PVDF ultrafiltration performance - A short-term assessment of MP fouling in simple and complex matrices. CHEMOSPHERE 2023; 310:136891. [PMID: 36257385 DOI: 10.1016/j.chemosphere.2022.136891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are key components for the capture of microplastics (MPs) before they are released into natural waterways. Removal efficiencies as high as 99% may be achieved but sub-micron MPs as well as nanoplastics have been overlooked because of analytical limitations. Furthermore, short MP fibres are of concern because of their low capture rate as well as the lack of understanding of their influence on purification system efficiency. This study has investigated the impact of poly(ethylene terephthalate) (PET) short nanofibres on the performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes during cross-flow operation. Model MP fibres with an average length of 10 ± 7 μm and a diameter of 142 ± 40 nm were prepared via a combination of electrospinning and fine cutting using a cryomicrotome. The manufactured MPs were added to both pure and synthetic domestic wastewater at a concentration of 1 mg.L-1 to determine their impact on the performance of PVDF ultrafiltration membranes. The results show that PET fibres attach to the membrane in a disorganised manner with low pore coverage. The water flux was decreased by 8% for MPs in pure water and no noticeable effect in wastewater after 3 days of filtration. Additionally, the nutrient removal efficiency of the membrane was not altered by the presence of PET MPs. These findings show that MP fibres do not significantly influence the early stages of filtration for a standard concentration of MPs in wastewater treatment plant studies.
Collapse
Affiliation(s)
- Cyril Hachemi
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia.
| | - Marie Enfrin
- Civil Engineering and Infrastructure, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Ahmed O Rashed
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Peter D Hodgson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford, Surrey, United Kingdom
| | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Pan Y, Gao SH, Ge C, Gao Q, Huang S, Kang Y, Luo G, Zhang Z, Fan L, Zhu Y, Wang AJ. Removing microplastics from aquatic environments: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100222. [PMID: 36483746 PMCID: PMC9722483 DOI: 10.1016/j.ese.2022.100222] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 05/13/2023]
Abstract
As one of the typical emerging contaminants, microplastics exist widely in the environment because of their small size and recalcitrance, which has caused various ecological problems. This paper summarizes current adsorption and removal technologies of microplastics in typical aquatic environments, including natural freshwater, marine, drinking water treatment plants (DWTPs), and wastewater treatment plants (WWTPs), and includes abiotic and biotic degradation technologies as one of the removal technologies. Recently, numerous studies have shown that enrichment technologies have been widely used to remove microplastics in natural freshwater environments, DWTPs, and WWTPs. Efficient removal of microplastics via WWTPs is critical to reduce the release to the natural environment as a key connection point to prevent the transfer of microplastics from society to natural water systems. Photocatalytic technology has outstanding pre-degradation effects on microplastics, and the isolated microbial strains or enriched communities can degrade up to 50% or more of pre-processed microplastics. Thus, more research focusing on microplastic degradation could be carried out by combining physical and chemical pretreatment with subsequent microbial biodegradation. In addition, the current recovery technologies of microplastics are introduced in this review. This is incredibly challenging because of the small size and dispersibility of microplastics, and the related technologies still need further development. This paper will provide theoretical support and advice for preventing and controlling the ecological risks mediated by microplastics in the aquatic environment and share recommendations for future research on the removal and recovery of microplastics in various aquatic environments, including natural aquatic environments, DWTPs, and WWTPs.
Collapse
Affiliation(s)
- Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Chang Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Sijing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yongming Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
8
|
Di Bella G, Corsino SF, De Marines F, Lopresti F, La Carrubba V, Torregrossa M, Viviani G. Occurrence of Microplastics in Waste Sludge of Wastewater Treatment Plants: Comparison between Membrane Bioreactor (MBR) and Conventional Activated Sludge (CAS) Technologies. MEMBRANES 2022; 12:membranes12040371. [PMID: 35448342 PMCID: PMC9028195 DOI: 10.3390/membranes12040371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
In this study, the presence of microplastics in the sludge of three wastewater treatment plants (WWTPs) was examined. The investigated WWTPs operated based on a conventional activated sludge (CAS) process, with (W1) or without (W2) primary clarification, and a membrane bioreactor process (MBR) (W3). The microplastics (MPs) concentration in the samples of W3 was approximately 81.1 ± 4.2 × 103 particles/kg dry sludge, whereas MPs concentrations in W1 and W2 were 46.0 ± 14.8 × 103 particles/kg dry sludge and 36.0 ± 5.2 × 103 particles/kg dry sludge, respectively. Moreover, MPs mainly consisted of fragments (66–68%) in the CAS plants, whereas the fractions of MPs shapes in the MBR sludge were more evenly distributed, although fiber (47%) was the most abundant fraction. Furthermore, samples from the MBR showed a greater diversity in MPs composition. Indeed, all the main polyesters (i.e., textile fibers and polyethylene terephthalate), polyolefins (i.e., polyethylene and polypropylene) and rubber (i.e., polybutadiene) were observed, whereas only polybutadiene, cellulose acetate and polyester were detected in the CAS plants. These findings confirmed that MPs from wastewater are transferred and concentrated in the waste sludge. This is a critical finding since sludge disposal could become a new pathway for microplastic release into the environment and because MPs might affect the fouling behavior of the membrane.
Collapse
Affiliation(s)
- Gaetano Di Bella
- Faculty of Engineering and Architecture, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; Tel.: +39-0935-536576
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.F.C.); (F.D.M.); (F.L.); (V.L.C.); (M.T.); (G.V.)
| | - Federica De Marines
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.F.C.); (F.D.M.); (F.L.); (V.L.C.); (M.T.); (G.V.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.F.C.); (F.D.M.); (F.L.); (V.L.C.); (M.T.); (G.V.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.F.C.); (F.D.M.); (F.L.); (V.L.C.); (M.T.); (G.V.)
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.F.C.); (F.D.M.); (F.L.); (V.L.C.); (M.T.); (G.V.)
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.F.C.); (F.D.M.); (F.L.); (V.L.C.); (M.T.); (G.V.)
| |
Collapse
|