1
|
Gao Q, Zhu F, Wang M, Shao S. A new perspective on the simultaneous removal of nitrogen, tetracycline, and phosphorus by moving bed biofilm reactor under co-metabolic substances. J Environ Sci (China) 2025; 155:431-441. [PMID: 40246478 DOI: 10.1016/j.jes.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 04/19/2025]
Abstract
With the burgeoning growth of aquaculture industry, high concentration of NH4+-N, phosphorus and tetracycline are the prevalent pollutants in aquaculture wastewater posing a significant health risk to aquatic organisms. Therefore, an effective method for treating aquaculture wastewater should be urgently explored. Simultaneous removal of NH4+-N, phosphorus, tetracycline, and chemical oxygen demand (COD) in aquaculture wastewater was developed by moving bed biofilm reactor (MBBR) under co-metabolic substances. The result showed that co-metabolism substances had different effects on MBBR performance, and 79.4 % of tetracycline, 68.2 % of NH4+-N, 61.3 % of total nitrogen, 88.3 % of COD, and 38.1 % of total phosphorus (TP) were synchronously removed with sodium acetate as a co-metabolic carbon source. Protein (PN), polysaccharide (PS), and electron transfer system activity were used to evaluate the MBBR performances, suggesting that PN/PS ratio was 1.48, 0.91, 1.07, 3.58, and 0.79 at phases I-V. Additionally, a mode of tetracycline degradation and TP removal was explored, and the cell apoptosis was evaluated by flow cytometry. The result suggested that 74 %, 83 %, and 83 % of tetracycline were degraded by extracellular extracts, intracellular extracts, and cell debris, and there was no difference between extracts and non-enzyme in TP removal. The ratio of viable and dead cells from biofilm reached 33.3 % and 7.68 % with sodium acetate as a co-metabolic carbon source. Furthermore, Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal. This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.
Collapse
Affiliation(s)
- Qijuan Gao
- School of Computer and Artificial Intelligence, Hefei Normal University, Hefei 230061, China; Post-doctoral research station of Xie Yuda Tea Co., Ltd., Huangshan, Anhui 245999, China
| | - Fang Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
2
|
Xiong W, Wang Y, Xiao G, Wang S, Chen B, Su H. Unravelling the mechanism of residual sludge promoting rapid formation of microalgal-bacterial granular sludge: Enhancement of extracellular polymers substances and electron transfer efficiency. ENVIRONMENTAL RESEARCH 2025; 272:121122. [PMID: 39956424 DOI: 10.1016/j.envres.2025.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Microalgal-bacterial granular sludge (MBGS) is a sustainable biotechnology that has attracted increasing attention, but there remains limited knowledge about the utilization of residual sludge generated from MBGS. This present work proposed a promising approach to rapidly construct the MBGS system from activated sludge by inoculating residual microalgal-bacterial sludge. Compared with inoculated activated sludge, the newly formed MBGS maintained a stable structure, higher biomass content (4.51 g/L), better settleability (42 mL/g), and higher pollutant removal. The results indicated that inoculation of residual sludge resulted in higher extracellular polymeric substances (EPS) content and promoted the microbial aggregation. Besides, this increase effectively improved the electron transfer efficiency within the particle, which facilitated the granulation of MBGS. Microbial community analysis revealed that the dominant bacteria (Pseudofulvimonas and Thauera) were mainly responsible for the secretion of EPS. Furthermore, the nitrogen and phosphorus metabolic pathways were also promoted to some certain extent. In conclusion, the inoculation of residual sludge can achieve an effective reduction in granulation period. This study provides a novel insight and fills the gap in the utilization of residual sludge generated by MBGS.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Green Biomanufacturing, Beijing Key Laboratory of Green Chemicals Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaoqiang Wang
- State Key Laboratory of Green Biomanufacturing, Beijing Key Laboratory of Green Chemicals Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gang Xiao
- State Key Laboratory of Green Biomanufacturing, Beijing Key Laboratory of Green Chemicals Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shaojie Wang
- State Key Laboratory of Green Biomanufacturing, Beijing Key Laboratory of Green Chemicals Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biqiang Chen
- State Key Laboratory of Green Biomanufacturing, Beijing Key Laboratory of Green Chemicals Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haijia Su
- State Key Laboratory of Green Biomanufacturing, Beijing Key Laboratory of Green Chemicals Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Zhu YM, Xue Y, Jin K, Chen Y, Ren H, Xu K. A novel micromagnetic carrier-modified integrated fixed-film activated sludge system for simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes proliferation and dissemination. WATER RESEARCH 2025; 274:123166. [PMID: 39854780 DOI: 10.1016/j.watres.2025.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025]
Abstract
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge. Additionally, the MC shifted microbial community assembly from stochastic to deterministic factors, amplifying the selection pressure induced by TC on the microbial community, thus enriching organic compound-degrading genera Dokdonella and TM7a; it also stimulated ammonia monooxygenase-mediated and cytochrome P450-mediated TC metabolisms and upregulated functional genes encoding lyases, transferases, hydrolases, and oxidoreductases- all of which enhanced TC biodegradation capacity in the MC-IFAS, particularly in the biofilm. While enhancing TC removal efficiency, the MC mitigated the proliferation and dissemination of antibiotic resistance genes (ARGs) by suppressing the abundances of ARGs hosts, the mobile genetic element intI1, and genes encoding ATP-binding cassette transporters and putative transposases. This study provides novel insights into the large-scale applications of magnetic field-enhanced TC removal strategies.
Collapse
Affiliation(s)
- Yuan-Mo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Jin
- Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, China
| | - Yongsheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Li J, Li Z, Song Y, Zhang X, Xie H, Sheng S, Zou H. 3D/1D Fe 3O 4@TiO 2/TC-TiO 2/SiO 2 Magnetic Inorganic-Framework Molecularly Imprinted Fibers for Targeted Photodegradation. Inorg Chem 2024; 63:10568-10584. [PMID: 38800842 DOI: 10.1021/acs.inorgchem.4c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
To achieve a selective degradation of pollutants in a water body, 3D/1D magnetic molecularly imprinted fibers Fe3O4@TiO2/TC-TiO2/SiO2 were fabricated by an electrospinning method. The molecularly imprinted layer was successfully prepared by a direct imprinting method using TiO2 as a functional monomer. Fe3O4 facilitates the catalyst recovery and light utilization. The as-prepared fibrous photocatalyst has a large specific surface area of 132.4 m2/g. The successful generation of imprinted sites was proven by various characterizations. The weak interaction between the inorganic functional monomer and tetracycline (TC) was determined to be van der Waals force and hydrogen bonds by the IGMH isosurface theory. The construction of the 3D/1D homojunction of molecularly imprinted materials is beneficial to charge transfer. The as-prepared photocatalyst exhibits a high selectivity coefficient α = 737.38 competing with RhB. The TC removal efficiency reached 100% within only 20 min. In addition, the possible degradation pathway and the degradation mechanism are reasonably proposed. This work not only provides an in-depth mechanism of the weak interaction between the inorganic molecularly imprinted functional monomer and pollutant molecules but also offers new thoughts on the fabrication of photocatalysts for the effective and selective treatment of pollutants in water bodies.
Collapse
Affiliation(s)
- Jingyao Li
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Zhongliang Li
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yanhua Song
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Xiaozhen Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., No. 712 Wen'er West Road, Hangzhou 310003, PR China
| | - Shihou Sheng
- China-Japan Union Hospital of Jilin University Department of Gastrointestinal Surgery, Changchun 130012, China
| | - Haifeng Zou
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| |
Collapse
|
5
|
Saha S, Huang L, Khoso MA, Wu H, Han D, Ma X, Poudel TR, Li B, Zhu M, Lan Q, Sakib N, Wei R, Islam MZ, Zhang P, Shen H. Fine root decomposition in forest ecosystems: an ecological perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1277510. [PMID: 38023858 PMCID: PMC10643187 DOI: 10.3389/fpls.2023.1277510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Fine root decomposition is a physio-biochemical activity that is critical to the global carbon cycle (C) in forest ecosystems. It is crucial to investigate the mechanisms and factors that control fine root decomposition in forest ecosystems to understand their system-level carbon balance. This process can be influenced by several abiotic (e.g., mean annual temperature, mean annual precipitation, site elevation, stand age, salinity, soil pH) and biotic (e.g., microorganism, substrate quality) variables. Comparing decomposition rates within sites reveals positive impacts of nitrogen and phosphorus concentrations and negative effects of lignin concentration. Nevertheless, estimating the actual fine root breakdown is difficult due to inadequate methods, anthropogenic activities, and the impact of climate change. Herein, we propose that how fine root substrate and soil physiochemical characteristics interact with soil microorganisms to influence fine root decomposition. This review summarized the elements that influence this process, as well as the research methods used to investigate it. There is also need to study the influence of annual and seasonal changes affecting fine root decomposition. This cumulative evidence will provide information on temporal and spatial dynamics of forest ecosystems, and will determine how logging and reforestation affect fine root decomposition.
Collapse
Affiliation(s)
- Sudipta Saha
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Lei Huang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin, China
| | - Haibo Wu
- College of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Donghui Han
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiao Ma
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Bei Li
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Meiru Zhu
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Qiurui Lan
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Nazmus Sakib
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Ruxiao Wei
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Md. Zahirul Islam
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Peng Zhang
- College of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hailong Shen
- College of Forestry, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| |
Collapse
|
6
|
Tong Y, Lu P, Zhang W, Liu J, Wang Y, Quan L, Ding A. The shock of benzalkonium chloride on aerobic granular sludge system and its microbiological mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165010. [PMID: 37353018 DOI: 10.1016/j.scitotenv.2023.165010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Quaternary ammonium compounds (QACs) are a kind of biocides and surfactants widely used around the world and wastewater treatment systems were identified as its largest pool. QACs could significantly inhibit microbial activity in biological treatment. Aerobic granular sludge (AGS) is an emerging wastewater biological treatment technology with high efficiency and resistance, but it is still unclear if AGS system could tolerate QACs shock. In this study, a typical QAC (benzalkonium chloride (BACC12)) was selected to investigate its effect on AGS system. Results indicate that BAC could inhibit the pollutants removal performance of AGS system, including COD, NH4+-N and PO43- in the short term and the inhibition ratio had positive correlation with BAC concentration. However, AGS system could gradually adapt to the BAC stress and recover its original performance. BAC shock could destroy AGS structure by decreasing its particle size and finally leading to particle disintegration. Although AGS could secret more EPS to resist the stress, BAC still had significant inhibition on cell activity. Microbial community analysis illustrated that after high BAC concentration shock in short term, Thauera decreased significantly while Flavobacterium became the dominant genus. However, after the performance of AGS system recovered the dominant genus returned to Thauera and relevant denitrifiers Phaeodactylibacter, Nitrosomonas and Pseudofulvimonas also increased. The typical phosphorous removal microorganism Rubrivivax and Leadbetterella also showed the similar trend. The variation of denitrification and phosphorus removal microbial community was consistent with AGS system performance indicating the change of functional microorganism played key role in the AGS response to BAC stress.
Collapse
Affiliation(s)
- Yuhao Tong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wenyu Zhang
- Chongqing Three Gorges Water Service Co., Ltd., Chongqing 400020, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuhai Wang
- Sinopec Chongqing Shale Gas Co., Ltd, Chongqing, 408400, China
| | - Lin Quan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
7
|
Yang M, Jiao Y, Sun L, Miao J, Song X, Yin M, Yan L, Sun N. The performance and mechanism of tetracycline and ammonium removal by Pseudomonas sp. DX-21. BIORESOURCE TECHNOLOGY 2023; 386:129484. [PMID: 37442397 DOI: 10.1016/j.biortech.2023.129484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
To remove ammonium and tetracycline (TC) from wastewater, a new strain, DX-21, was isolated and exhibited simultaneous removal ability. The performance of DX-21 in TC removal, its removal mechanism, and the potential toxicities of the degradation products were investigated with genomics, mass spectrometry, density functional theory calculations, quantitative structure-activity relationship analyses, and Escherichia coli exposure experiments. DX-21 exhibited removal of ammonium (9.64 mg·L-1·h-1) via assimilation, and TC removal (0.85 mg·L-1·h-1) primarily occurred through cell surface bio-adsorption and biodegradation. Among the 12 identified degradation products, the majority exhibited lower toxicities than TC. Moreover, potential degradation pathways were proposed, including hydroxylation and deamination. Furthermore, DX-21 possessed TC resistance genes, various oxygenases and peroxidases that could potentially contribute to TC degradation. DX-21 colonized activated sludge and significantly enhanced the biodegradation of TC. Therefore, DX-21 showed potential for treating wastewater containing both ammonium and TC.
Collapse
Affiliation(s)
- Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Nan Sun
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Yan L, Yin M, Jiao Y, Zheng Y, Sun L, Yang M, Miao J, Song X, Sun N. The presence of copper ions alters tetracycline removal pathway in aerobic granular sludge: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 385:129446. [PMID: 37399954 DOI: 10.1016/j.biortech.2023.129446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study investigated the removal characteristics of tetracycline (TC) in the presence of copper ions (Cu2+) in aerobic granular sludge by analyzing the TC removal pathway, composition and functional group changes of extracellular polymeric substances (EPS), and microbial community structure. The TC removal pathway changed from cell biosorption to EPS biosorption, and the microbial degradation rate of TC was reduced by 21.37% in the presence of Cu2+. Cu2+ and TC induced enrichment of denitrifying bacteria and EPS-producing bacteria by regulating the expression of signaling molecules and amino acid synthesis genes to increase the content of EPS and -NH2 groups in EPS. Although Cu2+ reduced the content of acidic hydroxyl functional groups (AHFG) in EPS, an increase in TC concentration stimulated the secretion of more AHFG and -NH2 groups in EPS. The long-term presence of TC presence of the relative abundances of Thauera, Flavobacterium and Rhodobacter and improved the removal efficiency.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Luotinng Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Nan Sun
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
9
|
Ya H, Zhang T, Xing Y, Lv M, Wang X, Jiang B. Co-existence of polyethylene microplastics and tetracycline on soil microbial community and ARGs. CHEMOSPHERE 2023; 335:139082. [PMID: 37285974 DOI: 10.1016/j.chemosphere.2023.139082] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Microplastics are plastic particles with particle size less than 5 mm in the environment. As an emerging organic pollutant, the presence of microplastics in the soil environment has been widely noticed. Secondly, due to the overuse of antibiotics, a large amount of antibiotics that cannot be fully absorbed by humans and livestock enter the soil environment in the form of urine or manure, making the soil suffer from serious antibiotic contamination problems. To address the environmental problems of microplastics and antibiotic contamination in soil, this study was conducted to investigate the effects of PE microplastics on antibiotic degradation, microbial community characteristics and ARGs in tetracycline-contaminated soils. The results showed that the addition of PE microplastics inhibited the degradation of tetracycline, and significantly increased the organic carbon content and decreased the neutral phosphatase activity. The addition of PE microplastics significantly reduced the alpha diversity of soil microbial community. Compared to the single tetracycline contamination. In addition, combined contamination with PE microplastics and tetracycline significantly affected bacterial genera such as Aeromicrobium, Rhodococcus, Mycobacterium and Intrasporangium. Metagenome sequencing studies revealed that the addition of PE microplastics inhibited the dissipation of ARGs in tetracycline-contaminated soils. There were strong positive correlations between Multidrug, Aminoglycoside and Clycopeptide resistance genes and Chloroflexi and Proteobacteria in tetracycline contaminated soils, and there was a strong positive correlation between Aminoglycoside resistance genes and Actinobacteria in combined contamination of PE microplastics and tetracycline. This study will provide some data support for the current environmental risk assessment of the coexistence of multiple contaminants in soil.
Collapse
Affiliation(s)
- Haobo Ya
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Zhejiang Development & Planning Institute, Hangzhou, 310030, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, PR China.
| |
Collapse
|
10
|
Liu S, Yin M, Sun L, Jiao Y, Zheng Y, Yan L. Iron-loaded sludge biochar alleviates the inhibitory effect of tetracycline on anammox bacteria: Performance and mechanism. CHEMOSPHERE 2023; 333:138987. [PMID: 37209845 DOI: 10.1016/j.chemosphere.2023.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.
Collapse
Affiliation(s)
- Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Zhou Y, Li X, Chen J, Wang F. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: Removal performance and reciprocal mechanism. CHEMOSPHERE 2023; 323:138240. [PMID: 36841454 DOI: 10.1016/j.chemosphere.2023.138240] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants such as antibiotics in wastewater have posed a challenge on conventional biological treatment processes. Algae-bacteria symbiotic mode could improve the performance of biological treatment processes. Self-suspended algae-bacteria symbiotic particles (ABSPs) were prepared with Chlorella vulgaris and Bacillus subtilis using the sol-gel method and hollow glass microspheres in this study. The removal effect of nitrogen and phosphorus as well as the feedback mechanism of ABSPs under tetracycline stress were investigated through three-cycles wastewater treatment experiments. The antioxidant enzyme activity and phycosphere extracellular polymeric substance (EPS) content were identified as well. The results indicated that the removal rates of NH4+-N, TP, COD, and tetracycline in the ABSPs group finally reached 96.18%, 95.44%, 81.36%, and 74.20%, respectively, which were higher than the single algae group apparently. The phycosphere EPS content increased by 20.41% and algae cell structure maintained integrity in ABSPs group as compared with that in single algae group. This study demonstrates that the self-suspended ABSPs can improve contaminants removal performance and alleviate the antioxidant stress response of algae through algal-bacterial reciprocity mechanism.
Collapse
Affiliation(s)
- Yuhang Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
12
|
Cao B, Qu J, Chu Y, Zhu Y, Jiang Y, Zhang X, Sun M, Jiang Z, Ma S, Zhang Y. One-step self-assembly of Fe-biochar composite for enhanced persulfate activation to phenol degradation: Different active sites-induced radical/non-radical mechanism. CHEMOSPHERE 2023; 322:138168. [PMID: 36804499 DOI: 10.1016/j.chemosphere.2023.138168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Persulfate (PS) activation by nanoscale zerovalent iron (nZVI) is promising for water purification, while is limited due to its easy agglomeration and oxidation. Herein, nZVI encapsuled in carbon matrix shell was synthesized via one-step carbothermal reduction. The core-shell structure effectively inhibited oxidation and agglomeration of nZVI core, and graphitized porous structures facilitated phenol binding with maximal adsorption capacity of 117.10 mg/g achieved by nZVI0.6-BC800. Both reactive oxygen species (SO4•-, O•H, O2•- and 1O2) and electron transfer process resulted in phenol decomposition. Owing to diversified active sites, the nZVI0.6-BC800/PS system could completely degrade phenol degradation within short time, and exhibited great adaptation to extensive pH range (3.0-9.0) and coexisting substances. Additionally, the nZVI0.6-BC800/PS system could maintain over 85% removal of phenol after three recycles or 50 days of storage, and was highly-efficient to different water environments, thus proposing rational design of iron-carbon catalyst with potential in water treatment.
Collapse
Affiliation(s)
- Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yingyu Chu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxin Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingze Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Li G, Yan L, Chen X, Lam SS, Rinklebe J, Yu Q, Yang Y, Peng W, Sonne C. Phytoremediation of cadmium from soil, air and water. CHEMOSPHERE 2023; 320:138058. [PMID: 36746249 DOI: 10.1016/j.chemosphere.2023.138058] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
Collapse
Affiliation(s)
- Guanyan Li
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Qing Yu
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
14
|
Qu J, Bi F, Hu Q, Wu P, Ding B, Tao Y, Ma S, Qian C, Zhang Y. A novel PEI-grafted N-doping magnetic hydrochar for enhanced scavenging of BPA and Cr(VI) from aqueous phase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121142. [PMID: 36702430 DOI: 10.1016/j.envpol.2023.121142] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Herein, polyethyleneimine (PEI)-grafted nitrogen-doping magnetic hydrochar (PEIMW@MNHC) was synthesized for hexavalent chromium (Cr(VI)) and bisphenol A (BPA) elimination from water. Characterizations exhibited that abundant amino functional groups, intramolecular heterocyclic N, azo and Fe-NX structures were successfully introduced into the inherent structure of hydrochar. The obtained PEIMW@MNHC presented maximum uptake of 205.37 and 180.79 mg/g for Cr(VI) and BPA, respectively, and was highly tolerant to various co-existing ions. Mechanism investigation revealed that the protonated amino, intramolecular heterocyclic N and Fe(II) participated in Cr(VI) reduction, and the N/O-containing groups and Fe(III) fixed Cr(III) onto PEIMW@MNHC by the formation of complexes and precipitates. On the other hand, azo, Fe-NX and graphitic N structures contributed to the removal of BPA via pore filling, hydrogen bonding and π-π interactions. Additionally, PEIMW@MNHC maintained over 85.0% removal efficiency for Cr(VI) and BPA after four cycles, manifesting that PEIMW@MNHC was an ideal adsorbent with outstanding practical application potential.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peipei Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Boyu Ding
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Chunrong Qian
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150028, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Algae-mediated bioremediation of ciprofloxacin through a symbiotic microalgae-bacteria consortium. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
16
|
Yan L, Zheng Y, Yin M, Liu S, Yang M, Jiang J. The coexistence of copper ions and TC affected the binding ability and the reaction order between extracellular polymeric substances of aerobic granular sludge and exogenous substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31806-31820. [PMID: 36456677 DOI: 10.1007/s11356-022-24423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As a barrier against external toxic effects, extracellular polymeric substances (EPSs) directly affect the toxicity and removal efficiency of exogenous substances. The reaction of EPSs with exogenous substances has been taken into consideration. The contents of EPSs in sludge cultivated by different influent water vary greatly, which leads to great differences in the binding ability and reaction sequence between EPSs and exogenous substances. However, the results in this respect are very limited. In this study, the binding characteristics between exogenous tetracycline (TC)/copper ions (Cu2+) and EPSs from aerobic granular sludge cultured under single and coexisting TC/Cu2+ were assessed by three-dimensional fluorescence-parallel factor analysis. The pollutants in the influent water could directionally induce microorganisms to secrete more EPSs, while fluorescence substances in EPSs could combine with the exogenous substances to lessen their effects. In the presence of coexisting TC and Cu2+ in the influent water, the ability of fluorescence substances in EPSs to combine with exogenous TC or Cu2+ weakened, and humic substances in EPSs were more susceptible than protein substances to binding with exogenous substances. However, the reaction order between EPSs components and exogenous TC or Cu2+ was opposite, and the ability of fluorescence substances in EPSs to combine with exogenous TC or Cu2+ was enhanced under individual TC or Cu2+ existing in the influent water. This study provided new insights into the interaction between EPSs and exogenous substances.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
17
|
Köktaş İY, Gökkuş Ö, Kariper İA, Othmani A. Tetracycline removal from aqueous solution by electrooxidation using ruthenium-coated graphite anode. CHEMOSPHERE 2023; 315:137758. [PMID: 36610513 DOI: 10.1016/j.chemosphere.2023.137758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
This paper reports the electrochemical oxidation treatment of 80 mL of acidic aqueous solutions with 0.2 mM of the drug tetracycline in 25 mM Na2SO4 using a lab-scale electrochemical cell. The performance of tetracycline removal with Ru-coated graphite by the chemical bath deposition (CBD) and raw graphite anode has been demonstrated. The effects of operating parameters were tested such as pH, applied current, supporting electrolyte concentration, and initial tetracycline concentration. The best tetracycline degradation was obtained with Ru-coated graphite anode due to its higher oxidation power, which allowed the complete degradation of refractory compounds. The modified surface structure of the Ru-coated graphite anode was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray (EDX). The EO process with Ru-coated graphite anode allowed 93.8% tetracycline abatement after 100 min of electrolysis at an applied current of 100 mA. In all cases, tetracycline decay obeyed pseudo-first-order kinetics. The tetracycline removal performance of graphite electrodes with nano coating on graphite has offered a performing alternative. A Comparative study revealed that electrolysis with Ru-coated graphite acted as a better electrode material than raw graphite for the catalytic reaction.
Collapse
Affiliation(s)
- İbrahim Yasin Köktaş
- Department of Environmental Engineering, Erciyes University, 38039, Kayseri, Turkey
| | - Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, 38039, Kayseri, Turkey.
| | - İshak Afşin Kariper
- Education Faculty, Erciyes University, 38039, Kayseri, Turkey; Erciyes Teknopark, Building 1, No:41, Kayseri, Turkey
| | - Amina Othmani
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia
| |
Collapse
|
18
|
Xia C, Ye H, Wu Y, Garalleh HA, Garaleh M, Sharma A, Pugazhendhi A. Nanofibrous/biopolymeric membrane a sustainable approach to remove organic micropollutants: A review. CHEMOSPHERE 2023; 314:137663. [PMID: 36581125 DOI: 10.1016/j.chemosphere.2022.137663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Aquifers are severely polluted with organic and inorganic pollutants, posing a serious threat to the global ecological system's balance. While various traditional methods are available, the development of innovative methods for effluent treatment and reuse is critical. Polymers have recently been widely used in a variety of industry sectors due to their unique properties. Biopolymers are a biodegradable material that is also a viable alternative to synthetic polymers. Biopolymers are preferably obtained from cellulose and carrageenan molecules from various biological sources. While compared with conventional non-biodegradable polymeric materials, the biopolymer possesses unique characteristics such as renewability, cost-effectiveness, biodegradability, and biocompatibility. The improvements towards the biopolymeric (natural) membranes have also been thoroughly discussed. The use of nanofillers to stabilise and improve the effectiveness of biopolymeric membranes in the elimination of organic pollutants is one of the most recent developments. This was discovered that the majority of biopolymeric membranes technology consolidated on organic pollutants. More research should be directed toward against emerging organic/persistent organic pollutants (POP) and micropollutants. Furthermore, processes for regenerating and reusing utilized biopolymer-based carbon - based materials are emphasized.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haoran Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, 76130, Mexico
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
19
|
Tian S, Sun X, Xiao H, Zhou Y, Huang X, An XL, Liu C, Su JQ. Evaluation of rice straw and its transformation products on norfloxacin degradation and antibiotic resistome attenuation during soil incorporation. CHEMOSPHERE 2023; 313:137451. [PMID: 36464023 DOI: 10.1016/j.chemosphere.2022.137451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Straw incorporation into reclaimed soils has been demonstrated to increase soil nutrients and has the potential to efficiently increase crop production. However, which incorporation mode is more helpful in the control of antibiotic resistance genes (ARGs) remains unknown. In this study, we systematically compared the occurrence of antibiotic resistome in norfloxacin contaminated soils amended with rice straw (RS) and the transformation products, biochar (RSB) and ash (RSA). RS significantly promoted the degradation of norfloxacin (0.0648 d-1, 3 times faster than control), whereas RSB had little effect and RSA hindered the degradation. Based on metagenomic analysis, RS and RSB significantly reduced the ARGs relative abundance (0.1421 and 0.1991 compared to 0.2540 in control) at the end of soil incubation. Adonis test indicated that all of amendment treatments significantly affect the microbial communities in soils, whereas only RS and RSB significantly affect the variation of antibiotic resistome. Procrustes analysis confirmed the association of microbial communities and ARGs. Network analysis further revealed that the reduction in Actinobacteria was the main reason for the general decrease of ARGs relative abundance during soil incorporation, whereas Proteobacteria and Bacteroidetes were responsible for temporary promotion of ARGs in RS and RSB at the early stage. Finally, scientifically setting up the usage of rice straw and optimizing the preparation process of biochar are suggested for the synchronous control of the risk of antibiotics and ARGs during soil incorporation.
Collapse
Affiliation(s)
- Shaohua Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xuecong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Hai Xiao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Yanyan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China.
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Chaoxiang Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
20
|
Zhao W, You J, Yin S, Yang H, He S, Feng L, Li J, Zhao Q, Wei L. Extracellular polymeric substances-antibiotics interaction in activated sludge: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100212. [PMID: 36425126 PMCID: PMC9678949 DOI: 10.1016/j.ese.2022.100212] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/09/2023]
Abstract
Antibiotics, the most frequently prescribed drugs, have been widely applied to prevent or cure human and veterinary diseases and have undoubtedly led to massive releases into sewer networks and wastewater treatment systems, a hotspot where the occurrence and transformation of antibiotic resistance take place. Extracellular polymeric substances (EPS), biopolymers secreted via microbial activity, play an important role in cell adhesion, nutrient retention, and toxicity resistance. However, the potential roles of sludge EPS related to the resistance and removal of antibiotics are still unclear. This work summarizes the composition and physicochemical characteristics of state-of-the-art microbial EPS, highlights the critical role of EPS in antibiotics removal, evaluates their defense performances under different antibiotics exposures, and analyzes the typical factors that could affect the sorption and biotransformation behavior of antibiotics. Next, interactions between microbial EPS and antibiotic resistance genes are analyzed. Future perspectives, especially the engineering application of microbial EPS for antibiotics toxicity detection and defense, are also emphatically stressed.
Collapse
|
21
|
Zhou J, Yu M, Qu J, Akindolie MS, Bi F, Liu Y, Jiang Z, Wang L, Zhang B, Zhang Y. Hydrothermal carbonization of alfalfa: role of processing variables on hydrochar properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85300-85311. [PMID: 35794322 DOI: 10.1007/s11356-022-21740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal carbonization of alfalfa is a potential way to reuse agricultural waste. However, the effects of hydrothermal conditions on the properties of alfalfa-derived hydrochar are not clear. Herein, this study investigated the impact of different synthesis conditions (e.g., heating temperature, heating time, and solid to liquid ratio) on the formation and properties of hydrochar. Characterization and thermogravimetric analysis results revealed that with the increase of hydrothermal temperature and the extension of time, cellulose in alfalfa broken down more completely, and the number of carbon spheres and the aromatization degree increased, while the functional groups decreased. Furthermore, there was a surge in the carbon content, fixed carbon yield, high heating value, reduced oxygen, and volatile content. Additionally, the enhancement solid-liquid ratio could effectively improve the energy and mass yields. In all, by adjusting the process parameters of hydrochar, cleaner and higher productivity products could be obtained. This study provides theory basis for the production of target hydrochar that is used to soil amendments, adsorbents, and energy sources in the future.
Collapse
Affiliation(s)
- Jun Zhou
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Research Academy of Environmental Science, Harbin, 150056, China
| | - Mingjie Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China.
| |
Collapse
|
22
|
Yan L, Jiang J, Liu S, Yin M, Yang M, Zhang X. Performance and mechanism of nitrate removal by the aerobic denitrifying bacterium JI-2 with a strong autoaggregation capacity. BIORESOURCE TECHNOLOGY 2022; 365:128111. [PMID: 36252753 DOI: 10.1016/j.biortech.2022.128111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Here, a new strain JI-2 of the strongly autoaggregating aerobic denitrifying bacteria was screened. The nitrate removal ability and autoaggregation mechanism of JI-2 were analyzed using the nitrogen balance and genomics technology. The nitrate removal rate was 27.05 mg N/(L·h) at pH 9.0 and C/N 8.0. The strain JI-2 removes nitrate via the aerobic denitrification and dissimilation pathways and removes ammonium via the assimilation pathway. 66.81 % nitrate was converted to cellular components under aerobic conditions. Complex nitrogen metabolism genes were detected in strain JI-2. C-di-GMP mediates the motility behavior of JI-2 by binding the FleQ and PilZ proteins, and regulating the expression of PslA. Furthermore, the mechanism of autoaggregation was verified by extracellular polymeric substance analysis. Meanwhile, the nitrate removal rates of strain JI-2 was 11.13-12.50 mg N/(L·h) in wastewater. Thus, strain JI-2 has good prospects for application in the treatment of nitrate wastewater.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xiaoqi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
23
|
Zhang C, Wang Z, Li F, Wang J, Xu N, Jia Y, Gao S, Tian T, Shen W. Degradation of tetracycline by activated peroxodisulfate using CuFe2O4-loaded biochar. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Zhou X, Yan Z, Zhou X, Wang C, Liu H, Zhou H. RETRACTED: An assessment of volatile organic compounds pollutant emissions from wood materials: A review. CHEMOSPHERE 2022; 308:136460. [PMID: 36116618 DOI: 10.1016/j.chemosphere.2022.136460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhisong Yan
- Zhejiang Shiyou Timber Co., Ltd., 1111 Shiyuan West Road, Huzhou, Zhejiang, 313009, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen'an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Hailiang Liu
- Jiangsu Shenmao Plastic Products Co., Ltd., Wood Industrial District, Siyang, Jiangsu, 223798, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
25
|
Tian Z, Li G, Bai M, Hou X, Li X, Zhao C, Zhu Q, Du C, Li M, Liu W, Zhang L. Microbial mechanisms of refractory organics degradation in old landfill leachate by a combined process of UASB-A/O-USSB. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157737. [PMID: 35926627 DOI: 10.1016/j.scitotenv.2022.157737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A combined process of anaerobic digestion (UASB), shortcut nitrification-denitrification (A/O), and semi-anoxic co-metabolism (operated by an up-flow semi-anoxic sludge bed; USSB) was constructed for the treatment of old landfill leachate (>10 years). The performance and mechanism of refractory organics degradation by the combined process (UASB-A/O-USSB) were investigated. The results showed that the semi-anoxic co-metabolism contributes 57 % of the totally degraded refractory organics. Specific microorganisms and their corresponding metabolic functions drive the degradation of refractory organics in each unit of the UASB-A/O-USSB process. In detail, organics with simple molecular structures were preferentially degraded by anaerobic digestion and shortcut denitrification, whereas those with complex structures were subsequently degraded in the oxic tanks and USSB reactor by shortcut nitrification and semi-anoxic co-metabolism. The structural equation model showed that the combined process of shortcut nitrification and semi-anoxic co-metabolism had a better effect on the degradation of recalcitrant organics than the single process. These findings provide information on how refractory organics are metabolically degraded in a combined process.
Collapse
Affiliation(s)
- Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaoxin Bai
- Inner Mongolia Enterprise Key Laboratory of Damaged Environment Appraisal, Evaluation and Restoration, Hohhot 010020, China; Inner Mongolia Ecological Environment Scientific Research Institute Limited, Hohhot 010020, China
| | - Xiaolin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoguang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Maotong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenjie Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
26
|
Qu J, Zhang X, Bi F, Wang S, Zhang X, Tao Y, Wang Y, Jiang Z, Zhang Y. Polyethylenimine-grafted nitrogen-doping magnetic biochar for efficient Cr(VI) decontamination: Insights into synthesis and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120103. [PMID: 36075332 DOI: 10.1016/j.envpol.2022.120103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Herein, polyethylenimine (PEI)-grafted nitrogen (N)-doping magnetic biochar (PEIMW@MNBCBM) was synthesized, and characterization results showed that the microwave-assisted PEI grafting and ball milling-assisted N doping introduced abundant amino, pyridine N and pyrrole N structures onto biochar, which possessed high affinity to Cr(VI) in the anion form. The as-prepared PEIMW@MNBCBM displayed pH-dependence adsorption performance and high tolerance to co-existing ions with maximum uptake capacity of Cr(VI) identified as 183.02 mg/g. Furthermore, PEIMW@MNBCBM could bind Cr(VI) through electrostatic attraction, complexion, precipitation, reduction and pore filling. Especially, effective reduction of Cr(VI) was ascribed to cooperative electron transfer of partial oxygen-containing functional groups, intramolecular pyridine/pyrrole N, protonated amino and Fe2+ on the adsorbent, while oxygen-containing and amino functional groups from N-doping biochar and PEI synergistically complexed Cr(III) via providing lone pair electrons to form coordinate bonds. Furthermore, the stable precipitation was formed between Fe3+ and Cr(III). Additionally, the Cr(VI) elimination efficiency could maintain 95.83% even after four adsorption-desorption cycles, suggesting PEIMW@MNBCBM as a high-performance adsorbent for Cr(VI) contaminated water remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xinmiao Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Yan S, Qu J, Bi F, Wei S, Wang S, Jiang Z, Wang L, Yu H, Zhang Y. One-pot synthesis of porous N-doped hydrochar for atrazine removal from aqueous phase: Co-activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 364:128056. [PMID: 36195221 DOI: 10.1016/j.biortech.2022.128056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
KOH-activated N-doped hydrochar (KHCN) was synthesized via co-activation method to eliminate atrazine (AT) in water efficiently. Compared to primitive HC, KHCN had advantages of splendid specific surface area (1205.82 m2/g) and developed microsphere structures on the surface. Specially for KHCN, the extra melamine added strengthened and preserved partial structure of polar oxygen-containing groups that were decomposed in the process of pore making. Besides, the estimated uptake amount of AT onto KHCN (216.50 mg/g) was remarkably superior to KHC (114.25 mg/g). KHCN exhibited the pH-dependence for AT removal, and presented excellent uptake capacity at a relatively neutral environment. Notably, the proposed mechanisms for AT removal by KHCN included electrostatic attraction, pore filling, π-π EDA, H-bond as well as hydrophilic effect. Hence, the porous N-doped hydrochar was a kind of adsorbent which was easy to prepare and had the application prospect for AT removal in natural water.
Collapse
Affiliation(s)
- Shaojuan Yan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongwen Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China
| | - Ying Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Tan S, Narayanan M, Thu Huong DT, Ito N, Unpaprom Y, Pugazhendhi A, Lan Chi NT, Liu J. A perspective on the interaction between biochar and soil microbes: A way to regain soil eminence. ENVIRONMENTAL RESEARCH 2022; 214:113832. [PMID: 35810814 DOI: 10.1016/j.envres.2022.113832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Soil ecosystem imparts a fundamental role in the growth and survival of the living creatures. The interaction between living and non-living constituents of the environment is important for the regulation of life in the ecosystem. Biochar is a carbon rich product present in the soil that is responsible for various applications in diversified fields. In this review, we focused on the collaboration between the soil, biochar and microbial community present in the soil and consequences of it in the ecosystem. Herein, it primarily discusses on the different approaches of the production and characterization of biochar. Furthermore, this review also discusses about the optimistic interaction of biochar with soil microbes and their role in plant growth. Eventually, it reveals the various physio-chemical properties of biochar, including its specific surface area, porous nature, ion exchange capacity, and pH, which aid in the modification of the soil environment. Furthermore, it elaborately discloses the impact of the biochar addition in the soil focusing mainly on its interaction with microbial communities such as bacteria and fungi. The physicochemical properties of biochar significantly interact with microbes and improve the beneficial microbes growth and increase soil nutrients, which resulting reasonable plant growth. The main focus remains on the role of biochar-soil microbiota in remediation of pollutants, soil amendment and inhibition of pathogenicity among plants by promoting resistance potential. It highlights the fact that adding biochar to soil modulates the soil microbial community by increasing soil fertility, paving the way for its use in farming, and pollutant removal.
Collapse
Affiliation(s)
- Shimeng Tan
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Dinh Thi Thu Huong
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Nobutaka Ito
- School of Renewable Energy, Maejo University, Chiang Mai, Thailand
| | - Yuwalee Unpaprom
- Program in Biotechnology, Faculty of Science, Maejo University, Chiangmai, Thailand
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Junang Liu
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
29
|
Qu J, Wu Z, Liu Y, Li R, Wang D, Wang S, Wei S, Zhang J, Tao Y, Jiang Z, Zhang Y. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 360:127407. [PMID: 35667535 DOI: 10.1016/j.biortech.2022.127407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Herein, novel Fe-biochar composites (MBCBM500 and MBCBM700) were synthesized through K2FeO4 co-pyrolysis and ball milling, and were used to eliminate Cr(VI)/TC from water. Characterization results revealed that higher temperature promoted formation of zero-valent iron and Fe3C on MBCBM700 through carbothermal reduction between K2FeO4 and biochar. The higher specific surface area and smaller particle size of MBCBM500/700 stemmed from the corrosive functions of K and the ball milling process. And the maximal uptake amount of MBCBM700 for Cr(VI)/TC was 117.49/90.31 mg/g, relatively higher than that of MBCBM500 (93.86/84.15 mg/g). Furthermore, ion exchange, pore filling, precipitation, complexation, reduction and electrostatic attraction were proved to facilitate the adsorption of Cr(VI), while hydrogen bonding force, pore filling, complexation and π-π stacking were the primary pathways to eliminate TC. This study provide a reasonable design of Fe-carbon materials for Cr(VI)/TC contained water remediation, which required neither extra modifiers nor complex preparation process.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruolin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingru Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
30
|
Wu C, Zhi D, Yao B, Zhou Y, Yang Y, Zhou Y. Immobilization of microbes on biochar for water and soil remediation: A review. ENVIRONMENTAL RESEARCH 2022; 212:113226. [PMID: 35452667 DOI: 10.1016/j.envres.2022.113226] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Biochar has caught great attention over the last decade with the loose and porous structure, and carbon stability provides suitable living conditions for the growth and activity of microorganisms. This review provided a comprehensive summary of biochar immobilization microbe (BIM) in water and soil decontamination. Firstly, the bacterial immobilization techniques including adsorption, entrapping, and covalence methods were exhibited. Secondly, the applications of BIM in water and soil environmental remediation were introduced, mainly including the treatment of organic pollutants, heavy metals, and N/P, among which the most frequently immobilized microorganism was Bacillus. Then, the mechanisms of adsorption, redox, and degradation were analyzed. Finally, pertinent questions for future research of BIM technology were proposed. The purpose of this paper is to provide useful background information for the selection of better biochar fixation microorganisms for water and soil remediation.
Collapse
Affiliation(s)
- Chuchu Wu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuzhou Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
31
|
Ni M, Pan Y, Li D, Huang Y, Chen Z, Li L, Song Z, Zhao Y. Metagenomics reveals the metabolism of polyphosphate-accumulating organisms in biofilm sequencing batch reactor: A new model. BIORESOURCE TECHNOLOGY 2022; 360:127603. [PMID: 35835418 DOI: 10.1016/j.biortech.2022.127603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This study assessed the impact of the operating conditions of the biofilm sequencing batch reactor (BSBR) on the community structure and the growth/metabolic pathways of its polyphosphate-accumulating organisms (PAOs). There are significant difference with reference to the enhanced biological phosphorus removal (EBPR) process. The leading PAOs in BSBR generally are capable of high affinity acetate metabolism, gluconeogenesis, and low affinity phosphate transport, and have various carbon source supplementation pathways to ensure the efficient circulation of energy and reducing power. A new model of the metabolic mechanism of PAOs in the BSBR was formulated, which features low glycogen metabolism with simultaneous gluconeogenesis and glycogenolysis and differs significantly from the classic mechanism based on Candidatus_Accumulibacter and Tetrasphaera. The findings will assist the efficient recovery of low concentration phosphate in municipal wastewater.
Collapse
Affiliation(s)
- Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiqiang Chen
- Harbin Institute of Technology, Harbin 150006, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Yimeng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
32
|
Yan L, Zheng Y, Chen W, Liu S, Yin M, Jiang J, Yang M. Step feed mode synergistic mixed carbon source to improve sequencing batch reactor simultaneous nitrification and denitrification efficiency of domestic wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 358:127440. [PMID: 35680088 DOI: 10.1016/j.biortech.2022.127440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The limited efficiency of nitrogen removal has traditionally hindered wide application of simultaneous nitrification and denitrification (SND) technology. Here, the nitrogen removal characteristics of a sequencing batch reactor were studied by adopting a strategy of a step-feeding mode, synergistic regional oxygen limitation, and a mixed carbon source. The changes of the microbial population succession and nitrogen metabolism functional genes were analyzed. This strategy provided a favorable level of dissolved oxygen and continuous carbon sources for driving the denitrification process. The total nitrogen removal efficiency and SND rate reached 92.60% and 96.49%, respectively, by regulating the ratio of sodium acetate to starch in the step feed to 5:1. This procedure increased the relative abundance of denitrifying functional genes and induced the growth of a variety of traditional denitrifying bacteria and aerobic denitrifying bacteria participating in the process of nitrogen removal. Overall, this work offers a new strategy for achieving efficient SND.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Wanting Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
33
|
Liu J, Zhou J, Wu Z, Tian X, An X, Zhang Y, Zhang G, Deng F, Meng X, Qu J. Concurrent elimination and stepwise recovery of Pb(II) and bisphenol A from water using β-cyclodextrin modified magnetic cellulose: adsorption performance and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128758. [PMID: 35395706 DOI: 10.1016/j.jhazmat.2022.128758] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Coexistence of heavy metals and endocrine disrupting compounds in polluted water with competitive adsorption behavior necessitates design of tailored adsorbents. In this work, β-cyclodextrin modified magnetic rice husk-derived cellulose (β-CD@MRHC) which can provide independent functional sites for effectively binding the above two types of contaminants was synthesized and used for Pb(II) and BPA elimination in both unit and multivariate systems. Characterizations results confirmed successful β-CD grafting and Fe3O4 loading, and the β-CD@MRHC had excellent magnetic property for its effectively recovery from water, which was not affected by the adsorption of pollutants. The β-CD@MRHC possessed superior adsorption performance with maximal Pb(II)/BPA uptake of 266.2 or 412.8 mg/g, severally, and the adsorption equilibrium was fleetly reached in 30 and 7.5 min. Moreover, the β-CD@MRHC could accomplish synergetic Pb(II) and BPA elimination through averting their competitive behaviors owing to diverse capture mechanisms for Pb(II) (ion exchange, complexation and electrostatic attraction) and BPA (hydrogen bonding and host-guest inclusion). Furthermore, after three cycles of step-wise desorption, the binding of Pb(II) as well as BPA byβ-CD@MRHC dropped slightly in dualistic condition. In summary, β-CD@MRHC was a promising tailored adsorbent to practical application for simultaneously removing heavy metals and organic matters from wastewater with high-performance magnetic recovery.
Collapse
Affiliation(s)
- Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Zhou
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xue Tian
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianlin Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianhua Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
34
|
Liu Z, Zhang X, Zhang S, Qi H, Hou Y, Gao M, Wang J, Zhang A, Chen Y, Liu Y. A comparison between exogenous carriers enhanced aerobic granulation under low organic loading in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. BIORESOURCE TECHNOLOGY 2022; 346:126567. [PMID: 34923077 DOI: 10.1016/j.biortech.2021.126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In this study, polymeric ferric sulfate (PFS), aluminum sulfate (AS) and diatomite were added to enhance the aerobic granulation under low organic loading rate (OLR) of 0.6 kg·COD/(m3·d), and their effects of aerobic granule formation, extracellular polymeric substances (EPS) secretion and microbial community were investigated. The results showed that adding carriers could facilitated the growth of aerobic granules and improve the sludge settleability and biomass retention. Nutrient removal efficiencies were also enhanced. Compared with diatomite, adding PFS and AS resulted in more significant increase in EPS production, especially for the extracellular proteins. For microbial community, the dominated bacteria (Zoogloea, 18.47-23.95%) in the mature granular consortia were similar. Moreover, the introduction of PFS and diatomite contributed to the enrichment of Paracoccus, which was responsible for denitrification. Adding carriers potentially activated the functional genes related to metabolism and genetic information processing, and PFS had the most significant effects.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xuhua Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Hao Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yiping Chen
- Institute of Earth Environment, Chinese Academy of Sciences, No. 10 Fenghui South Road, Xi'an 710075, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|