1
|
Rehan M, Emam EAM, Emam HE. Immobilization of silver nanoparticles and silver iodide within bamboo fabrics for wastewater treatment. Sci Rep 2025; 15:11050. [PMID: 40169653 PMCID: PMC11962099 DOI: 10.1038/s41598-025-93188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Pathogenic microorganisms and dyes are the main sources of water pollution. These pollutants are extremely hazardous and may harm aquatic life and human health. As a result, removing these pollutants is critical in assessing contamination risks and mitigating potential health hazards. To effectively remove pathogenic microorganisms and dyes from wastewater, an efficient multi-functional material was designed based on AgI, Ag NPs, and Ag NPs@AgI immobilized on bamboo fabrics as a support substrate. The water disinfection aptitude of the modified bamboo fabrics was evaluated against different microorganisms. The results showed that the Ag NPs@AgI@bamboo showed excellent antibacterial activity against S. aureus (88%) and E. coli (90%) as well as perfect antifungal activity against C. albicans (82%). Methylene blue (MB) was used as a pollutant model to test the catalytic and photocatalytic activity of modified bamboo fabrics. The results show that Ag NPs@AgI@bamboo was highly efficient in removing the MB dye via reduction (90%) after 60 min or photodegradation (93%) after 6 h of UV light irradiation. The pseudo-first-order kinetic study shows that Ag NPs@AgI@bamboo possessed outstanding catalytic reduction and photocatalytic degradation activities toward MB.
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., 12622, Dokki, Giza, Egypt.
| | - El-Amir M Emam
- Faculty of Applied Arts, Textile Printing, Dyeing and Finishing Department, Helwan University, 11795, Cairo, Egypt
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., 12622, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Kang M, Pei Y, Zhang Y, Su L, Li Y, Wang H. Nitrogen-doped reduced graphene oxide for high efficient adsorption of methylene blue. Front Chem 2025; 12:1484610. [PMID: 39834845 PMCID: PMC11743702 DOI: 10.3389/fchem.2024.1484610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
A highly efficient and widely applicable adsorbent for the removal of methylene blue (MB) was created using nitrogen-doped and reduced graphene oxide (NRGO). The effects of NRGO mass, pH, contact time, and the initial MB concentration on the adsorption properties of MB onto NRGO were investigated. The results showed that the adsorption behavior remained stable within the pH range of 2.0-10.0, and the adsorption process gradually reached equilibrium after 24 h. Additionally, the adsorption kinetics and adsorption isotherms were discussed to propose a theoretical adsorption mechanism. Meanwhile, some characterizations including Scanning Electron Microscopy, Energy Disperse X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Powder Diffraction, Fourier Transform Infrared Spectroscopy, etc. were used to explore potential adsorption mechanism, which indicated the physisorption caused by π-π bonds was the main adsorption mechanism. NRGO exhibits efficient MB absorption and holds significant potential application for the wastewater treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongyu Wang
- Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong, China
| |
Collapse
|
3
|
Yuan D, Hong B, Zhang S, Shan S, Zhang J, Ren C. Preparation of magnetic rice husk carbon nanocomposite for efficiently extracting aflatoxin B1 from rice followed by time-resolved fluorescent immunochromatographic assay. Food Chem X 2025; 25:102145. [PMID: 39850051 PMCID: PMC11754820 DOI: 10.1016/j.fochx.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
An on-site, sensitive, and cost-effective method for determining aflatoxin B1 (AFB1) in rice samples is proposed, combining magnetic solid phase extraction (MSPE) and time-resolved fluorescence immunochromatography (TRFICA) techniques. Cost-effective rice husks were carbonized and combined with nanomaterials to make magnetic nanocomposites that acted as effective adsorbents in MSPE. Under optimal conditions, the entire process was completed in 15 min with a visual detection limit of 0.16 μg/kg. Recoveries ranged from 85.2 % to 109.4 %, with intra- and inter-day precisions below 11.5 %. The proposed MSPE-TRFICA method offers a viable alternative for the rapid and highly sensitive quantitative detection of AFB1 for quality assurance.
Collapse
Affiliation(s)
- Di Yuan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Bin Hong
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shan Shan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jingyi Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
4
|
Mandal TK. Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1847. [PMID: 39591087 PMCID: PMC11597552 DOI: 10.3390/nano14221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
6
|
El-Ghazawy RA, Haggar AM, Elseman AM, Selim MS. Harnessing perovskite materials for water decontamination: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59767-59794. [PMID: 39384669 DOI: 10.1007/s11356-024-34396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 10/11/2024]
Abstract
Perovskites have recently emerged as a promising class of materials with a wide range of applications, including solar cells, light-emitting diodes, and catalysts. In addition, perovskites have demonstrated significant potential for water decontamination due to their tunable properties and facile synthesis. This review article provides a comprehensive overview of perovskites, including their preparation techniques, crystal structure, and electronic properties. The article also highlights the various applications of perovskites, with a particular focus on their use in water decontamination. The different types of perovskites for water decontamination, including simple, substituted, and doped perovskites, as well as nanoscopic and supported perovskites, are discussed in detail. Furthermore, the article addresses the beneficial costs of perovskites and the environmental impacts associated with their use, including toxicity and end-of-life management. The aim of this review article is to provide a broad perspective on perovskites and their potential for water decontamination, as well as future prospects and challenges in various applications.
Collapse
Affiliation(s)
- Rasha A El-Ghazawy
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Ahmed M Haggar
- Process Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Ahmed Mourtada Elseman
- Electronic and Magnetic Materials Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt.
| | - Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
7
|
Arabzadeh Nosratabad N, Yan Q, Cai Z, Wan C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024; 10:e37123. [PMID: 39315228 PMCID: PMC11417198 DOI: 10.1016/j.heliyon.2024.e37123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Qiangu Yan
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Zhiyong Cai
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
8
|
Aminzai MT, Yabalak E, Kalderis D, Gizir AM. Environmental remediation of emerging contaminants using subcritical water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121800. [PMID: 38996600 DOI: 10.1016/j.jenvman.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The continuous rise of emerging contaminants (ECs) in the environment has been a growing concern due to their potentially harmful effects on humans, animals, plants, and aquatic life, even at low concentrations. ECs include human and veterinary pharmaceuticals, hormones, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic dyes, heavy metals (HMs), and others. The world's growing population contributes to the release of many kinds of chemicals into the environment, which is estimated to be more than 200 billion metric tons annually and results in over 9 million deaths. The removal of these contaminants using conventional physical, chemical, and biological treatments has proven to be ineffective, highlighting the need for simple, effective, inexpesive, practical, and eco-friendly alternatives. Thus, this article discusses the utilization of subcritical water oxidation (SBWO) and subcritical water extraction (SBWE) techniques to remove ECS from the environment. Subcritical water (water below the critical temperature of 374.15 °C and critical pressure of 22.1 Mpa) has emerged as one of the most promising methods for remediation of ECs from the environment due to its non-toxic properties, simplicity and efficiency of application. Furthermore, the impact of temperature, pressure, treatment time, and utilization of chelating agents, organic modifiers, and oxidizing agents in the static and dynamic modes was investigated to establish the best conditions for high ECs removal efficiencies.
Collapse
Affiliation(s)
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronics Engineering, Hellenic Mediterranean University, Chania, 73100, Greece.
| | - A Murat Gizir
- Department of Chemistry, Mersin University, 33342, Mersin, Turkey
| |
Collapse
|
9
|
Malbenia John M, Benettayeb A, Belkacem M, Ruvimbo Mitchel C, Hadj Brahim M, Benettayeb I, Haddou B, Al-Farraj S, Alkahtane AA, Ghosh S, Chia CH, Sillanpaa M, Baigenzhenov O, Hosseini-Bandegharaei A. An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. CHEMOSPHERE 2024; 357:142051. [PMID: 38648988 DOI: 10.1016/j.chemosphere.2024.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.
Collapse
Affiliation(s)
- Masamvu Malbenia John
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Asmaa Benettayeb
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria.
| | - Mohamed Belkacem
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria; Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Chitepo Ruvimbo Mitchel
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Mustapha Hadj Brahim
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria; Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Imene Benettayeb
- Département d'automatique et Informatique Industrielle, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Boumediene Haddou
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Soumya Ghosh
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman; Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa.
| | - C H Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mika Sillanpaa
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Division of Research & Development, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Omirserik Baigenzhenov
- Department of Metallurgical Engineering, Satbayev University, Almaty, 050013, Kazakhstan
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
10
|
Madonia E, Di Vincenzo A, Pettignano A, Scaffaro R, Gulino EF, Conte P, Meo PL. Composite RGO/Ag/Nanosponge Materials for the Photodegradation of Emerging Pollutants from Wastewaters. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2319. [PMID: 38793386 PMCID: PMC11123357 DOI: 10.3390/ma17102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Some composite materials have been prepared, constituted by a cyclodextrin-bis-urethane-based nanosponge matrix in which a reduced graphene oxide/silver nanoparticles photocatalyst has been dispersed. Different chain extenders were employed for designing the nanosponge supports, in such a way as to decorate their hyper-cross-linked structure with diverse functionalities. Moreover, two different strategies were explored to accomplish the silver loading. The obtained systems were successfully tested as catalysts for the photodegradation of emerging pollutants such as model dyes and drugs. Enhancement of the photoactive species performance (up to nine times), due to the synergistic local concentration effect exerted by the nanosponge, could be assessed. Overall, the best performances were shown by polyamine-decorated materials, which were able to promote the degradation of some particularly resistant drugs. Some methodological issues pertaining to data collection are also addressed.
Collapse
Affiliation(s)
- Ettore Madonia
- Department of Food, Agriculture, Food and Forest Sciences, University of Palermo, V.le delle Scienze ed. 4, 90128 Palermo, Italy; (E.M.); (P.C.)
| | - Antonella Di Vincenzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, V.le delle Scienze ed. 17 “S. Cannizzaro”, 90128 Palermo, Italy
| | - Alberto Pettignano
- Department of Physics and Chemistry “E. Segrè”, University of Palermo, V.le delle Scienze ed. 17 “S. Cannizzaro”, 90128 Palermo, Italy;
| | - Roberto Scaffaro
- Department of Engineering, University of Palermo, V.le delle Scienze ed. 6, 90128 Palermo, Italy; (R.S.); (E.F.G.)
| | - Emmanuel Fortunato Gulino
- Department of Engineering, University of Palermo, V.le delle Scienze ed. 6, 90128 Palermo, Italy; (R.S.); (E.F.G.)
| | - Pellegrino Conte
- Department of Food, Agriculture, Food and Forest Sciences, University of Palermo, V.le delle Scienze ed. 4, 90128 Palermo, Italy; (E.M.); (P.C.)
| | - Paolo Lo Meo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, V.le delle Scienze ed. 17 “S. Cannizzaro”, 90128 Palermo, Italy
| |
Collapse
|
11
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
12
|
Islam MT, Al Mamun MA, Halim AFMF, Peila R, Sanchez Ramirez DO. Current trends in textile wastewater treatment-bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19166-19184. [PMID: 38383927 PMCID: PMC10927897 DOI: 10.1007/s11356-024-32454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
A bibliometric study using 1992 to 2021 database of the Science Citation Index Expanded was carried out to identify which are the current trends in textile wastewater treatment research. The study aimed to analyze the performance of scholarly scientific communications in terms of yearly publications/citations, total citations, scientific journals, and their categories in the Web of Sciences, top institutions/countries and research trends. The annual publication of scientific articles fluctuated in the first ten years, with a steady decrease for the last twenty years. An analysis of the most common terms used in the authors' keywords, publications' titles, and KeyWords Plus was carried out to predict future trends and current research priorities. Adsorbent nanomaterials would be the future of wastewater treatment for decoloration of the residual dyes in the wastewater. Membranes and electrolysis are important to demineralize textile effluent for reusing wastewater. Modern filtration techniques such as ultrafiltration and nanofiltration are advanced membrane filtration applications.
Collapse
Affiliation(s)
- Mohammad Tajul Islam
- Department of Textile Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Md Abdullah Al Mamun
- Department of Corporate Leadership and Marketing, Szechenyi Istvan University, Gyor, Hungary
| | | | - Roberta Peila
- CNR-STIIMA (National Research Council of Italy-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Biella, Italy
| | - Diego Omar Sanchez Ramirez
- CNR-STIIMA (National Research Council of Italy-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Biella, Italy.
| |
Collapse
|
13
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Mishra Y, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Farani MR, Huh YS, Serrano-Aroca Ã, Tambuwala MM. Carbon nanotube-wastewater treatment nexus: Where are we heading to? ENVIRONMENTAL RESEARCH 2023; 238:117088. [PMID: 37683781 DOI: 10.1016/j.envres.2023.117088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Water treatment is crucial in solving the rising people's appetite for water and global water shortages. Carbon nanotubes (CNTs) have considerable promise for water treatment because of their adjustable and distinctive arbitrary, physical, as well as chemical characteristics. This illustrates the benefits and risks of integrating CNT into the traditional water treatment resource. Due to their outstanding adsorbent ability and chemical and mechanical properties, CNTs have gained global consideration in environmental applications. The desalination and extraction capability of CNT were improved due to chemical or physical modifications in pure CNTs by various functional groups. The CNT-based composites have many benefits, such as antifouling performance, high selectivity, and increased water permeability. Nevertheless, their full-scale implementations are still constrained by their high costs. Functionalized CNTs and their promising nanocomposites to eliminate contaminants are advised for marketing and extensive water/wastewater treatment.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ãngel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, United Kingdom.
| |
Collapse
|
15
|
Ergenler A, Turan F, Zaman BT, Tezgin E, Bakirdere S, Depci T. Novel data on genotoxic assessment of bismuth sulfide nanoflowers in common carp Cyprinus carpio. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1055. [PMID: 37589813 DOI: 10.1007/s10661-023-11653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
The environmental impacts and risks of nanomaterials that are commonly used in different technologies are of great concern as their toxic effects on the aquatic ecosystem remain unclear. In this study, bismuth sulfide (Bi2S3) nanoflowers (nfs) were synthesized using a microwave-based hydrothermal process, and their genotoxic effects were investigated in the common carp, Cyprinus carpio. Bi2S3 nanoflowers were applied to common carp for 96 h. LC50 value (LC50 = 350 mg/L-1) was determined for acute toxicity with probit analysis, and three sublethal concentrations (35, 87, and 175 mg/L-1) were selected accordingly for genotoxicity tests. Such LC50 value - 350 mg L-1 for the common carp makes these nanoflowers non-toxic to aquatic organisms according to the EU-Directive 93/67/EEC classification scheme. Toxicological evaluations of the sublethal concentrations of Bi2S3 nanoflowers demonstrated that the 35 and 87 mg L-1 Bi2S3nfs groups were generally harmless and similar to the control group. Only the 175 mg L-1 Bi2S3nfs group had significant DNA damage frequency and nuclear abnormalities than the control and other Bi2S3nfs groups. To the best of our knowledge, this is a novel data on genotoxicity reported for fish species exposed to Bi2S3 nanoflowers; however, further systematic studies need to be performed to fully estimate the effects of Bi2S3 nanoflowers on aquatic life.
Collapse
Affiliation(s)
- Aysegul Ergenler
- Faculty of Marine Science and Technology, İskenderun Technical University, İskenderun, Hatay, 31200, Turkey.
| | - Funda Turan
- Faculty of Marine Science and Technology, İskenderun Technical University, İskenderun, Hatay, 31200, Turkey
| | - Buse Tuğba Zaman
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Turkey
| | - Emine Tezgin
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Turkey
| | - Sezgin Bakirdere
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Turkey
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, Ankara, 06670, Turkey
| | - Tolga Depci
- Petroleum and Natural Gases Engineering, Faculty of Engineering and Natural Sciences, İskenderun Technical University, İskenderun, Hatay, 31200, Turkey
| |
Collapse
|
16
|
Roy N, Kannabiran K, Mukherjee A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. CHEMOSPHERE 2023; 333:138912. [PMID: 37182714 DOI: 10.1016/j.chemosphere.2023.138912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Ferrocene functionalized rGO-ZnO nanocomposite was synthesized via the facile hydrothermal method. ZnO was reduced over the 3-dimensional rGO framework (3D-Fc@rGO) using Camellia sinensis extract. The Fc@rGO-ZnO nanocomposite was employed for pharmaceutical degradation (sulfamethoxazole (SMX) and ciprofloxacin (CIP)) in an aqueous solution under UV C light. The physicochemical properties of the as-prepared photocatalyst were characterized using FTIR, XRD, FESEM, EDS mapping, HR-TEM, XPS, and DR-UV Vis. The as-synthesized Fc@rGO-ZnO photocatalyst performed remarkably against pristine ZnO, with a fivefold increase in removal efficiency. This superior activity was attributed to its improved light harvesting, charge carrier interface, and enhanced charge separation. Additionally, the photocatalyst obeyed the Lagergen model for pseudo-first-order kinetics. Congruously, the integrated approach of Fc@rGO and ZnO as oxidizing agents was proficient in removing >95% of antibiotics (CIP and SMX) within 180 min. Furthermore, the heterostructure configuration developed between Fc@rGO and ZnO helps in charge migration and generation of abundant •OH and •O2- radicals for photodegradation activities. The toxicity assessment of the treated solutions showed improved cell viability in the algal strains of Scenedesmus and Chlorella sp. Moreover, this novel approach for the synthesis of a photoactive nanocomposite is found to be low-cost and reusable for three cycles. The nanocomposite is environmentally sustainable paving the way for practical applications in the treatment of different classes of antibiotics.
Collapse
Affiliation(s)
- Namrata Roy
- Centre for Nanobiotechnology, VIT, Vellore, India; School of Biosciences and Technology, VIT, India
| | | | | |
Collapse
|
17
|
Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Dutta M, Bora J, Chetia B. Overview on recent advances of magnetic metal-organic framework (MMOF) composites in removal of heavy metals from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13867-13908. [PMID: 36547836 DOI: 10.1007/s11356-022-24692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Developing a novel, simple, and cost-effective analytical technique with high enrichment capacity and selectivity is crucial for environmental monitoring and remediation. Metal-organic frameworks (MOFs) are porous coordination polymers that are self-assembly synthesized from organic linkers and inorganic metal ions/metal clusters. Magnetic metal-organic framework (MMOF) composites are promising candidate among the new-generation sorbent materials available for magnetic solid-phase extraction (MSPE) of environmental contaminants due to their superparamagnetism properties, high crystallinity, permanent porosity, ultrahigh specific surface area, adaptable pore shape/sizes, tunable functionality, designable framework topology, rapid and ultrahigh adsorption capacity, and reusability. In this review, we focus on recent scientific progress in the removal of heavy metal ions present in contaminated aquatic system by using MMOF composites. Different types of MMOFs, their synthetic approaches, and various properties that are harnessed for removal of heavy metal ions from contaminated water are discussed briefly. Adsorption mechanisms involved, adsorption capacity, and regeneration of the MMOF sorbents as well as recovery of heavy metal ions adsorbed that are reported in the last ten years have been discussed in this review. Moreover, particular prospects, challenges, and opportunities in future development of MMOFs towards their greener synthetic approaches for their practical industrial applications have critically been considered in this review.
Collapse
Affiliation(s)
- Mayuri Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Jyotismita Bora
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
19
|
Malik S, Dhasmana A, Preetam S, Mishra YK, Chaudhary V, Bera SP, Ranjan A, Bora J, Kaushik A, Minkina T, Jatav HS, Singh RK, Rajput VD. Exploring Microbial-Based Green Nanobiotechnology for Wastewater Remediation: A Sustainable Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234187. [PMID: 36500810 PMCID: PMC9736967 DOI: 10.3390/nano12234187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/04/2023]
Abstract
Water scarcity due to contamination of water resources with different inorganic and organic contaminants is one of the foremost global concerns. It is due to rapid industrialization, fast urbanization, and the low efficiency of traditional wastewater treatment strategies. Conventional water treatment strategies, including chemical precipitation, membrane filtration, coagulation, ion exchange, solvent extraction, adsorption, and photolysis, are based on adopting various nanomaterials (NMs) with a high surface area, including carbon NMs, polymers, metals-based, and metal oxides. However, significant bottlenecks are toxicity, cost, secondary contamination, size and space constraints, energy efficiency, prolonged time consumption, output efficiency, and scalability. On the contrary, green NMs fabricated using microorganisms emerge as cost-effective, eco-friendly, sustainable, safe, and efficient substitutes for these traditional strategies. This review summarizes the state-of-the-art microbial-assisted green NMs and strategies including microbial cells, magnetotactic bacteria (MTB), bio-augmentation and integrated bioreactors for removing an extensive range of water contaminants addressing the challenges associated with traditional strategies. Furthermore, a comparative analysis of the efficacies of microbe-assisted green NM-based water remediation strategy with the traditional practices in light of crucial factors like reusability, regeneration, removal efficiency, and adsorption capacity has been presented. The associated challenges, their alternate solutions, and the cutting-edge prospects of microbial-assisted green nanobiotechnology with the integration of advanced tools including internet-of-nano-things, cloud computing, and artificial intelligence have been discussed. This review opens a new window to assist future research dedicated to sustainable and green nanobiotechnology-based strategies for environmental remediation applications.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248140, Uttarakhand, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110043, India
| | | | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, S.K.N. Agriculture University, Jaipur 303329, Rajasthan, India
| | - Rupesh Kumar Singh
- Centre of Molecular and Environmental Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
- InnovPlantProtect Collaborative Laboratory, Department of Protection of Specific Crops, Estrada de Gil Vaz, Apartado 72, 7350-999 Elvas, Portugal
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
20
|
Boulkhessaim S, Gacem A, Khan SH, Amari A, Yadav VK, Harharah HN, Elkhaleefa AM, Yadav KK, Rather SU, Ahn HJ, Jeon BH. Emerging Trends in the Remediation of Persistent Organic Pollutants Using Nanomaterials and Related Processes: A Review. NANOMATERIALS 2022; 12:nano12132148. [PMID: 35807983 PMCID: PMC9268313 DOI: 10.3390/nano12132148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023]
Abstract
Persistent organic pollutants (POPs) have become a major global concern due to their large amount of utilization every year and their calcitrant nature. Due to their continuous utilization and calcitrant nature, it has led to several environmental hazards. The conventional approaches are expensive, less efficient, laborious, time-consuming, and expensive. Therefore, here in this review the authors suggest the shortcomings of conventional techniques by using nanoparticles and nanotechnology. Nanotechnology has shown immense potential for the remediation of such POPs within a short period of time with high efficiency. The present review highlights the use of nanoremediation technologies for the removal of POPs with a special focus on nanocatalysis, nanofiltration, and nanoadsorption processes. Nanoparticles such as clays, zinc oxide, iron oxide, aluminum oxide, and their composites have been used widely for the efficient remediation of POPs. Moreover, filtrations such as nanofiltration and ultrafiltration have also shown interest in the remediation of POPs from wastewater. From several pieces of literature, it has been found that nano-based techniques have shown complete removal of POPs from wastewater in comparison to conventional methods, but the cost is one of the major issues when it comes to nano- and ultrafiltration. Future research in nano-based techniques for POP remediation will solve the cost issue and will make it one of the most widely accepted and available techniques. Nano-based processes provide a sustainable solution to the problem of POPs.
Collapse
Affiliation(s)
- Salim Boulkhessaim
- Department of Physics, Faculty of Sciences, University 20 Août 1955, 26 El Hadaiek, Skikda 21000, Algeria; (S.B.); (A.G.)
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, 26 El Hadaiek, Skikda 21000, Algeria; (S.B.); (A.G.)
| | - Samreen Heena Khan
- Research & Development Centre, YNC Envis Pvt Ltd., New Delhi 110001, India
- Correspondence: (S.H.K.); (B.-H.J.)
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (H.N.H.); (A.M.E.)
- Department of Chemical Engineering and Processes, Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, Gabes 6072, Tunisia
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Lakshmangarh 332311, India;
| | - Hamed N. Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (H.N.H.); (A.M.E.)
| | - Abubakr M. Elkhaleefa
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (H.N.H.); (A.M.E.)
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
| | - Sami-ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia;
| | - Hyun-Jo Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea;
- Correspondence: (S.H.K.); (B.-H.J.)
| |
Collapse
|
21
|
Ghotekar S, Pansambal S, Lin KYA, Pore D, Oza R. Recent Advances in Synthesis of CeVO4 Nanoparticles and Their Potential Scaffold for Photocatalytic Applications. Top Catal 2022. [DOI: 10.1007/s11244-022-01630-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Jain H, Yadav V, Rajput VD, Minkina T, Agarwal S, Garg MC. An Eco-sustainable Green Approach for Biosorption of Methylene Blue Dye from Textile Industry Wastewater by Sugarcane Bagasse, Peanut Hull, and Orange Peel: A Comparative Study Through Response Surface Methodology, Isotherms, Kinetic, and Thermodynamics. WATER, AIR, & SOIL POLLUTION 2022; 233:187. [DOI: 10.1007/s11270-022-05655-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/08/2022] [Indexed: 08/20/2024]
|
23
|
A Weed-Derived Hierarchical Porous Carbon with a Large Specific Surface Area for Efficient Dye and Antibiotic Removal. Int J Mol Sci 2022; 23:ijms23116146. [PMID: 35682825 PMCID: PMC9181242 DOI: 10.3390/ijms23116146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Adsorption is an economical and efficient method for wastewater treatment, and its advantages are closely related to adsorbents. Herein, the Abutilon theophrasti medicus calyx (AC) was used as the precursor for producing the porous carbon adsorbent (PCAC). PCAC was prepared through carbonization and chemical activation. The product activated by potassium hydroxide exhibited a larger specific surface area, more mesopores, and a higher adsorption capacity than the product activated by sodium hydroxide. PCAC was used for adsorbing rhodamine B (RhB) and chloramphenicol (CAP) from water. Three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich–Peterson models), and thermodynamic equations were used to investigate adsorption processes. The pseudo-second kinetic and Sips isotherm models fit the experimental data well. The adsorption mechanism and the reusability of PCAC were also investigated. PCAC exhibited a large specific surface area. The maximum adsorption capacities (1883.3 mg g−1 for RhB and 1375.3 mg g−1 for CAP) of PCAC are higher than most adsorbents. Additionally, in the fixed bed experiments, PCAC exhibited good performance for the removal of RhB. These results indicated that PCAC was an adsorbent with the advantages of low-cost, a large specific surface area, and high performance.
Collapse
|