1
|
Abbasi A, Alothaid H, Al-Haider SM, Ikram S. Efficient removal of Janus green and aniline blue dyes from aqueous medium via tryptophan functionalized Gellan gum-cl-β-cyclodextrin/CeO 2 nanocomposite. Int J Biol Macromol 2025; 308:142399. [PMID: 40122432 DOI: 10.1016/j.ijbiomac.2025.142399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The present investigation evaluated the potency of amino acid-functionalized gellan gum nanocomposite (Typ-GG/β-CD/CeO2) to efficiently remove toxic dye pollutants from the aquatic medium. Gellan gum was first functionalized with L-tryptophan. Then, β-Cyclodextrin and CeO₂ nanoparticles were incorporated, creating a stable and effective matrix. Subsequently, the synthesized nanocomposite's structural and morphological studies were carried out by FTIR, XRD, TEM, SEM-EDX, and BET. Batch adsorption experiments were used to study the dye removal efficacy of Typ-GG/β-CD/CeO₂. The Freundlich isotherm fit the data best with an R2 of 0.99. Additionally, the pseudo-second-order model effectively designated the adsorption kinetics. The adsorption process was exemplified to be endothermic, spontaneous, and facile towards the sequestration of Janus Green (JG) and Aniline Blue (AB). The nanocomposite was reusable for up to 4 cycles for both the dyes, with adequate results. The Typ-GG/β-CD/CeO2 proved to be a substantially robust adsorbent by revealing significant removal efficiency for JG and AB in real water samples (tap and river water). The negligible impact (>70 % for AB and > 87 % for JG) of ionic strength on the adsorptive capacity of Typ-GG/β-CD/CeO2 affirmed its plausibility for the decontamination of real aqueous pollutants.
Collapse
Affiliation(s)
- Arshiya Abbasi
- Department of Chemistry, Faculty of Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Hani Alothaid
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia.
| | | | - Saiqa Ikram
- Department of Chemistry, Faculty of Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India.
| |
Collapse
|
2
|
Mittal M, Tripathi S, Shin DK. Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers (Basel) 2024; 16:294. [PMID: 38276702 PMCID: PMC10818902 DOI: 10.3390/polym16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Essential for human development, water is increasingly polluted by diverse anthropogenic activities, containing contaminants like organic dyes, acids, antibiotics, inorganic salts, and heavy metals. Conventional methods fall short, prompting the exploration of advanced, cost-effective remediation. Recent research focuses on sustainable adsorption, with nano-modifications enhancing adsorbent efficacy against persistent waterborne pollutants. This review delves into recent advancements (2020-2023) in sustainable biopolymeric nanocomposites, spotlighting the applications of biopolymers like chitosan in wastewater remediation, particularly as adsorbents and filtration membranes along with their mechanism. The advantages and drawbacks of various biopolymers have also been discussed along with their modification in synthesizing biopolymeric nanocomposites by combining the benefits of biodegradable polymers and nanomaterials for enhanced physiochemical and mechanical properties for their application in wastewater treatment. The important functions of biopolymeric nanocomposites by adsorbing, removing, and selectively targeting contaminants, contributing to the purification and sustainable management of water resources, have also been elaborated on. Furthermore, it outlines the reusability and current challenges for the further exploration of biopolymers in this burgeoning field for environmental applications.
Collapse
Affiliation(s)
- Mona Mittal
- Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India
| | - Smriti Tripathi
- Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India
| | - Dong Kil Shin
- School of Mechanical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Abbasi N, Khan SA, Liu Z, Khan TA. Natural deep eutectic solvent (fructose-glycine) functionalized-celite/ polyethylene glycol hydrogel nanocomposite for phosphate adsorption: Statistical analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117206. [PMID: 36621312 DOI: 10.1016/j.jenvman.2022.117206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The increasing usage of phosphate fertilizers for agricultural purposes has led to an augmented level of phosphorus in watercourses negatively impacting the ecosystems and water quality warranting its amputation from polluted water. This article describes the preparation of a novel natural deep eutectic solvent (NADES) functionalized-celite/polyethylene glycol hydrogel nanocomposite (NADES-Cel/PEG HNC) for adsorptive phosphate removal from water. The XRD, FTIR, SEM coupled with EDX spectroscopy, TEM, BET analysis, and pHpzc measurement were used to characterise the prepared material. Central composite design (CCD) in response surface methodology (RSM) was used for experimental design to analyse the individual and combined impact of five operational parameters on equilibrium adsorption capacity (Qe), and evaluate the optimal operating conditions by numerical optimization, which were obtained as: contact time (60 min), adsorbent dosage (1.0 g/L), initial [PO43-] (80 mg/L), initial solution pH (3.5), and temperature (304 K). The adsorption process was best explicated via Langmuir adsorption isotherm with a noteworthy saturation capacity, Qm of 111.80 mg PO43-/g at 298 K, and was favourable (S* = 0.99), feasible (ΔG° = -7.02 kJ/mol), exothermic (ΔH° = -8.39 kJ/mol) and physical in nature. The uptake mechanism largely involved H-bonding, electrostatic interaction, n-π interaction and pore-filling. Uptake kinetics of PO43- was best explicated by pseudo-second order model, and the rate-determining step involved both intraparticle and liquid film diffusion mechanisms. The admirable performance of NADES-Cel/PEG HNC was signified by its competent adsorption efficacy and effectual reusability. The pertinence of the hydrogel nanocomposite for treatment of real wastewater was tested. Hence, NADES-Cel/PEG HNC might prove to be a pragmatic adsorbent for decontamination of PO43- from an aqueous environment.
Collapse
Affiliation(s)
- Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, 6 Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India.
| |
Collapse
|
4
|
Adsorptive removal of cationic dye by synthesized sustainable xanthan gum-g p(AMPS-co-AAm) hydrogel from aqueous media: Optimization by RSM-CCD model. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
6
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
7
|
Razali NS, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al-Duaij OK, Alsaiari NS. High-Surface-Area-Activated Carbon Derived from Mango Peels and Seeds Wastes via Microwave-Induced ZnCl2 Activation for Adsorption of Methylene Blue Dye Molecules: Statistical Optimization and Mechanism. Molecules 2022; 27:molecules27206947. [PMID: 36296542 PMCID: PMC9607410 DOI: 10.3390/molecules27206947] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, Mango (Mangifera indica) seeds (MS) and peels (MP) seeds mixed fruit wastes were employed as a renewable precursor to synthesize high-surface-area-activated carbon (MSMPAC) by using microwave-induced ZnCl2 activation. Thus, the applicability of MSMPAC was evaluated towards the removal of cationic dye (methylene blue, MB) from an aqueous environment. The key adsorption factors, namely A: MSMPAC dose (0.02–0.1 g), B: pH (4–10), and C: time (5–15 min), were inspected using the desirability function of the Box-Behnken design (BBD). Thus, the adsorption isotherm data were found to correspond well with the Langmuir model with a maximum adsorption capacity of (232.8 mg/g). Moreover, the adsorption kinetics were consistent with both pseudo-first-order and pseudo-second-order models. The spontaneous and endothermic nature of MB adsorption on the MSMPAC surface could be inferred from the negative ∆G° values and positive value of ∆H°, respectively. Various mechanisms namely electrostatic forces, pore filling, π-π stacking, and H-bonding govern MB adsorption by the MSMPAC. This study demonstrates the utility of MS and MP as renewable precursors to produce high-surface area MSMPAC with a potential application towards the removal of cationic organic dyes such as MB.
Collapse
Affiliation(s)
- Nur Shakinah Razali
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 10068, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Ali H. Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
- Correspondence:
| | - Zeid A. ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarek A. Yousef
- Department of Chemistry, Science College, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Omar K. Al-Duaij
- Department of Chemistry, Science College, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Khan SA, Abbasi N, Hussain D, Khan TA. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8280-8295. [PMID: 35758902 DOI: 10.1021/acs.langmuir.2c00702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with l-asparagine and gallic acid, respectively. The physicochemical facets of the functionalized pullulan/kaolin hydrogel nanocomposite and its interactive behavior with PCT were elucidated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and elemental mapping. The process parameters along with the isotherm, kinetics, and thermodynamics were methodically appraised via a batch technique to unveil the adsorption performance of the as-fabricated hydrogel nanocomposite. The adsorption isotherm and kinetics of PCT uptake by f-PKHN conform well to Freundlich and pseudo-second-order models, respectively. Relying on hydrogen bonding, n-π, and van der Waals interactions, the maximum adsorption capacity was 332.54 mg g-1, higher than for most of the previous adsorbents reported in the literature for PCT removal. Thermodynamic calculations corroborated endothermic, spontaneous, and feasible adsorption phenomena. The maintenance of a high uptake percentage (69.11%) in the fifth consecutive adsorption-desorption cycle implied the significant reusable potential of f-PKHN. Swelling studies exhibited 90% swelling within 200 min, indicating the successful fabrication of a cross-linked hydrogel network. The real water (distilled water, tap water, and river water) samples spiked with PCT specified a significant uptake of PCT (>85%), and the minor influence of ionic strength on the adsorptive potential of f-PKHN validated its potentiality for the decontamination of real effluents. In conclusion, f-PKHN with substantial adsorption capacity, green characteristics, and excellent reusability can be reckoned with as a promising adsorbent for the de-escalation of PCT from aquatic sources as well as at the industrial level.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| |
Collapse
|