1
|
Cai Z, Xing Z, Xu M, Zhao Y, Ye L, Sun W, Tao R, Mi L, Yang B, Wang L, Zhao Y, Liu X, You L. Comparative assessment of silver nanoparticle and silver nitrate toxicities in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107184. [PMID: 40311212 DOI: 10.1016/j.marenvres.2025.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/15/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Silver nanoparticles (AgNPs) and Ag+ ions are both detected in aquatic environments, posing potential risks to marine ecosystems. Mytilus galloprovincialis is an effective model for monitoring marine environments. In this study, AgNPs were synthesized using a chemical approach, and to distinguish the toxicological effects of AgNPs and AgNO3 in M. galloprovincialis, experiments were conducted using various treatments (control, AgNO3, AgNPs, and AgNPs + cysteine). Our findings revealed that the uptake rate of AgNPs and AgNO3 was different, they predominantly accumulated in the hepatopancreas and gills. qRT-PCR analysis showed varying degrees of alterations in immune genes of HSPA12A, TCTP, sHSP22, sHSP24.1, P63, Bcl-2, and Ras. Histopathological analysis demonstrated disrupted epithelial cell arrangements and connective tissue damage in the hepatopancreas, with the AgNPs exhibiting the most severe damage compared to AgNO3. In addition, AgNPs significantly induced oxidative stress in hemocytes compared to AgNO3, resulting in elevated apoptosis rates. These findings contribute to a deeper understanding of the AgNPs and AgNO3 interactions in marine environments and provide a theoretical basis for the evaluation of marine pollution and biomonitoring strategies.
Collapse
Affiliation(s)
- Zimin Cai
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zihan Xing
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Mingzhe Xu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yuting Zhao
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China
| | - Lin Ye
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China; College of Marine Science, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Wei Sun
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China
| | - Ruijia Tao
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Liuya Mi
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Bowen Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lei Wang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yancui Zhao
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| | - Liping You
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China.
| |
Collapse
|
2
|
González-Fernández S, Blanco-Agudín N, Rodríguez D, Fernández-Vega I, Merayo-Lloves J, Quirós LM. Silver Nanoparticles: A Versatile Tool Against Infectious and Non-Infectious Diseases. Antibiotics (Basel) 2025; 14:289. [PMID: 40149100 PMCID: PMC11939477 DOI: 10.3390/antibiotics14030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Silver nanoparticles possess remarkable properties that render them highly beneficial for medical applications in both infectious and non-infectious diseases. Among their most renowned attributes is their antimicrobial activity. They have demonstrated efficacy against a wide range of bacteria, fungi, protozoa, and viruses. Additionally, the antitumor and anti-diabetic properties of silver nanoparticles, along with their ability to promote wound healing and their application as biosensors, underscore their therapeutic potential for various non-infectious conditions. As silver nanoparticles are employed for medical purposes, their potential toxicity must be considered. While silver nanoparticles present a promising alternative in the therapeutic domain, further research is needed to elucidate their precise mechanisms of action, optimize their efficacy, and mitigate any potential health risks associated with their use.
Collapse
Affiliation(s)
- Sara González-Fernández
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones Científicas, 33940 El Entrego, Spain
| | - Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - David Rodríguez
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain;
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
3
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Murthy MK, Pattanayak R. Response to: Letter to the Editor: "Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: A multi-biomarker approach". CHEMOSPHERE 2024; 359:142336. [PMID: 38759807 DOI: 10.1016/j.chemosphere.2024.142336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Meesala Krishna Murthy
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
5
|
Mahapatra C. Letter to editor on "Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: A multi-biomarker approach". CHEMOSPHERE 2024; 356:141817. [PMID: 38582165 DOI: 10.1016/j.chemosphere.2024.141817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Affiliation(s)
- Cuckoo Mahapatra
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, India.
| |
Collapse
|
6
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Investigating the toxic mechanism of iron oxide nanoparticles-induced oxidative stress in tadpole (Duttaphrynus melanostictus): A combined biochemical and molecular study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104432. [PMID: 38554986 DOI: 10.1016/j.etap.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Metal oxide nanomaterials have toxicity towards aquatic organisms, especially microbes and invertebrates, but little is known about their impact on amphibians. We conducted a study on Duttaphrynus melanostictus (D. melanostictus) tadpoles to explore the chronic toxicity effects of iron oxide nanoparticles (IONPs) and the underlying mechanisms of IONPs-induced oxidative stress. IONPs exposure led to increased iron accumulation in the blood, liver, and kidneys of tadpoles, significantly affecting blood parameters and morphology. Higher IONPs concentrations (10 and 50 mg L-1) triggered reactive oxygen species generation, resulting in lipid peroxidation, oxidative stress, and pronounced toxicity in tadpoles. The activity levels of antioxidant enzymes/proteins (SOD, CAT, albumin, and lysozyme) decreased after IONPs exposure, and immunological measures in the blood serum were significantly reduced compared to the control group. Molecular docking analysis revealed that IONPs primarily attached to the surface of SOD/CAT/albumin/lysozyme through hydrogen bonding and hydrophobic forces. Overall, this study emphasizes the ability of IONPs to induce oxidative damage by decreasing immunological profiles such as ACH50 (34.58 ± 2.74 U mL-1), lysozyme (6.94 ± 0.82 U mL-1), total Ig (5.00 ± 0.35 g dL-1), total protein (1.20 ± 0.17 g dL-1), albumin (0.52 ± 0.01 g dL-1) and globulin (0.96 ± 0.01 g dL-1) and sheds light on their potential toxic effects on tadpoles.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India; Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Chandra Sekhar Mohanty
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
7
|
Wang C, Chen L, Xu J, Zhang L, Yang X, Zhang X, Zhang C, Gao P, Zhu L. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil. ENVIRONMENTAL RESEARCH 2024; 242:117820. [PMID: 38048867 DOI: 10.1016/j.envres.2023.117820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.
Collapse
Affiliation(s)
- Chaoqi Wang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le'an Chen
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
8
|
Bordin ER, Ramsdorf WA, Lotti Domingos LM, de Souza Miranda LP, Mattoso Filho NP, Cestari MM. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119396. [PMID: 37890295 DOI: 10.1016/j.jenvman.2023.119396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The rapid advancement of nanotechnology has contributed to the development of several products that are being released to the consumer market without careful analysis of their potential impact on the environment. Zinc oxide nanoparticles (ZnO-NPs) are used in several fields and are applied in consumer products, technological innovations, and biomedicine. In this sense, this study aims to compile existing knowledge regarding the effects of ZnO-NPs on non-target organisms, with the goal of ensuring the safety of human health and the environment. To achieve this objective, a systematic review of the available data on the toxicity of these nanomaterials to freshwater and marine/estuarine aquatic organisms was carried out. The findings indicate that freshwater invertebrates are the most commonly used organisms in ecotoxicological tests. The environmental sensitivity of the studied species was categorized as follows: invertebrates > bacteria > algae > vertebrates. Among the most sensitive species at each trophic level in freshwater and marine/estuarine environments are Daphnia magna and Paracentrotus lividus; Escherichia coli and Vibrio fischeri; Scenedesmus obliquus and Isochrysis galbana; and Danio rerio and Rutilus caspicus. The primary mechanisms responsible for the toxicity of ZnO-NPs involve the release of Zn2+ ions and the generation of reactive oxygen species (ROS). Thus, the biosynthesis of ZnO-NPs has been presented as a less toxic form of production, although it requires further investigation. Therefore, the synthesis of the information presented in this review can help to decide which organisms and which exposure concentrations are suitable for estimating the toxicity of nanomaterials in aquatic ecosystems. It is expected that this information will serve as a foundation for future research aimed at reducing the reliance on animals in ecotoxicological testing, aligning with the goal of promoting the sustainable advancement of nanotechnology.
Collapse
Affiliation(s)
| | - Wanessa Algarte Ramsdorf
- Department of Chemistry and Biology, Federal University of Technology (UTFPR), Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
9
|
Arslan E, Güngördü A. Subacute toxicity and endocrine-disrupting effects of Fe 2O 3, ZnO, and CeO 2 nanoparticles on amphibian metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4174-4195. [PMID: 38097842 DOI: 10.1007/s11356-023-31441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
This study evaluated the potential toxic and endocrine-disrupting effects of sublethal concentrations of Fe2O3, CeO2 and ZnO nanoparticles (NPs) on amphibian metamorphosis. Tadpoles were exposed to several NPs concentrations, reaching a maximum of 1000 µg/L, for up to 21 days according to the amphibian metamorphosis assay (AMA). Some standard morphological parameters, such as developmental stage (DS), hind limb length (HLL), snout-to-vent length (SVL), wet body weight (WBW), and as well as post-exposure lethality were recorded in exposed organisms on days 7 and 21 of the bioassay. Furthermore, triiodothyronine (T3), thyroxine (T4) and malondialdehyde (MDA) levels and the activities of glutathione S-transferases (GST), glutathione reductase (GR), catalase (CAT), carboxylesterase (CaE), and acetylcholinesterase (AChE) were determined in exposed tadpoles as biomarkers. The results indicate that short-term exposure to Fe2O3 NPs leads to toxic effects, both exposure periods cause toxic effects and growth inhibition for ZnO NPs, while short-term exposure to CeO2 NPs results in toxic effects and long-term exposure causes endocrine-disrupting effects. The responses observed after exposure to the tested NPs during amphibian metamorphosis suggest that they may have ecotoxicological effects and their effects should be monitored through field studies.
Collapse
Affiliation(s)
- Eren Arslan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
10
|
Meddeb ER, Trea F, Djekoun A, Nasri H, Ouali K. Subchronic toxicity of iron-selenium nanoparticles on oxidative stress response, histopathological, and nuclear damage in amphibian larvae Rana saharica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112321-112335. [PMID: 37831248 DOI: 10.1007/s11356-023-30063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In this work, we evaluated the subchronic toxicity of FeSe nanoparticles (NPs) in tadpoles of Rana saharica. Tadpoles were exposed for 1-3 weeks to FeSe NPs at 5 mg/L and 100 mg/L rates. Parameters of oxidative stress were measured in whole larvae, and the micronucleus test was performed on circulating blood erythrocytes. We noted a disturbance of the detoxification systems. Enzymatic and non-enzymatic data showed that exposure to FeSe NPs involved a highly significant depletion of GSH, a significant increase in GST activity, and a lipid peroxidation associated with a highly significant increase in MDA. We also noted a neurotoxic effect characterized by a significant inhibition of AChE activity. A micronucleus test showed concentration-dependent DNA damage. This research reveals that these trace elements, in their nanoform, can cause significant neurotoxicity, histopathologic degeneration, cellular and metabolic activity, and genotoxic consequences in Rana larvae.
Collapse
Affiliation(s)
- El Rym Meddeb
- Faculty of Sciences, Laboratory of Environmental Biomonitoring, Badji-Mokhtar University, Annaba, Algeria
| | - Fouzia Trea
- Faculty of Sciences, Laboratory of Environmental Biomonitoring, Badji-Mokhtar University, Annaba, Algeria
| | - Abdelmalik Djekoun
- Faculty of Sciences, Materials Physics Laboratory, Badji-Mokhtar University, Annaba, Algeria
| | - Hichem Nasri
- Faculty of Natural and Life Sciences, Ecotoxicology Laboratory, Chadli Bendjedid University, ElTarf, Algeria
| | - Kheireddine Ouali
- Environmental Bio Surveillance, Department of Biology, Faculty of Sciences, Laboratory of Environmental Biomonitoring Badji-Mokhtar University, BP 12 Sidi Amar, Annaba, Algeria.
| |
Collapse
|
11
|
Sanpradit P, Byeon E, Lee JS, Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109720. [PMID: 37586582 DOI: 10.1016/j.cbpc.2023.109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
The world has faced climate change that affects hydrology and thermal systems in the aquatic environment resulting in temperature changes, which directly affect the aquatic ecosystem. Elevated water temperature influences the physico-chemical properties of chemicals in freshwater ecosystems leading to disturbing living organisms. Owing to the industrial revolution, the mass production of zinc oxide (ZnO) has been led to contaminated environments, and therefore, the toxicological effects of ZnO become more concerning under climate change scenarios. A comprehensive understanding of its toxicity influenced by main factors driven by climate change is indispensable. This review summarized the detrimental effects of ZnO with a single ZnO exposure and combined it with key climate change-associated factors in many aspects (i.e., oxidative stress, energy reserves, behavior and life history traits). Moreover, this review tried to point out ZnO kinetic behavior and corresponding mechanisms which pose a problem of observed detrimental effects correlated with the alteration of elevated temperature.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
12
|
Liu Q, Niu X, Zhang D, Ye X, Tan P, Shu T, Lin Z. Phototransformation of phosphite induced by zinc oxide nanoparticles (ZnO NPs) in aquatic environments. WATER RESEARCH 2023; 245:120571. [PMID: 37683523 DOI: 10.1016/j.watres.2023.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.
Collapse
Affiliation(s)
- Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xingyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Peibing Tan
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Ting Shu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
13
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
14
|
Gomes AR, de Matos LP, Guimarães ATB, Freitas ÍN, Luz TMD, Silva AM, Silva Matos SGD, Rodrigues ASDL, Ferreira RDO, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Mubarak NM, Arias AH, Gomes PCS, Silva FG, Malafaia G. Plant-ZnO nanoparticles interaction: An approach to improve guinea grass (Panicum maximum) productivity and evaluation of the impacts of its ingestion by freshwater teleost fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131173. [PMID: 36924744 DOI: 10.1016/j.jhazmat.2023.131173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
We aimed to evaluate the possible effects of the application of zinc oxide nanoparticles [ZnO NPs; 68.96 ± 33.71 nm; at 100 and 500 mg/kg in a soil mixture of the Typic Dystrophic Red Latosol type and sand (2:1 ratio)] in the cultivation of Panicum maximum (until 125 days), using different biomarkers in addition to evaluating the uptake of Zn by the plants. Furthermore, we assessed the possible transfer of ZnO NPs from P. maximum leaves to zebrafish and their potential. Plants cultivated in substrates with ZnO NPs at 500 mg/kg showed reduced germination rate and growth. However, at 100 mg/kg, plants showed higher biomass and productivity, associated with higher Zn uptake, without inducing oxidative and nitrosative stress. Zinc content in zebrafish was not associated with ingesting leaves of P. maximum cultivated in substrate containing ZnCl2 or ZnO NPs or with genotoxic, mutagenic, and biochemical effects. In conclusion, ZnO NPs (at 100 mg/kg) are promising in the cultivation of P. maximum, and their ingestion by zebrafish did not cause changes in the evaluated biomarkers. However, we recommend that studies with other animal models be conducted to comprehensively assess the ecotoxicological hazard associated with applying ZnO NPs in soil.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Paula Cristine Silva Gomes
- Post-Graduation Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
15
|
Gomes AR, Guimarães ATB, Matos LPD, Silva AM, Rodrigues ASDL, de Oliveira Ferreira R, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Silva FG, Malafaia G. Potential ecotoxicity of substrate-enriched zinc oxide nanoparticles to Physalaemus cuvieri tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162382. [PMID: 36828072 DOI: 10.1016/j.scitotenv.2023.162382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although the ecotoxicological effects of ZnO nanoparticles (ZnO NPs) have already been reported in different taxa, little is known about their impacts on amphibians. Thus, we aimed to evaluate the potential effects of exposure of Physalaemus cuvieri tadpoles to substrates enriched with ZnO NPs (and with its ionic counterpart, Zn+2, ZnCl2 - both at 100 mg/kg) previously used in the cultivation of Panicum maximum (Guinea grass). We showed that although exposure for 21 days did not impact the survival, growth, and development of tadpoles, we noted an increase in the frequency of erythrocyte nuclear abnormalities in the "ZnCl2" and "ZnONP" groups, which was associated with suppression of antioxidant activity in the animals (inferred by SOD and CAT activity and DPPH free radical scavenging capacity). In the tadpoles of the "ZnONP" group, we also noticed a reduction in creatinine and bilirubin levels, alpha-amylase activity, and an increase in alkaline phosphatase activity. But the treatments did not alter the activity of the enzymes lactate dehydrogenase and gamma-glutamyl-transferase and total protein and carbohydrate levels. On the other hand, we report a cholinesterase and hypotriglyceridemic effect in the "ZnCl2" and "ZnONP" groups. Zn bioaccumulation in animals, from ZnO NPs, from Zn+2 released from them, or both, has been associated with causing these changes. Finally, principal component analysis (PCA) and the values of the "Integrated Biomarker Response" index revealed that the exposure of animals to substrates enriched with ZnO NPs caused more pronounced effects than those attributed to its ionic counterpart. Therefore, our study reinforces the need to consider the environmental risks of using these nanomaterials for agricultural purposes for amphibians.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | | | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
16
|
Tiwari NK, Mohanty TR, Das Gupta S, Roy S, Swain HS, Baitha R, Ramteke MH, Das BK. Hemato-biochemical alteration in the bronze featherback Notopterus notopterus (Pallas, 1769) as a biomonitoring tool to assess riverine pollution and ecology: a case study from the middle and lower stretch of river Ganga. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46826-46846. [PMID: 36723843 DOI: 10.1007/s11356-023-25519-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Fishes are poikilothermic animals and are rapid responders to any sort of ecological alteration. The responses in the fish can be easily assessed from their hematological and biochemical responses. To study the variation in the hemato-biochemical parameters in retort to ecological alteration and ecological regime, a study was conducted at six different sampling stations of the middle and lower stretches of river Ganga. Various hematological and biochemical responses of fishes were also monitored in response to multiple ecological alterations. For the assessment of ecological alteration, various indices were calculated such as the water pollution index (WPI), National Sanitation Foundation-water quality index (NSF-WQI), and Nemerow's pollution index (NPI) has been calculated based on various water quality parameters such as dissolved oxygen (DO), pH, total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), electrical conductivity (EC), biochemical oxygen demand (BOD), chlorinity (CL), total nitrogen (TN), and total phosphorus (TP). The hematological parameters such as WBC, RBC, platelet, hemoglobin, and hematocrit were monitored. The serum biochemical parameters such as SGPT, SGOT, ALP, amylase, bilirubin, glucose, triglyceride (TRIG), and cholesterol (CHOL) were investigated. The study revealed that NSF-WQI varied from 45.08 at Buxar to 110.63 at Rejinagar and showed a significantly positive correlation with SGPT, SGOT, ALP, TRIG, CHOL, and WBC, whereas a significantly negative correlation was observed between TRIG and RBC. WPI varied from 19 to 23 and showed a significant positive correlation with SGOT and a negative correlation was observed with total nitrogen. The PCA analysis illustrated the significance of both natural as well as anthropogenic factors on riverine ecology. Strong positive loading was observed with SGPT, SGOT, ALP, and platelet. The study signified the need for monitoring the hemato-biochemical responses of fishes in response to alterations in the ecological regime.
Collapse
Affiliation(s)
- Nitish Kumar Tiwari
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Trupti Rani Mohanty
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Subhadeep Das Gupta
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Shreya Roy
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Himanshu Sekhar Swain
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Raju Baitha
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Mitesh Hiradas Ramteke
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Basanta Kumar Das
- National Mission For Clean Ganga Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India.
| |
Collapse
|
17
|
Ibrahim AM, Ghazy M, El-Sayed H, Abd El-Hameed RM, Khalil RG, Korany SM, Aloufi AS, Hammam OA, Morad MY. Histopathological, Immunohistochemical, Biochemical, and In Silico Molecular Docking Study of Fungal-Mediated Selenium Oxide Nanoparticles on Biomphalaria alexandrina (Ehrenberg, 1831) Snails. Microorganisms 2023; 11:microorganisms11030811. [PMID: 36985384 PMCID: PMC10053037 DOI: 10.3390/microorganisms11030811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Daphnia magna and freshwater snails are used as delicate bioindicators of contaminated aquatic habitats. Due to their distinctive characteristics, selenium oxide nanoparticles (SeONPs) have received interest regarding their possible implications on aquatic environments. The current study attempted to investigate the probable mechanisms of fungal-mediated selenium nanoparticles' ecotoxicological effects on freshwater Biomphalaria alexandrina snails and Daphnia magna. SeONPs revealed a toxicological impact on D. magna, with a half-lethal concentration (LC50) of 1.62 mg/L after 24 h and 1.08 mg/L after 48 h. Survival, fecundity, and reproductive rate were decreased in B. alexandrina snails exposed to SeONPs. Furthermore, the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were markedly elevated, while albumin and total protein levels decreased. Histopathological damage in the hermaphrodite and digestive glands was detected by light, electron microscopy, and immunohistochemistry studies. The molecular docking study revealed interactions of selenium oxide with the ALT and AST. In conclusion, B. alexandrina snails and D. magna could be employed as bioindicators of selenium nanomaterial pollution in aquatic ecosystems. This study emphasizes the possible ecological effects of releasing SeONPs into aquatic habitats, which could serve as motivation for regulatory organizations to monitor and control the use and disposal of SeONPs in industry.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahassen Ghazy
- Water Pollution Research Department, National Research Centre, El Tahrir Street, Dokki, Giza 12622, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rehab M Abd El-Hameed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Shereen M Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Olfat A Hammam
- Pathology Departments, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mostafa Y Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
18
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Ecotoxicity risk assessment of copper oxide nanoparticles in Duttaphrynus melanostictus tadpoles. CHEMOSPHERE 2023; 314:137754. [PMID: 36608887 DOI: 10.1016/j.chemosphere.2023.137754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In recent years, copper oxide nanoparticles (CONPs) have gained considerable importance in ecotoxicology studies. CONP ecotoxicity studies on amphibians are limited, particularly on Duttaphrynus melanostictus (D. melanostictus) tadpoles, and most CONP ecotoxicity studies have shown developmental effects on amphibians. Therefore, the present study aimed to determine the ecotoxicity of CONPs in D. melanostictus tadpoles by assessing multi-biomarkers including bioaccumulation, antioxidants, biochemical, haematological, immunological and oxidative stress biomarkers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and physicochemical properties of CONPs. After 30 d of the experiment, blood and organs were collected to measure the levels of multiple biomarkers. The dissolution rate of copper ions in exposed media was observed in all studied groups. According to the results, significant (p < 0.05) increase in copper ion bioaccumulation (blood, liver and kidney), oxidative stress and biochemical biomarkers in the blood serum of CONPs exposed tadpoles compared to control tadpoles, which was accompanied by significant variations in morphological and haematological parameters. In contrast to the untreated tadpoles, the CONPs-exposed tadpoles showed statistically significant (p < 0.05) decreases in antioxidants and immunological indices of blood serum. Based on our results, we concluded that the ecotoxicity of CONPs is due to the production of reactive oxygen species (ROS), which can cause oxidative stress in tadpoles, resulting in impairments. According to our knowledge, the present study was the first to use a multi-biomarker ecotoxicity approach on D. melanostictus tadpoles that could be used as an ecological bioindicator to assess aquatic toxicity.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|