1
|
Guo X, Qian J, Ren H, Ding E, Ma X, Zhang J, Qiu T, Lu Y, Sun P, Li C, Li C, Xu Y, Cao K, Lin X, Mao C, Tong S, Tang S, Shi X. Exposure profiles, determinants, and health risks of chemicals in personal care products among healthy older adults from the China BAPE study. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137365. [PMID: 39869979 DOI: 10.1016/j.jhazmat.2025.137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Personal care products (PCPs) are ubiquitously present in the environment, and the associated health risks have been increasingly concerned worldwide. However, knowledge regarding exposure assessments of older adults to these chemicals and their health risks remains largely limited. In the present study, five repeated surveys involving 76 healthy older adults in Jinan, Shandong Province, were performed to quantify urinary exposure levels of 14 chemicals in PCPs. Moreover, influencing factors and health risks associated with exposure to these chemicals were thoroughly analyzed. Our findings revealed that methyl paraben (MeP) was the predominant chemical in PCP in the urine of the elderly, with a median concentration of 16.17 μg/L. Dietary intake, particularly fish and milk products, along with exposure to ambient PM2.5, were identified as the primary sources of certain chemicals in PCPs. Additionally, an increased physical activity was associated with decreased concentrations of benzophenone-2 (BP-2) within the body. Risk assessment demonstrated that chemicals in PCPs currently posed minimal health risks to the elderly. Our findings provide substantial references for mitigating the health risks of these chemical exposures in healthy older adults, ultimately safeguarding their overall and physical well-being.
Collapse
Affiliation(s)
- Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiankun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Shandong University, Jinan, Shandong, China
| | - Jiran Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Tian Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Shandong University, Jinan, Shandong, China
| | - Chenlong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Kangning Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Mao
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Akande AA, Borduas-Dedekind N. The gas phase ozonolysis and secondary OH production of cashmeran, a musk compound from fragrant volatile chemical products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39480479 DOI: 10.1039/d4em00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Fragrant personal care products are a subset of volatile chemical products (VCPs), an emerging source of outdoor pollutants capable of impacting air quality. Fragrant molecules, such as musks, are used in perfumes and have been found in aquatic organisms, water bodies, indoor air, and urban environments. Considering the distribution of musk-smelling compounds, there is a need to constrain their atmospheric fate indoors and outdoors. Here, we used a Vocus proton-transfer-reaction time-of-flight mass spectrometer to quantify the atmospheric oxidative fate of cashmeran, a bicyclic musk compound, detected in a commercial perfume alongside galaxolide, astratone and rosamusk. Cashmeran concentrations rose up to 0.35 ppbv representing a mass yield of 0.33 ± 0.04% of the perfume. We determined the second order rate constant of the cyclo-addition of O3 with cashmeran to be (2.78 ± 0.31) × 10-19 cm3 molec-1 s-1 at 293 ± 1 K in N2. This rate constant corresponds to an 85 day lifetime against 20 ppbv of O3. Then, we repeated the ozonolysis experiments in air with 20% O2 and measured significant secondary OH concentrations up to 5.1 × 105 molec cm-3. Consequently, the lifetime of cashmeran in our experiment was shortened to 5 h. Thus, the oxidation of fragrant molecules, like cashmeran, could alter the oxidative capacity of indoor air via the production of secondary OH radicals. Furthermore, our results show that cashmeran is long-lived and could serve as a VCP tracer in urban air.
Collapse
Affiliation(s)
- Ayomide A Akande
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
3
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Li J, Lu Y, Chen H, Zheng D, Yang Q, Campos LC. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171344. [PMID: 38432391 DOI: 10.1016/j.scitotenv.2024.171344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yu Lu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA
| | - Huanfa Chen
- Centre for Advanced Spatial Analysis, University College London, London WC1E 6BT, UK
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Diao Z, Zhang X, Xu M, Wei F, Xie X, Zhu F, Hui B, Zhang X, Wang S, Yuan X. A critical review of distribution, toxicological effects, current analytical methods and future prospects of synthetic musks in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169872. [PMID: 38199360 DOI: 10.1016/j.scitotenv.2024.169872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.
Collapse
Affiliation(s)
- Zishan Diao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Mengxin Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fenghua Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bin Hui
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaohan Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
6
|
Chen Y, Yu Y, Wang S, Han J, Fan M, Zhao Y, Qiu J, Yang X, Zhu F, Ouyang G. Molecularly imprinted polymer sheathed mesoporous silica tube as SPME fiber coating for determination of tobacco-specific nitrosamines in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167655. [PMID: 37806576 DOI: 10.1016/j.scitotenv.2023.167655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Tobacco-specific nitrosamines (TSNAs) are probably carcinogenic disinfection byproducts eliciting health risk concerns. The determination and surveillance of TSNAs in water is still cumbersome due to the lack of advanced sample preparation methods. Herein, we prepared a solid phase microextraction (SPME) fiber coated with the molecularly imprinted polymer (MIP) sheathed mesoporous silica tube (MST) composite material, and developed a highly efficient, selective, and sensitive method for the determination of five TSNAs in water. Benefiting from the TSNAs-specific recognition of MIP and the increased specific surface area derived from MST, the MIP@MST fiber exhibited excellent extraction performance for TSNAs, which was much superior to the commercially available SPME fibers. By coupling to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), the outstanding analytical merits such as low method detection limits (ranging 0.1-6.7 ng L-1) and good reproducibility (intra-fiber and inter-fiber relative standard deviations ranging 4.1 %-11.6 % and 3.5 %-12.2 %, respectively) were achieved with the consumption of 8 mL water sample and 100 μL methanol solvent in 50 min. The feasibility of the SPME-HPLC-MS/MS method was demonstrated in tap water and chloraminated source water, with relative recoveries for the five TSNAs ranging from 85.2 % to 108.5 %. In result, none of the TSNAs were found in the tap water samples, while 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-Butanol (NNAL) were detected in the chloraminated source water samples. The rapid and convenient SPME-HPLC-MS/MS method developed in this study offers a powerful tool for monitoring TSNAs in water.
Collapse
Affiliation(s)
- Yuemei Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaohan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiajia Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengge Fan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xin Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
7
|
Leopold M, Krlovic N, Schagerl M, Schelker J, Kirschner AKT. Short-term impacts of a large cultural event on the microbial pollution status of a pre-alpine river. JOURNAL OF WATER AND HEALTH 2023; 21:1898-1907. [PMID: 38153719 PMCID: wh_2023_232 DOI: 10.2166/wh.2023.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Rivers are impacted by microbial faecal pollution from various sources. We report on a short-term faecal pollution event at the pre-alpine Austrian river Traisen caused by the large cultural event FM4 Frequency music festival, with around 200,000 visitors over 4 days. We observed a massive increase of the faecal indicator bacteria (FIB) intestinal enterococci during the event, while Escherichia coli concentrations were only slightly elevated. This increase poses a significant potential health threat to visitors and people recreating downstream of the festival area. A plausible explanation for the uncoupling of the two FIBs may have been a differential persistence caused by a combination of factors including water temperature, solar radiation, and the excessive presence of personal care products (PCPs) in the river water. However, a potential impact of PCPs on FIB assay performance cannot be ruled out. Our observations are relevant for other intensively used bathing sites; detailed investigations on persistence and assay performance of the FIB in response to different ingredients of PCPs are highly recommended. We conclude that for future festivals at this river or other festivals taking place under similar settings, a more effective management is necessary to reduce deterioration in water quality and minimise health risks.
Collapse
Affiliation(s)
- Melanie Leopold
- Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Krems, Austria; Inter-University Cooperation Centre Water & Health, www.waterandhealth.at, Austria; Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Vienna, Austria; The authors have equally contributed to the manuscript. E-mail:
| | - Nikola Krlovic
- Technische Universität Wien, Institute for Water Quality and Resource Management, Wien, Austria; The authors have equally contributed to the manuscript
| | - Michael Schagerl
- University of Vienna, Department of Functional and Evolutionary Ecology, Vienna, Austria
| | - Jakob Schelker
- WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria; Biotop P&P International GmbH, Weidling, Austria
| | - Alexander K T Kirschner
- Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Krems, Austria; Inter-University Cooperation Centre Water & Health, www.waterandhealth.at, Austria; Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Microbiology, Vienna, Austria
| |
Collapse
|
8
|
He H, Wen HP, Liu JP, Wu CC, Mai L, Zeng EY. Hydrophobic organic contaminants affiliated with polymer-specific microplastics in urban river tributaries and estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166415. [PMID: 37598956 DOI: 10.1016/j.scitotenv.2023.166415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to microplastics (MPs) and hydrophobic organic contaminants (HOCs) combined at high concentrations may induce adverse effects to aquatic organisms in laboratory-scale studies. To determine environmentally relevant concentrations of HOCs in MPs, it is essential to understand the occurrence of MP-affiliated HOCs in the aquatic environment. Here we report the occurrences of HOCs affiliated with polymer-specific floating MPs from 12 tributaries and three estuaries in the Pearl River Delta, South China. Target HOCs include nine synthetic musks (SMs), 14 ultraviolet adsorbents (UVAs), 15 polycyclic aromatic hydrocarbons (PAHs), eight polybrominated diphenyl ethers (PBDEs), and 14 polychlorinated biphenyls (PCBs). Average concentrations of MP-affiliated ∑9SM, ∑14UVA, ∑15PAH, ∑8PBDE, and ∑14PCB were 1790, 5550, 1090, 412, and 107 ng g-1, respectively. The average concentrations of HOCs affiliated with MPs of different polymer types were 9790, 7220, 72,500, and 55,800 ng g-1 for polyethylene (PE), polypropylene, polystyrene, and other MPs, respectively. As the concentration of PE was the highest among all MPs at the average concentration of 0.77 mg m-3, the monthly outflow of PE-affiliated HOCs accounted for the largest proportion (46 %) in the outflow of MP-affiliated HOCs (2.8 g) to the coastal ocean via three estuaries. These results suggest that HOCs were highly concentrated in MPs and varied among different chemicals and polymer types. Due to the differences of polymer characteristics and half-life of affiliated chemicals, future toxicology studies concerning exposure to these combined pollutants may need to specify polymer types and their affiliated chemicals.
Collapse
Affiliation(s)
- Hui He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hui-Ping Wen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ji-Peng Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chen-Chou Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lei Mai
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Abdou M, Monteiro CE, Brito P, Neuparth T, Pinheiro M, Santos M, Caetano M. Platinum Group Element distribution in water and marine biota from two impacted estuarine environments (Douro and Ave estuaries, Portugal). MARINE POLLUTION BULLETIN 2023; 192:114990. [PMID: 37167661 DOI: 10.1016/j.marpolbul.2023.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
Platinum Group Elements (PGEs) are contaminants of emerging environmental concern considering their continuous increasing use and subsequent release in the environment. While recent field studies provided PGE levels in seawater, scarce knowledge still exists regarding PGE contamination in marine organisms, especially for rhodium (Rh). Water, macroalgae and mussels were sampled along two representative urbanized estuarine systems and adjacent coastal areas (Douro and Ave estuaries, Portugal). Rhodium and platinum (Pt) concentrations were quantified through both stripping voltammetry and mass spectrometry in collected samples. Spatial mapping of PGE contamination was, to a certain extent, correlated with proxies of urban effluents. The use of Pt/Rh ratios reflected the dominant influence of PGE traffic emissions along the Douro and inputs from various sources (including industries) on the Ave Estuary. Macroalgae and mussels PGE concentrations reflected urban pressure, amplifying environmental signals, and supporting their relevant use as bioindicators of PGE contamination in estuarine/coastal systems.
Collapse
Affiliation(s)
- Melina Abdou
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Carlos Eduardo Monteiro
- Environmental Biogeochemistry, Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Pedro Brito
- IPMA-Instituto Português do Mar e da Atmosfera, Rua Dr. Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Teresa Neuparth
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marlene Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences of the University of Porto (U.Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences of the University of Porto (U.Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Caetano
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; IPMA-Instituto Português do Mar e da Atmosfera, Rua Dr. Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| |
Collapse
|
10
|
Barbosa MO, Ratola N, Homem V, Pereira MFR, Silva AMT, Ribeiro ARL, Llorca M, Farré M. Per- and Poly-Fluoroalkyl Substances in Portuguese Rivers: Spatial-Temporal Monitoring. Molecules 2023; 28:1209. [PMID: 36770878 PMCID: PMC9921101 DOI: 10.3390/molecules28031209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Eighteen per-and polyfluoroalkyl substances (PFASs) were investigated in surface waters of four river basins in Portugal (Ave, Leça, Antuã, and Cértima) during the dry and wet seasons. All sampling sites showed contamination in at least one of the seasons. In the dry season, perfluorooctanoate acid (PFOA) and perfluoro-octane sulfonate (PFOS), were the most frequent PFASs, while during the wet season these were PFOA and perfluobutane-sulfonic acid (PFBS). Compounds detected at higher concentrations were PFOS (22.6 ng L-1) and perfluoro-butanoic acid (PFBA) (22.6 ng L-1) in the dry and wet seasons, respectively. Moreover, the prospective environmental risks of PFASs, detected at higher concentrations, were evaluated based on the Risk Quotient (RQ) classification, which comprises acute and chronic toxicity. The results show that the RQ values of eight out of the nine PFASs were below 0.01, indicating low risk to organisms at different trophic levels in the four rivers in both seasons, wet and dry. Nevertheless, in the specific case of perfluoro-tetradecanoic acid (PFTeA), the RQ values calculated exceeded 1 for fish (96 h) and daphnids (48 h), indicating a high risk for these organisms. Furthermore, the RQ values were higher than 0.1, indicating a medium risk for fish, daphnids and green algae (96 h).
Collapse
Affiliation(s)
- Marta O. Barbosa
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centre for Research and Intervention in Education (CIIE), Faculdade de Psicologia e de Ciências da Educação, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal
| | - Nuno Ratola
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M. Fernando R. Pereira
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M. T. Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R. L. Ribeiro
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Llorca
- ON-HEALTH Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Marinella Farré
- ON-HEALTH Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
11
|
Wang C, Guo Y, Feng L, Pang W, Yu J, Wang S, Qiu C, Li C, Wang Y. Fate of phthalates in a river receiving wastewater treatment plant effluent based on a multimedia model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2124-2137. [PMID: 36378170 DOI: 10.2166/wst.2022.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) can enter environment media by secondary effluent discharge from wastewater treatment plants (WWTP) into receiving rivers, thus posing a threat to ecosystem health. A level III fugacity model was established to simulate the fate and transfer of four PAEs in a study area in Tianjin, China, and to evaluate the influence of WWTP discharge on PAEs levels in the receiving river. The results show that the logarithmic residuals of most simulated and measured values of PAEs are within one order of magnitude with a good agreement. PAEs in the study area were mainly distributed in soil and sediment phases, which accounted for 84.66%, 50.26%, 71.96% and 99.09% for dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), respectively. The upstream advection accounted for 77.90%, 93.20%, 90.21% and 90.93% of the total source of DMP, DEP, DBP and DEHP in the river water, respectively, while the contribution of secondary effluent discharge was much lower. Sensitivity analysis shows that emission and inflow parameters have greater influences on the multimedia distributions of PAEs than physicochemical and environmental parameters. Monte Carlo analysis quantifies the uncertainties and verifies the reliability of the simulation results.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Lixia Feng
- Tianjin United Environmental Protection Engineering Design Co., Ltd, Tianjin 300191, China
| | - Weiliang Pang
- Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufei Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
12
|
Huang J, Ding J, Jiang H, Wang Z, Zheng L, Song X, Zou H. Pharmaceuticals and Personal Care Products across Different Water Bodies in Taihu Lake Basin, China: Occurrence, Source, and Flux. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11135. [PMID: 36078849 PMCID: PMC9517866 DOI: 10.3390/ijerph191711135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Although pharmaceuticals and personal care products (PPCPs) have attracted great attentions, their occurrence characteristics across different water bodies at a basin scale remain poorly understood. To grasp a more comprehensive understanding of PPCP pollution from the perspective of the whole basin, the occurrence, spatial and seasonal variation, source, and flux of thirteen PPCPs across the different environmental compartments of the northern Taihu Lake Basin (TLB) were studied. The results showed that the non-therapeutic pharmaceuticals caffeine (CFI) and n, n-diethyl-m-toluamide (DEET) were the main components across the different environmental compartments. The total concentrations of detected PPCPs ranged from 0.2 to 2437.9 ng/L. Higher concentrations of PPCPs were observed in spring and autumn, which were mainly attributed to seasonal differences in PPCP consumption. Generally, pollution level was higher in industry and agriculture area and in the inner bay and southwest of Taihu Lake. Source apportionment indicated that untreated water was the main source of PPCPs in river waters of the northern TLB. Flux estimation showed that the mean annual flux of PPCPs from northern TLB to Taihu Lake in 2021 was 1.6 t/a, which was higher in comparison with other areas. Overall, the resulting data will be useful to enrich the research of PPCPs in freshwater for environmental investigations.
Collapse
Affiliation(s)
- Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
- Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Hang Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
- Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|