1
|
Zhu Y, Liu S, Chen H, Yu P, Chen C. Evaluating biochar for adsorption of ammonium nitrogen in wastewater:insights into modifications and mechanisms. ENVIRONMENTAL RESEARCH 2025; 277:121615. [PMID: 40239738 DOI: 10.1016/j.envres.2025.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Ammonium nitrogen (NH4+) is a highly recalcitrant pollutant, leading to severe degradation of aquatic ecosystems and posing serious risks to human health. The application of biochar for NH4+ removal from wastewater has gained widespread attention. However, its inherent limitations in adsorption capacity present a significant constraint on its broader practical implementation. To address this limitation, various modification techniques have been developed to endow biochar with a range of physicochemical properties. In this review, a systematic investigation was conducted to assess the efficacy of various modification methods on the adsorptive capacity of biochar for NH4+ in aqueous solutions. Additionally, this review summarizes the adsorption mechanisms which are divided into five categories: hydrogen bonding, pore filling, electrostatic interaction, ion exchange and surface complexation. This review offers valuable insights into the strategies for achieving enhanced adsorption of NH4+ by modified biochar, along with a comprehensive summary of the associated removal mechanisms.
Collapse
Affiliation(s)
- Yuheng Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Sichen Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, PR China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
2
|
Wang Y, Munir T, Wu X, Huang Y, Li B. Phosphorus recovery and reuse: Innovating with biochar in the circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179143. [PMID: 40112550 DOI: 10.1016/j.scitotenv.2025.179143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/29/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Global challenges of phosphorus pollution and scarcity underscore an urgent need for the efficient recycling of this critical resource. Biochar, a sustainable and economical material, has demonstrated significant potential as an adsorbent for phosphorus, offering a viable solution for its recovery from wastewater. Various techniques have been explored to improve the ability of biochar to adsorb inorganic phosphate. While numerous studies have reviewed methods of biochar modification, the underlying adsorption mechanisms, and the thermodynamics and kinetics involved, a thorough examination that addresses the practical challenges of real-world wastewater treatment is currently lacking. This review aims to fill this gap by quantitatively analyzing the impact of coexisting species in wastewater on the adsorption of phosphate and by exploring the potential for simultaneous removal of other contaminants, such as nutrients, heavy metals, and dissolved organic matter. The review also discusses factors that affect the desorption of phosphate from biochar and presents practical applications for biochars post-adsorption. These applications include their use as slow-release phosphorus fertilizers, additives in concrete, and as novel adsorbents for the removal of heavy metals. This comprehensive analysis serves to synthesize current research on phosphate recovery by biochars and to propose practical uses for the adsorbed phosphorus, thereby guiding the development of biochar adsorption technology towards more effective and practical phosphorus management strategies.
Collapse
Affiliation(s)
- Yuxin Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Xiaofeng Wu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| |
Collapse
|
3
|
Shirani Z, Carrasco-Navarro V, Majlesi S, Yli-Pirilä P, Kukkonen JVK, Akkanen J. Efficiency and ecotoxicity of activated biochar in the treatment of artificial wastewater contaminated by pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123224. [PMID: 39504671 DOI: 10.1016/j.jenvman.2024.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Pharmaceuticals are emerging contaminants of global concern due to potential ecotoxicity and persistence in wastewater. Since conventional wastewater treatment plants are not designed to remove micropollutants and the removal efficiency varies compound-specifically, pharmaceuticals pose a risk in the recipient aquatic environments. Adsorption by solid materials such as activated biochar has been suggested to offer a practical removal method. However, not much is known about the environmental risks of the adsorbents used in wastewater treatment. This study aimed to study the efficiency of activated biochar (ACB) to remove low and high concentration of specific pharmaceuticals including diclofenac (DI), tetracycline (TE), and cephalexin (CEP) from Milli-Q water (MQ) and artificial wastewater (AWW). Furthermore, the study evaluated the ecotoxicity of these pharmaceuticals, as well as pristine ACB and ACB loaded with pharmaceuticals (ACB-LP), in both MQ and AWW using Daphnia magna. The adsorbate concentration and matrix affected ACB's removal efficiency. Weaker adsorbent-adsorbate interactions and mass transfer resistance at lower adsorbate concentrations, along with interactions between wastewater constituents and pharmaceuticals were the leading factors contributing to this reduction. These experimental observations indicate practical considerations for using adsorbents in operational wastewater settings. Furthermore, ACB-LPs generally exhibited lower toxicity compared to ACB, attributed to the saturation of free binding sites and reduced adhesion to daphnids. This study highlights the importance of examining the environmental risks of adsorbent materials used in wastewater treatment, particularly given their anticipated future use.
Collapse
Affiliation(s)
- Zahra Shirani
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Soroush Majlesi
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Chemistry, Radiochemistry, P.O. Box 55 (A. I. Virtasen aukio 1), 00014, University of Helsinki, Finland
| | - Pasi Yli-Pirilä
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jussi V K Kukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
4
|
Dang LTC, Phan HVT, Dao MT, Dang TT, Suvokhiaw S, Do NT, Nguyen TAM, Nguyen VK, Hoang LTTT. Facile synthesis of a 3D magnetic graphene oxide/Fe 3O 4/banana peel-derived cellulose composite aerogel for the efficient removal of tetracycline. RSC Adv 2024; 14:34457-34470. [PMID: 39469025 PMCID: PMC11515848 DOI: 10.1039/d4ra04942j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Many initiatives have incorporated graphene oxide (GO) and biomass into aerogels for wastewater treatment. We report on the facile fabrication of a magnetic GO/Fe3O4/banana peel-derived cellulose (bio-cellulose) aerogel using an ultrasound-assisted mechanical mixing method and freeze-drying technique for the removal of tetracycline (TC). The component materials and composite aerogel were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen adsorption-desorption analysis, and vibrating sample magnetometry (VSM). The effects of solution pH and adsorbent dose on the adsorption performance of the synthesized adsorbents were investigated. The adsorption behavior at the equilibrium of the GO/Fe3O4/bio-cellulose aerogel was studied and analyzed using four well-known non-linear models: Langmuir, Freundlich, Sips, and Temkin. The results showed that the experimental data fitted well with the Freundlich and Sips isotherm models. The maximum adsorption capacity achieved from the Sips model was 238.7 mg g-1. The adsorption kinetics were studied and proved to follow the Elovich kinetic model with an initial rate of 0.89 g g-1 min-1. These results confirm the favorable adsorption of TC on the heterogeneous surface that exhibits a wide range distribution of adsorption energies of the desired GO/Fe3O4/bio-cellulose aerogel. The experimental findings demonstrate that the aerogel possesses the notable features of environmental friendliness, cost-effectiveness, and comparatively high TC adsorption capacity. Therefore, utilizing biomass to develop the structure of the magnetic GO-based composite aerogel is significantly promising for antibiotic-containing wastewater treatments.
Collapse
Affiliation(s)
- Lam-Tuan-Cuong Dang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University Thu Dau Mot City Binh Duong 820000 Vietnam
| | - Thanh-Truc Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Ha Noi Vietnam
| | - Soontorn Suvokhiaw
- Department of Chemistry, Faculty of Science, Silpakorn University Nakhon Pathom 73000 Thailand
| | - Nhan-Tam Do
- Faculty of Natural Science Education, Dong Nai University Dong Nai Vietnam
| | - Thi-Anh-Minh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang Vietnam
- School of Engineering & Technology, Duy Tan University Da Nang Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
5
|
Qu J, Peng W, Wang M, Cui K, Zhang J, Bi F, Zhang G, Hu Q, Wang Y, Zhang Y. Metal-doped biochar for selective recovery and reuse of phosphate from water: Modification design, removal mechanism, and reutilization strategy. BIORESOURCE TECHNOLOGY 2024; 407:131075. [PMID: 38996847 DOI: 10.1016/j.biortech.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) plays a crucial role in plant growth, which can provide nutrients for plants. Nonetheless, excessive phosphate can cause eutrophication of water, deterioration of aquatic environment, and even harm for human health. Therefore, adopting feasible adsorption technology to remove phosphate from water is necessary. Biochar (BC) has received wide attention for its low cost and environment-friendly properties. However, undeveloped pore structure and limited surface groups of primary BC result in poor uptake performance. Consequently, this work introduced the synthesis of pristine BC, parameters influencing phosphate removal, and corresponding mechanisms. Moreover, multifarious metal-doped BCs were summarized with related design principles. Meanwhile, mechanisms of selective phosphate adsorption by metal-doped BC were investigated deeply, and the recovery of phosphate from water, and the utilization of phosphate-loaded adsorbents in soil were critically presented. Finally, challenges and prospects for widespread applications of selective phosphate adsorption were proposed in the future.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ke Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingdong Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
6
|
Kiani Kori A, Ramavandi B, Mahmoodi SMM, Javanmardi F. Magnetization and ZIF-67 modification of Aspergillus flavus biomass for tetracycline removal from aqueous solutions: A stable and efficient composite. ENVIRONMENTAL RESEARCH 2024; 252:118931. [PMID: 38615794 DOI: 10.1016/j.envres.2024.118931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
In the present work, the biomass of Aspergillus flavus (AF) was modified using magnetic nanoparticles MnFe2O4 and metal-organic framework of ZIF-67, and its ability to remove tetracycline antibiotic (TCH) was investigated. With the help of physicochemical tests, AF biomass modification with ZIF-67 and MnFe2O4 magnetic nanoparticles was confirmed. Based on the BET value, AF-MnFe2O4-ZIF-67 (139.83 m2/g) has a higher surface value than AF (0.786 m2/g) and AF/MnFe2O4 (17.504 m2/g). Also, the magnetic saturation value revealed that the modified biomass can be isolated from the treated solution using a simple magnetic field. Maximum TCH elimination (99.04%) using AF-MnFe2O4-ZIF-67 was obtained at pH 7, adsorber mass of 1 g/L, adsorption time of 40 min, and TCH content of 10 mg/L. The thermodynamic study indicated that the TCH abatement using the desired composite is spontaneous and exothermic. The experimental results showed that the adsorption process is compatible with the pseudo-second-order kinetic and Freundlich model. The maximum adsorption capacity for AF, AF-MnFe2O4, and AF-MnFe2O4-ZIF-67 was quantified to be 9.75 mg/g, 25.59 mg/g, and 43.87 mg/g, respectively. The reusability of the desired adsorbers was examined in up to 8 steps. The outcomes showed that the adsorbers can be used several times in TCH elimination. The provided composite can remove TCH from hospital wastewater, so it can be suggested for use in water and wastewater treatment works.
Collapse
Affiliation(s)
- Akram Kiani Kori
- Department of Microbiology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | | - Farahnaz Javanmardi
- Department of Microbiology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
7
|
Zhang B, Jin Y, Lin J, Guo Z, Chen G, Su Y, Yu X, Tang S, Chen S, Li J. Biochar with enhanced performance prepared based on "graphite-structure regulation" conjecture designed to effectively control water pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172973. [PMID: 38705294 DOI: 10.1016/j.scitotenv.2024.172973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
In this work, corn straw was used as raw material, Hummers method and activation were used to adjust the graphite structure in biochar, and preparing straw based biochar (H-BCS) with ultra-high specific surface area (3441.80 m2/g), highly total pore volume (1.9859 cm3/g), and further enhanced physicochemical properties. Compared with untreated straw biochar (BCS), the specific surface area and total pore volume of H-BCS were increased by 47.24 % and 55.85 %, respectively. H-BCS showed good removal ability in subsequent experiments by using chloramphenicol (CP), hexavalent chromium (Cr6+), and crystal violet (CV) as adsorption models. In addition, the adsorption capacities of H-BCS (CP: 1396.30 mg/g, Cr6+: 218.40 mg/g, and CV: 1246.24 mg/g) are not only higher than most adsorbents, even after undergoing 5 cycles of regeneration, its adsorption capacity remains above 80 %, indicating significant potential for practical applications. In addition, we also speculated and analyzed the conjecture about the "graphite-structure regulation" during the preparation process, and finally discussed the possible mechanism during the adsorption processes. We hope this work could provide a new strategy to solve the restriction of biochar performance by further exploring the regulation of graphite structure in carbon materials.
Collapse
Affiliation(s)
- Bolun Zhang
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiping Jin
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiacheng Lin
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ziyu Guo
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yingjie Su
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaoxiao Yu
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Shanshan Tang
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Siji Chen
- Jilin Agricultural University, College of Life Sciences, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Jian Li
- Yanbian Academy of Agricultural Sciences, Yanji 133001, China
| |
Collapse
|
8
|
Wang S, Wang Y, Wang X, Sun S, Zhang Y, Jiao W, Lin D. Study on Adsorption of Cd in Solution and Soil by Modified Biochar-Calcium Alginate Hydrogel. Gels 2024; 10:388. [PMID: 38920934 PMCID: PMC11202433 DOI: 10.3390/gels10060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Contamination with cadmium (Cd) is a prominent issue in agricultural non-point source pollution in China. With the deposition and activation of numerous Cd metal elements in farmland, the problem of excessive pollution of agricultural produce can no longer be disregarded. Considering the issue of Cd pollution in farmland, this study proposes the utilization of cross-linked modified biochar (prepared from pine wood) and calcium alginate hydrogels to fabricate a composite material which is called MB-CA for short. The aim is to investigate the adsorption and passivation mechanism of soil Cd by this innovative composite. The MB-CA exhibits a higher heavy metal adsorption capacity compared to traditional biochar and hydrogel due to its increased oxygen-containing functional groups and heavy metal adsorption sites. In the Cd solution adsorption experiment, the highest Cd2+ removal rate reached 85.48%. In addition, it was found that the material also has an excellent pH improvement effect. Through the adsorption kinetics experiment and the soil culture experiments, it was determined that MB-CA adheres to the quasi-second-order kinetic model and is capable of adsorbing 35.94% of Cd2+ in soil. This study validates the efficacy of MB-CA in the adsorption and passivation of Cd in soil, offering a novel approach for managing Cd-contaminated cultivated land.
Collapse
Affiliation(s)
| | - Yajun Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (S.W.)
| | | | | | | | | | - Dasong Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (S.W.)
| |
Collapse
|
9
|
Zeng Y, Xu L, Su J, Liu S, Ali A, Zhang P, Cao S. Denitrification driven by additional ferrous (Fe 2+) and manganous (Mn 2+) and removal mechanism of tetracycline and cadmium (Cd 2+) by biogenic Fe-Mn oxides. ENVIRONMENTAL RESEARCH 2024; 246:118159. [PMID: 38218519 DOI: 10.1016/j.envres.2024.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.
Collapse
Affiliation(s)
- Yuxin Zeng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Sahu JN, Dhaouadi F, Sellaoui L, Khor LX, Lee SY, Daud WMAW, Chebaane S, Bouzidi M, Guergueb M, Bonilla-Petriciolet A, Lamine AB. Physicochemical assessment of ammonium adsorption using a palm shell-based adsorbent activated with acetic acid: experimental and theoretical studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27980-27987. [PMID: 38526713 DOI: 10.1007/s11356-024-33002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.
Collapse
Affiliation(s)
- Jaya Narayan Sahu
- Institute of Chemical Technology, Faculty of Chemistry, University of Stuttgart, D-70550, Stuttgart, Germany
- South Ural State University (National Research University), Chelyabinsk, Russian Federation, 454080
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Department of Physics, Faculty of Sciences of Monastir, Monastir University, 5000, Monastir, Tunisia
| | - Lotfi Sellaoui
- Laboratory of Quantum and Statistical Physics, LR18ES18, Department of Physics, Faculty of Sciences of Monastir, Monastir University, 5000, Monastir, Tunisia.
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal, 4054, Sousse, Tunisia.
| | - Lean Xin Khor
- Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo-Ying Lee
- Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Mohd Ashri Wan Daud
- Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saleh Chebaane
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2240, Ha'il, Saudi Arabia
| | - Mohamed Bouzidi
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2240, Ha'il, Saudi Arabia
- Laboratoire de recherche sur les Hétéro-Epitaxies et Applications (LRHEA), Departement de Physique, Faculté des Sciences de Monastir, Université de Monastir, 5000, Monastir, Tunisia
| | - Mouhieddinne Guergueb
- Laboratory of Physico-Chemistry of Materials, Department of Physics, University of Monastir, 5000, Monastir, Tunisia
| | - Adrian Bonilla-Petriciolet
- Department of Chemical Engineering, InstitutoTecnológico de Aguascalientes, Aguascalientes, 20256, México
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics, LR18ES18, Department of Physics, Faculty of Sciences of Monastir, Monastir University, 5000, Monastir, Tunisia
| |
Collapse
|
11
|
Wu X, Quan W, Chen Q, Gong W, Wang A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024; 29:1005. [PMID: 38474517 PMCID: PMC10935008 DOI: 10.3390/molecules29051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.
Collapse
Affiliation(s)
- Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| |
Collapse
|
12
|
Wang S, Chen Y, Ge S, Liu Z, Meng J. Adsorption characterization of tetracycline antibiotics on alkali-functionalized rice husk biochar and its evaluation on phytotoxicity to seed germination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122420-122436. [PMID: 37973778 DOI: 10.1007/s11356-023-30900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
This work presented adsorption characteristics of tetracycline antibiotics (TCs) on KOH-functionalized rice husk biochar pyrolyzed at 700 °C (KBC700) and evaluation on phytotoxicity of TCs-adsorbed aqueous phase to seed germination. Specifically, KBC700 gained eightfold rise in specific surface area by KOH activation. Predominant monolayer chemisorption helped KBC700 control TCs, and spontaneous and exothermic features were identified by thermodynamic studies. KBC700 could efficiently work in a wide pH range (4.5 ~ 9.5), as well as in simulated eutrophic water and co-existing cationic solution. Humic acid exerted negative impact on TCs disposal. Outstanding regeneration capability and stability were also found during adsorption-desorption cycles. Mechanism discussion implied predominant pore filling and π-π interaction accompanied by hydrogen bonding and electrostatic interaction involved in TCs-removal process. Importantly, less phytotoxicity to seed germination was found in TCs-adsorbed aqueous phase. Collectively, these findings contribute to adsorption properties recognition and subsequent application for KOH-modified rice rusk biochar in environmental TCs remediation.
Collapse
Affiliation(s)
- Siyu Wang
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Yixuan Chen
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Shaohua Ge
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Zunqi Liu
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
13
|
Wang J, Wei X, Kong H, Zheng X, Guo H. Hydrothermal Ammonia Carbonization of Rice Straw for Hydrochar to Separate Cd(II) and Zn(II) Ions from Aqueous Solution. Polymers (Basel) 2023; 15:4548. [PMID: 38231969 PMCID: PMC10708519 DOI: 10.3390/polym15234548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Hydrochar is considered to be a good adsorbent for the separation of metal ions from aqueous solutions. However, the yield of hydrochar from raw straw is generally low, because the hydrothermal carbonization occurs via dehydration, polymerization, and carbonization. In this work, various hydrochar samples were prepared from rice straw with nitrogen and phosphorus salt; moreover, toilet sewage was used instead of nitrogen, and phosphorus salt and water were used to promote the polymerization and carbonization process. The modified carbon was characterized using XRD, XPS, SEM, and FTIR, and the adsorption capacity was investigated. A significant increase in hydrochar yield was observed when toilet sewage was used as the solvent in the hydrothermal carbonization process. The adsorption capacity of N/P-doped rice straw hydrochar for Cd2+ and Zn2+ metal ions was 1.1-1.4 times higher than that those using the rice straw hydrochar. The Langmuir models and pseudo-second-order models described the metal adsorption processes in both the single and binary-metal systems well. The characterization results showed the contribution of the surface complexation, the electrostatic interaction, the hydrogen bond, and the ion exchange to the extraction of Cd2+ and Zn2+ using N/P-doped rice straw hydrochar.
Collapse
Affiliation(s)
- Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hao Kong
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
14
|
Wang Y, Li D, Liu H, Wu D, Ai Y, Li J, Xu L, Liu W, Qu J, Tao Y, Wang J, Wang J, Zhang Y. Screening the optimal modified biochar for nitrogen retention in black soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113088-113104. [PMID: 37848797 DOI: 10.1007/s11356-023-30295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Reducing the environmental problems caused by nitrogen loss and nitrogen pollution is of great significance. The addition of biochar to soil is a new method for increasing nitrogen interception due to the special structural and physicochemical properties of biochar. The optimal modified biochar was screened out after acid-base modification and batch adsorption test in this paper. And then the effects of different soil and biochar mixing methods on soil physicochemical properties and nitrogen adsorption and retention were explored through soil column leaching test. The results showed that the biochar with a pyrolysis temperature of 700 °C had the best adsorption effect on nitrogen after being modified by 0.1 mol/L HCI, and the adsorption capacity of nitrate nitrogen reached 121.46 mg/g. The adsorption process of ammonia nitrogen and nitrate nitrogen conformed to the Langmuir model and was mainly homogeneous monolayer. After mixing the selected modified biochar with black soil, the pH increased by 4.77%, the content of ammonia nitrogen increased by 4.89%, and the nitrate content increased by 16.62%. In this study, the adsorption effect of biochar on nitrogen in black soil was discussed, so as to explore the optimal use of biochar in soil, which provided some reference basis for the relevant research.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dannan Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hechun Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Di Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yunhe Ai
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Liang Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianzhi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
15
|
Jiang W, Cai Y, Liu D, Shi Q, Wang Q. Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline. ENVIRONMENTAL RESEARCH 2023; 235:116549. [PMID: 37474093 DOI: 10.1016/j.envres.2023.116549] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
Adsorption was an available way to eliminate Tetracycline (TC) from waste water. Suaeda biochar (800SBC) and iron modified biochar (Fe-800SBC) were prepared using pyrolysis under oxygen-limiting conditions. BET and SEM showed that the surface of Fe-800SBC was rougher, and the specific surface area (SBET) was 7 times that of 800SBC. There existed pore filling, ion exchange, metal ion complexation, hydrogen bonds and cation-π interaction mechanism. Both 800SBC and Fe-800SBC conformed to quasi-second-order kinetics model, belonged to chemisorption. Fe-800SBC conformed to Elovich model too. The adsorption process of 800SBC conformed to Freundlich and Sips L-F models, Fe-800SBC conformed to the Sips L-F and Temkin models, identifying the presence of physical and chemical adsorption during adsorption. Response surface method (RSM) was used to optimize important process parameters. The quadratic model was sufficient to predict TC removal response in the range of studied parameters.
Collapse
Affiliation(s)
- Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qixian Shi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
16
|
He L, Wang D, Zhu T, Lv Y, Li S. Pyrolysis recycling of pig manure biochar adsorption material for decreasing ammonia nitrogen in biogas slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163315. [PMID: 37028657 DOI: 10.1016/j.scitotenv.2023.163315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Biochar adsorption materials have a good removal effect on ammonia nitrogen in piggery biogas slurry. However, the cost of biochar adsorption material is still high. If these materials can be recycled several times, the cost can be significantly reduced. Therefore, this paper investigated a new process of biochar adsorption material (C@Mg-P) pyrolysis cycle for reducing ammonia nitrogen in piggery biogas slurry. The effects of pyrolysis process conditions (pyrolysis temperature and pyrolysis time) and number of recycling times on reducing ammonia nitrogen in biogas slurry by C@Mg-P were studied, a preliminary investigation on the reaction mechanism of C@Mg-P for reducing ammonia nitrogen in biogas slurry was conducted, and the economic feasibility of the pyrolysis recycling process was analyzed. It was found that the NH3-N elimination efficiency by C@Mg-P was 79.16 % under the optimal conditions of 0.5 h and 100 °C. Second, C@Mg-P removed 70.31 % NH3-N after recycling 10 times. Chemical precipitation, ion exchange, physical adsorption and electrostatic attraction were the potential reaction mechanisms for NH3-N reduction by C@Mg-P. Moreover, C@Mg-P had a good decolorization effect on piggery biogas slurry with a 72.56 % decolorization rate. Compared with the non-pyrolyzed recycling process, the proposed process saved 80 % of the cost, thus representing an economically possible approach for pig manure biochar application in wastewater denitrification treatment.
Collapse
Affiliation(s)
- Lintong He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Dehan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China.
| | - Tianlang Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Yongzhen Lv
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Sicheng Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| |
Collapse
|
17
|
Wang J, Riaz M, Babar S, Xia H, Li Y, Xia X, Wang X, Jiang C. Iron-modified biochar reduces nitrogen loss and improves nitrogen retention in Luvisols by adsorption and microbial regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163196. [PMID: 37004773 DOI: 10.1016/j.scitotenv.2023.163196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., β-glucosidase (βG), β-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.
Collapse
Affiliation(s)
- Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
18
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
19
|
Tang A, Wang Q, Wan H, Kang S, Xie S, Chen J, He J, Liang D, Huang A, Shi J, Luo X. Phosphorus biorecovery from wastewater contaminated with multiple nitrogen species by a bacterial consortium. BIORESOURCE TECHNOLOGY 2023; 381:129082. [PMID: 37100300 DOI: 10.1016/j.biortech.2023.129082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Recovering finite and non-substitutable phosphorus from liquid waste streams through bio-mediated techniques has attracted increasing interest, but current approaches are incredibly dependent on ammonium. Herein, a process to recover phosphorus from wastewater under multiple nitrogen species conditions was developed. This study compared the effects of nitrogen species on the recovery of phosphorus resources by a bacterial consortium. It found that the consortium could not only efficiently utilize ammonium to enable phosphorus recovery but also utilize nitrate via dissimilatory nitrate reduction to ammonium (DNRA) to recover phosphorus. The characteristics of the generated phosphorus-bearing minerals, including magnesium phosphate and struvite, were evaluated. Furthermore, nitrogen loading positively influenced the stability of the bacterial community structure. The genus Acinetobacter was dominant under nitrate and ammonium conditions, with a relatively stable abundance of 89.01% and 88.54%, respectively. The finding may provide new insights into nutrient biorecovery from phosphorus-containing wastewater contaminated with multiple nitrogen species.
Collapse
Affiliation(s)
- Aiping Tang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qingyao Wang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiqin Wan
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shitian Kang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shuixia Xie
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jiali Chen
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jiali He
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Donghui Liang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China
| | - Anping Huang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
20
|
Zhang F, Wang J, Tian Y, Liu C, Zhang S, Cao L, Zhou Y, Zhang S. Effective removal of tetracycline antibiotics from water by magnetic functionalized biochar derived from rice waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121681. [PMID: 37087086 DOI: 10.1016/j.envpol.2023.121681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The effective removal of tetracycline antibiotics (TCs) from water is of great significance and remains a big challenge. In this work, a novel magnetized biochar (magnetic functionalized carbon microsphere, MF-CMS) was prepared by the coupling hydrothermal carbonization and pyrolysis activation of starch-rich rice waste using ZnCl2 and FeCl3 as activators. As the MF-CMS dose was 2.0 g/L, the initial concentration of TCs was 100 mg/L, the removal rates of tetracycline, doxycycline, oxytetracycline, and chlortetracycline were 96.02%, 96.10%, 96.52%, and 85.88%, respectively. The best modeled on pseudo second order, Langmuir adsorption model, and intraparticle diffusion kinetic models suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. TCs were efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups (such as γ-Fe2O3 and FeOOH). The removal rates of TCs after five cycles approximately decreased by 20%. And the cycling and metal ion release experiments of MF-CMS indicated that MF-CMS had good reusability, stability, and safety. The estimated cost of preparing MF-CMS is 5.91 USD per kg, and 1 kg of MF-CMS (consuming 8 kg of waste rice) can approximately treat 0.55 tons of TCs wastewater. Overall, the magnetic biochar derived from starch-rich rice waste as an adsorbent has promising and effective for the removal of TCs from water, but also provides a new idea for the resourceful treatment of solid waste.
Collapse
Affiliation(s)
- Fangfang Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Yijun Tian
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
21
|
Enhancement on Removal of Oxytetracycline in Aqueous Solution by Corn Stover Biochar: Comparison of KOH and KMnO4 Modifications. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Liao X, Chen C, Liang Z, Zhao Z, Cui F. Selective adsorption of antibiotics on manganese oxide-loaded biochar and mechanism based on quantitative structure-property relationship model. BIORESOURCE TECHNOLOGY 2023; 367:128262. [PMID: 36343776 DOI: 10.1016/j.biortech.2022.128262] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, MnCl2-impregnated biomass was oxygen-limited pyrolyzed to produce manganese oxide-loaded biochar (MBC), its adsorption behaviors and influencing factors on tetracycline (TTC), norfloxacin (NOR), and sulfamethoxazole (SMX) were systematically investigated. Three antibiotics exhibited enhanced adsorption behavior on MBC, with maximum adsorption capacity as accurately described by Sips isotherm: TTC (534 mg/g) > NOR (67 mg/g) > SMX (28 mg/g). Hydrogen bonding, n/π-π interactions, electrostatic interaction, surface coordination, and hydrophobic interaction are the major mechanisms for the improved adsorption. Manganese oxide particles on MBC promoted surface coordination and hydrogen bonding. Antibiotic molecules with more hydroxyl oxygen-containing functional groups are more susceptible to migrate to biochar surfaces and to be adhered. Moreover, the quantitative structure-property relationship (QSPR) model was constructed and revealed that hydrogen bonding and π-π interactions were crucial for tetracycline antibiotics selective adsorption. Hence, MBC was a prospective adsorbent with promising applications for antibiotic removal in sewage processing.
Collapse
Affiliation(s)
- Xinyi Liao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Chen Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhijie Liang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
23
|
Effects of KMnO4 pre- and post-treatments on biochar properties and its adsorption of tetracycline. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Zhang W, Huang T, Ren Y, Yang S, Zhao X, Yuan M, Wang J, Tu Q. A multifunctional chitosan composite aerogel for PPCPs adsorption. Carbohydr Polym 2022; 298:120102. [DOI: 10.1016/j.carbpol.2022.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
|
25
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
26
|
Qiu B, Shao Q, Shi J, Yang C, Chu H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121925] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Zhao Y, Yang H, Xia S, Wu Z. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57773-57789. [PMID: 35352229 DOI: 10.1007/s11356-022-19870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Thalia dealbata Fraser-derived biochar was prepared at different carbonization temperatures to remove nutrients in aqueous solution. Thermogravimetry/differential thermogravimetry (TG/DTG) was used to analyze the carbonization and decomposition procedure of Thalia dealbata Fraser. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential, and N2 adsorption-desorption isotherms were employed to characterize the prepared biochar. The carbonization temperature obviously effected the physical and chemical properties of biochar. The adsorption efficiency of ammonia (NH4+-N), nitrate (NO3--N), and phosphate (PO43-) adsorption on biochar was tested. Pseudo-first-order kinetic, pseudo-second-order kinetic, and intra-particle diffusion kinetic models were used to fit adsorption kinetic. Langmuir and Freundlich models were used to fit adsorption isotherms. The theoretical adsorption capacity of NH4+-N, NO3--N, and PO43- on biochar was 5.8 mg/g, 3.8 mg/g, and 1.3 mg/g, respectively. This study provides the insights for effect of carbonization temperature on biochar preparation and application.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| |
Collapse
|
28
|
Adsorptive behavior of phosphorus onto recycled waste biosolids after being acid leached from wastewater sludge. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|