1
|
Stavrinou A, Theodoropoulou MA, Aggelopoulos CA, Tsakiroglou CD. Phenanthrene sorption studies on coffee waste- and diatomaceous earth-based adsorbents, and adsorbent regeneration with cold atmospheric plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39884-39906. [PMID: 37166734 PMCID: PMC11511722 DOI: 10.1007/s11356-023-27381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Phenanthrene (PHE) is a polycyclic aromatic hydrocarbon categorized as a high priority organic pollutant being toxic for the ecosystem and human health, and its sorption on natural organic or inorganic substances seems a well-promising method for its removal from water streams. The goals of the present work are (i) to assess the capacity of low-cost adsorbents fabricated by treating coffee wastes and diatomaceous earth to remove PHE from water; (ii) to elucidate the role of the pore structure on PHE sorption dynamics; and (iii) to assess the potential to regenerate adsorbents loaded with PHE, by using the novel technology of cold atmospheric plasma (CAP). Diatomaceous earth (DE) and DE pre-treated with sodium hydroxide (NaOH) or phosphoric acid (H3PO4) were chosen as inorganic adsorbents. Coffee waste (CW) and activated carbons (AC) produced from its pyrolysis at 800 °C (CWAC), either untreated (CWAC-800) or pre-treated with NaOH (CWAC-NaOH-800) and H3PO4 (CWAC-H3PO4-800), were chosen as organic adsorbents. The adsorbents were characterized with nitrogen adsorption-desorption isotherms, attenuated total reflectance-Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and mercury intrusion porosimetry. Based on the PHE sorption capacity and pore structure/surface characteristics, the CWAC-NaOH-800 was chosen as the most efficient adsorbent for further equilibrium and kinetic sorption studies. The multi-compartment model was used to describe the PHE sorption dynamics in CWAC-NaOH-800 by accounting for the pore/surface diffusion and instantaneous sorption. The CWAC-NaOH-800 exhibited remarkable values for (i) the specific surface area (SBET = 676.5 m2/g) and meso- and micro-pore volume determined by nitrogen sorption (VLN2 = 0.415 cm3/g); (ii) the macro- and meso-pore volume determined by mercury intrusion porosimetry (VMIP = 3.134 cm3/g); and (iii) the maximum PHE sorption capacity (qmax = 142 mg/g). The percentage of adsorbent recovery after its regeneration with CAP was found to be ~ 35%. From the simulation of sorption dynamics, it was found that at early times, the sorption kinetics is governed by the film diffusion towards the external surface of grains, but at late times, most of the adsorbed mass is transferred primarily to meso-/macro-pores via diffusion, and secondarily to micro-porosity via surface diffusion. Based on the adsorbent characteristics, effect of pH on sorption efficiency, and numerical analysis of sorption dynamics, it was concluded that probably the dominant adsorption mechanism is the π-π interactions between hydrophobic PHE aromatic rings and CWAC-NaOH-800 graphene layers. The high PHE removal efficiency of CWAC-NaOH-800, the successful interpretation of sorption dynamics with the multi-compartment model, and the potential to regenerate PHE-loaded adsorbents with the green and economic technology of CAP motivate a strategy for testing CWACs towards the adsorption of other PAHs, application of adsorbents to real wastewaters, and scaling-up to pilot units.
Collapse
Affiliation(s)
- Anastasia Stavrinou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
- Department of Physics, University of Patras, 26504, Patras, Greece
| | - Maria A Theodoropoulou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
- Hellenic Open University, 26335, Patras, Greece
| | - Christos A Aggelopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
| | - Christos D Tsakiroglou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece.
| |
Collapse
|
2
|
Rani M, Yadav J, Shanker U, Wang C. Recent updates on remediation approaches of environmentally occurring pollutants using visible light-active nano-photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22258-22283. [PMID: 38418782 DOI: 10.1007/s11356-024-32455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Photocatalysis emerges as a potential remedy for the issue of an unreliable light source. Recognized as the most dependable and potent energy source sustaining life on Earth, sunlight offers a promising solution. Sunlight is abundant and free, operational costs associated with running photocatalytic system using nanoparticles are often lower compared to system relying on artificial light source. The escalating problem of water pollution, particularly in highly industrialized nations, necessitates effective wastewater treatment methods. These methods aim to combat elevated pollution levels, encompassing pharmaceuticals, dyes, flame retardants, and pesticide components. Advanced oxidation processes within photocatalytic wastewater treatment exhibit substantial promise for removing complex organic pollutants. Doped nanomaterials, with their enhanced properties, enable efficient utilization of light. Coupled nanomaterials present significant potential in addressing both water and energy challenges by proficiently eliminating persistent pollutants from environment. Photocatalysis when exposed to sunlight can absorb photons and generate e- h + pairs. This discussion briefly outlines the wastewater treatment facilitated by interconnected nanomaterials, emphasizing their role in water-energy nexus. In exploring the capabilities of components within a functional photocatalyst, a comprehensive analysis of both simple photocatalysts and integrated photocatalytic systems is undertaken. Review aims to provide detailed explanation of the impact of light source on photon generation and significance of solar light on reaction kinetics, considering various parameters such as catalyst dosage, pH, temperature, and types of oxidants. By shedding light on these aspects, this review seeks to enhance our understanding of intricate processes involved in photocatalysis and its potential applications in addressing contemporary environmental challenges.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Jyoti Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India, 144027.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Ma L, Zhang H, Wu F, Zheng W, Li C, Xiang J. Enhanced visible light photocatalytic activity of octopod Ag 3PO 4 microcrystals with high index crystal faces. RSC Adv 2024; 14:5400-5405. [PMID: 38348298 PMCID: PMC10859907 DOI: 10.1039/d3ra05996k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
Novel octopod shaped Ag3PO4 microcrystals were successfully fabricated by a simple ion exchange method under the conditions of a hot water bath using [Ag(NH3)2]+ solution and Na2HPO4 solution as the precursors. Meanwhile, sphere and cube shaped Ag3PO4 microcrystals were also prepared followed by changing reaction materials as well as temperature. The surface morphology, microstructure and photocatalytic performance were investigated on the three different shaped crystals respectively. Compared to sphere and cube counterparts, the obtained octopod shaped Ag3PO4 crystals possess 8 symmetric feet with sharp tips and exhibit higher photocatalytic activity and better cycle stability. After further exploring its formation process, UV-vis diffusion reflectance properties as well as photocurrent transient response, it was found that the Ag3PO4 octopod had exposed high index crystal faces, and possessed a narrow band gap as well as high photoexcited transient charge separation efficiency. The results show that the improved photocatalytic activity of octopod shaped Ag3PO4 is mainly due to the synergistic action of the strong light absorption capacity and high carrier separation efficiency. These results highlight the tremendous practical application of octopod Ag3PO4 microcrystals in visible light photocatalysis.
Collapse
Affiliation(s)
- Liang Ma
- School of Materials and Energy, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Honghua Zhang
- School of Materials and Energy, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Fuhua Wu
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Weilu Zheng
- School of Materials and Energy, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Changchen Li
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Junhuai Xiang
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| |
Collapse
|
4
|
Chen X, Chen J, Li N, Li J, He J, Xu S, Zhu Y, Yao L, Lai Y, Zhu R. Ag 3PO 4-anchored La 2Ti 2O 7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121322. [PMID: 36813103 DOI: 10.1016/j.envpol.2023.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Developing wide spectra-responsive photocatalysts has attracted considerable attention in the photocatalytic technology to achieve excellent catalytic activity. Ag3PO4, with strong response to light spectra shorter than 530 nm, shows extremely outstanding photocatalytic oxidation ability. Unfortunately, the photocorrosion of Ag3PO4 is still the biggest obstacle to its application. Herein, the La2Ti2O7 nanorod was used to anchor Ag3PO4 nanoparticles in this study, and a novel Z-Scheme La2Ti2O7/Ag3PO4 heterostructure composite was constructed. Remarkably, the composite showed strong responsive to most of the spectra in natural sunlight. The Ag0 formed in-situ acted as the recombination center of photogenerated carriers, which promoted their efficient separation and contributed to the improved photocatalytic performance of the heterostructure. When the mass ratio of Ag3PO4 in the La2Ti2O7/Ag3PO4 catalyst was 50%, the degradation rate constant of Rhodamine B (RhB), methyl orange (MO), chloroquine phosphate (CQ), tetracycline (TC), and phenol under natural sunlight irradiation were 0.5923, 0.4463, 0.1399, 0.0493, and 0.0096 min-1, respectively. Furthermore, the photocorrosion of the composite was greatly inhibited, 76.49% of CQ and 83.96% of RhB were still degraded after four cycles. Besides, the holes and O2•- played a significant role in RhB degradation, and it included multiple mechanisms of deethylation, deamination, decarboxylation, and cleavage of ring-structures. Moreover, the treated solution can also show safety to the water receiving environment. Overall, the synthesized Z-Scheme La2Ti2O7/Ag3PO4 composite exhibited immense potential for removing various organic pollutants through photocatalytic technology under natural sunlight irradiation.
Collapse
Affiliation(s)
| | | | - Ning Li
- Foshan University, Foshan 528225, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510610, China
| | - Jiesen Li
- Foshan University, Foshan 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou 510670, China
| | - Juhua He
- Foshan University, Foshan 528225, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Song Xu
- Foshan University, Foshan 528225, China
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yao
- Foshan University, Foshan 528225, China
| | - Yiqi Lai
- Foshan University, Foshan 528225, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
5
|
Cao H, Zhou Z, Wang C, Sun H. Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3648. [PMID: 36834341 PMCID: PMC9959379 DOI: 10.3390/ijerph20043648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The bioavailability and mobility of phenanthrene (Phe) adsorbed by multi-walled carbon nanotubes (MWCNTs) may be substantially influenced by nonionic surfactants used both in the synthesis and dispersion of MWCNTs. The adsorption mechanisms of Phe adsorbed onto MWCNTs under the different nonionic surfactants Tween 80 (TW-80) and Triton X-100 (TX-100) in the aqueous phase were investigated in terms of changes in the MWCNTs' compositions and structures. The results showed that TW-80 and TX-100 were easily adsorbed onto MWCNTs. Phe adsorption data onto MWCNTs were better suited to the Langmuir equation than the Freundlich equation. Both TW-80 and TX-100 reduced the adsorption capacity of Phe onto MWCNTs. When TW-80 and TX-100 were added in the adsorption system, the saturated adsorption mass of Phe decreased from 35.97 mg/g to 27.10 and 29.79 mg/g, respectively, which can be attributed to the following three reasons. Firstly, the hydrophobic interactions between MWCNTs and Phe became weakened in the presence of nonionic surfactants. Secondly, the nonionic surfactants covered the adsorption sites of MWCNTs, which caused Phe adsorption to be reduced. Finally, nonionic surfactants can also promote the desorption of Phe from MWCNTs.
Collapse
Affiliation(s)
| | | | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | |
Collapse
|
6
|
Rayaroth MP, Marchel M, Boczkaj G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159043. [PMID: 36174692 DOI: 10.1016/j.scitotenv.2022.159043] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Aromatic hydrocarbons (AHs) are toxic environmental contaminants presented in most of the environmental matrices. Advanced oxidation processes (AOPs) for the removal of AHs in the account of complete mineralization from various environmental matrices have been reviewed in this paper. An in-depth discussion on various AOPs for mono (BTEX) and polyaromatic hydrocarbons (PAHs) and their derivatives is presented. Most of the AOPs were effective in the removal of AHs from the aquatic environment. A comparative study on the degradation of various AHs revealed that the oxidation of the AHs is strongly dependent on the number of aromatic rings and the functional groups attached to the ring. The formation of halogenated and nitrated derivatives of AHs in the real contaminated water containing chloride, nitrite, and nitrate ions seems to be a challenge in using the AOPs in real systems. The phenolic compounds, quinone, alcohols, and aliphatic acids are the important byproducts formed during the oxidation of AHs, initiated by the attack of reactive oxygen species (ROS) on their electron-rich center. In conclusion, AOPs are the adaptable method for the removal of AHs from different environmental matrices. The persulfate-based AOPs were applied in the soil phase removal as an in situ chemical oxidation of AHs. Moreover, the combination of AOPs will be a conclusive solution to avoid or minimize unexpected or other toxic intermediate products and to obtain rapid oxidation of AHs.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Mateusz Marchel
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland
| | - Grzegorz Boczkaj
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
7
|
Naderi A, Hasham Firooz M, Gharibzadeh F, Giannakis S, Ahmadi M, Rezaei Kalantary R, Kakavandi B. Anchoring ZnO on spinel cobalt ferrite for highly synergic sono-photo-catalytic, surfactant-assisted PAH degradation from soil washing solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116584. [PMID: 36403318 DOI: 10.1016/j.jenvman.2022.116584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, the photocatalytic activity of ZnO was effectively improved via its combination with spinel cobalt ferrite (SCF) nanoparticles. The catalytic performance of ZnO@SCF (ZSCF) was investigated in coupling with UV irradiation and ultrasound (US), as a heterogeneous sono-photocatalytic process, for the decontamination of phenanthrene (PHE) from contaminated soil. Soil washing tests were conducted in a batch environment, after extraction assisted by using Tween 80. Several characterization techniques such as XRD, FESEM-EDS, BET, TEM, UV-vis DRS, PL and VSM were utilized to determine the features of the as-prepared catalysts. ZSCF showed an excellent catalytic activity toward degradation of PHE in the presence of US and UV with a significant synergic effect. It was found that more than 93% of PHE (35 mg/L) and 87.5% of TOC could be eliminated by the integrated ZSCF/US/UV system under optimum operational conditions (pH: 8.0, ZSCF: 1.5 g/L, UV power: 6.0 W and US power: 70 W) within 90 min of reaction. After five times of use, ZSCF illustrated good reusability in the decontamination of PHE (87%) and TOC (79%). Quenching tests revealed the contribution of h+, HO• and e- species during PHE degradation over ZSCF/UV/US and an S-scheme photocatalytic mechanisms was proposed for the possible charge transfer routes under the ZSCF system. This study provides the important role of SCF in enhancing the ZnO photocatalytic activity due to its high performance, easy recovery and excellent durability, which it make an efficient and promising catalyst in environmental clean-up applications.
Collapse
Affiliation(s)
- Azra Naderi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hasham Firooz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Gharibzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES, 28040, Madrid, Spain
| | - Mohammad Ahmadi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Liu X, Xu J, Zhang T, Zhang J, Xia D, Du Y, Jiang Y, Lin K. Construction of Ag nanocluster-modified Ag 3PO 4 containing silver vacancies via in-situ reduction: With enhancing the photocatalytic degradation activity of sulfamethoxazole. J Colloid Interface Sci 2023; 629:989-1002. [PMID: 36208611 DOI: 10.1016/j.jcis.2022.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic removal of sulfonamide antibiotics is an effective strategy to solve environmental pollution. Ag3PO4 is a promising anode material for photocatalytic material with photocatalytic degradation ability under ultraviolet light or natural light. Unfortunately, due to its instability, Ag+ could be reduced to Ag0 which loaded onto the surface of Ag3PO4 during the photocatalytic process, causing self-photocorrosion and resulting in the reduction of photocatalytic activity and stability. Herein, Ag3PO4 nanoparticles loaded with Ag nanoclusters containing Ag vacancies (Ag/Ag3PO4-VAg) were constructed by an in-situ reduction strategy to achieve effectively photocatalytic degradation behavior. The Ag nanoclusters loaded on the surface of Ag3PO4 can not only effectively inhibit the self-photocorrosion but also affords a localized surface plasmon resonance (LSPR) effect in the photocatalytic process, thus leading to the efficient generation and rapid transfer of photogenerated carriers behavior. In addition, the Ag vacancies in Ag3PO4 are crucial to increasing the adsorption energy of H2O for further enhancing the capture and accumulation of electrons. In detail, according to Zeta potential analysis, the strong adsorption sites of sulfamethoxazole (SMX) molecules are generated at the interface of Ag and Ag3PO4, which promote the activation of SMX molecules. A 100 ml of 20 mg/L SMX could be completely degraded within 15 min with an apparent rate constant (Kapp) of 0.306 min-1, which far exceeds the activity of most of the photocatalysts. This work may provide an attractive strategy to address the activity, stability of Ag3PO4 and and realizing the green remediation of SMX wastewater.
Collapse
Affiliation(s)
- Xing Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jia Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Tingting Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yanqiu Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
9
|
Li C, Sun T, Yi G, Zhang D, Zhang Y, Lin X, Liu J, Shi Z, Lin Q. Microwave-assisted method synthesis of Ag/CNQDs/g-C3N4 with excellent photocatalytic activity for the degradation of norfloxacin. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Ag3PO4 and Ag3PO4–based visible light active photocatalysts: Recent progress, synthesis, and photocatalytic applications. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde. Molecules 2022; 27:molecules27217292. [PMID: 36364119 PMCID: PMC9653999 DOI: 10.3390/molecules27217292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Conversion of hazardous compounds to value-added chemicals using clean energy possesses massive industrial interest. This applies especially to the hazardous compounds that are frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational loading of carbon quantum dots (CQDs) during the synthetic process. As a bridge, the presence of CQDs between TiO2 and CdIn2S4 improves the electron extraction from TiO2 and supports the charge transport in S-scheme. Thanks to this, the TiO2/CQDs/CdIn2S4 presents outstanding photoactivity in converting the polycyclic aromatic hydrocarbons (PAHs) released by cigarette to value-added benzaldehyde. The optimized photocatalyst performs 87.79% conversion rate and 72.76% selectivity in 1 h reaction under a simulated solar source, as confirmed by FT-IR and GC-MS. A combination of experiments and theoretical calculations are conducted to demonstrate the role of CQDs in TiO2/CQDs/CdIn2S4 toward photocatalysis.
Collapse
|
12
|
Lu H, Deng C, Yu Z, Zhang D, Li W, Huang J, Bao T, Liu X. Synergistic degradation of fluorene in soil by dielectric barrier discharge plasma combined with P25/NH 2-MIL-125(Ti). CHEMOSPHERE 2022; 296:133950. [PMID: 35176305 DOI: 10.1016/j.chemosphere.2022.133950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Plasma techniques to degrade pollutants are generally more efficient than conventional methods, but exist some problems such as high energy consumption, incomplete degradation of pollutants, and secondary pollution caused by highly toxic intermediates. In this study, the dielectric barrier discharge plasma (DBDP) combined with the Ti-based metal organic frameworks (MOFs) catalysts (P25/NH2-MIL-125(Ti)) was used to degrade fluorene in the soil. The synergistic treatment technique used in soil remediation can realize a green and promising treatment efficiency with relatively low energy consumption. Compared with DBDP system alone, the synergetic treatment system of DBDP and P25/NH2-MIL-125(Ti) considerably increased the degradation efficiency of fluorene in the soil to above 90% at 10 min, even with a relatively low discharge voltage (5 kV). The synergistic treatment system achieved 88.8% of fluorene mineralization at 60 min. Optical emission spectroscopy and electron paramagnetic resonance spectroscopy both showed that •OH and •O2- played an important role in the synergetic treatment system. Nine main intermediates were identified using gas chromatography-mass spectrometry and Fourier transform infrared analysis. The main degradation of fluorine in soil was caused by the electronic transition of the catalytic material excited by DBDP, and finally mineralized into CO2 and H2O. The fluorene and its toxic intermediates were effectively removed. This study provides an insight for achieving high efficiency and environmentally friendly application perspective in soil remediation.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Chengxun Deng
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Zhimin Yu
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Dianya Zhang
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Weiping Li
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Jun Huang
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Teng Bao
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, Hefei, 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China.
| |
Collapse
|
13
|
Xu F, Yan J, Chai B, Fan G, Song G. Iron-doped g-C 3N 4 catalysts fabricated by forming Fe–N moieties with outstanding photo-Fenton activity toward tetracycline degradation. NEW J CHEM 2022. [DOI: 10.1039/d2nj03175b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Porous Fe-doped g-C3N4 photo-Fenton catalysts are successfully prepared by a convenient one-step pyrolysis strategy and applied in the degradation of tetracycline hydrochloride.
Collapse
Affiliation(s)
- Fang Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Juntao Yan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Bo Chai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|