1
|
Niknejad P, Mirsoleimani Azizi SM, Ismail S, Dastyar W, Al-Mamun A, Gupta R, Dhar BR. Prospects and challenges of thermal hydrolysis pretreatment of microalgae for enhancing bioenergy and resource recovery in anaerobic bioprocesses. CHEMOSPHERE 2025; 377:144367. [PMID: 40179705 DOI: 10.1016/j.chemosphere.2025.144367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Microalgae have emerged as a promising feedstock for bioenergy production through anaerobic digestion and fermentation, gaining significant attention due to their rapid growth rate, ability to adapt to diverse environments, and rich biochemical composition. However, the recalcitrant nature of the microalgal cell wall necessitates pretreatment to enhance the accessibility of intracellular components and improve overall bioenergy yields from anaerobic digestion/fermentation. Among the various pretreatment methods, the thermal hydrolysis process has proven to be a promising strategy for enhancing the efficiency of bioenergy recovery from microalgal biomass. The benefits of thermal hydrolysis pretreatment of microalgae include improved organic matter solubilization, enhanced digestibility, and increased product yields in subsequent anaerobic digestion/fermentation processes for biomethane, biohydrogen, and volatile fatty acids production. However, thermal pretreatment poses challenges, such as forming future research by-products like furfural and ammonia, which can adversely affect microbial activities and reduce process efficiency. Thus, addressing its associated challenges is critical for maximizing its effectiveness in bioenergy and resource recovery. This review provides a comprehensive analysis of these challenges and offers recommendations for future research, emphasizing the need for optimized pretreatment strategies for advancing the sustainable and efficient use of microalgae in bioenergy production.
Collapse
Affiliation(s)
- Parisa Niknejad
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Sherif Ismail
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Wafa Dastyar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Abduallh Al-Mamun
- Civil and Architectural Engineering, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman; Department of Civil Engineering, Prince Mohammad Bin Fahd University, Dhahran, Saudi Arabia
| | - Rajender Gupta
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Vu HP, Kuzhiumparambil U, Cai Z, Wang Q, Ralph PJ, Nghiem LD. Enhanced biomethane production from Scenedesmus sp. using polymer harvesting and expired COVID-19 disinfectant for pretreatment. CHEMOSPHERE 2024; 356:141869. [PMID: 38575081 DOI: 10.1016/j.chemosphere.2024.141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.
Collapse
Affiliation(s)
- Hang P Vu
- Center for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | | - Zhengqing Cai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China.
| | - Qilin Wang
- Center for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
da Silva EM, de Araújo SC, Veras STS, Pinheiro AAD, Motteran F, Kato MT, Florencio L, Leite WRM. Anaerobic co-digestion of microalgal biomass, sugarcane vinasse, and residual glycerol from biodiesel using simplex-centroid mixture design: methane potential, synergic effect, and microbial diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33193-1. [PMID: 38605273 DOI: 10.1007/s11356-024-33193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Microalgal biomass (MB) is a promising feedstock for bioenergy production. Nonetheless, the cell recalcitrance and the low C/N ratio limit the methane yield during anaerobic digestion. As an alternative to overcome these challenges, MB co-digestion with different feedstocks has been proposed. Thus, this study evaluated the anaerobic co-digestion (AcoD) of MB cultivated in wastewater with sugarcane vinasse (VIN) and residual glycerol from biodiesel production (GLY). Batch tests were conducted using augmented simplex-centroid mixture design to investigate the impact of AcoD on methane production (SMP), synergistic effects, and the influence on microbial community. When compared to MB digestion, 150 NmL CH4.g-1VS, binary and ternary AcoD achieved SMP increases from 120 to 337%. The combination of 16.7:16.7:66.7 (MB:VIN:GLY) showed the highest SMP for a ternary mixture (631 NmL CH4.g-1VS). Optimal synergies ranged from 1.3 to 1.4 and were primarily found for the MB:GLY AcoD. Acetoclastic Methanosaeta genus was predominant, regardless the combination between substrates. Despite the largest SMP obtained from the MB:GLY AcoD, other ternary mixtures were also highly synergetic and therefore had strong potential as a strategic renewable energy source.
Collapse
Affiliation(s)
- Edilberto Mariano da Silva
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Sayonara Costa de Araújo
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Shyrlane Torres Soares Veras
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Agnes Adam Duarte Pinheiro
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Fabrício Motteran
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Mario Takayuki Kato
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Lourdinha Florencio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Wanderli Rogério Moreira Leite
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil.
| |
Collapse
|
4
|
Liu S, Jin R, Zhang J, Zhao Y, Shen M, Wang Y. Are algae a promising ecofriendly approach to micro/nanoplastic remediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166779. [PMID: 37660628 DOI: 10.1016/j.scitotenv.2023.166779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
How to reduce microplastic pollution in aquatic ecosystem has become the focus of the global attention. The re-removal of microplastics of wastewater treatment plant (WWTP) effluent is gradually being put on the agenda. Recently, algae have been used as an ecofriendly remediation strategy for microplastic removal. Microplastics in sewage can be removed by algae through interception, capture, and entanglement, and can also form heterogeneous aggregates with algae, thereby reducing their free suspensions. Algae can recover nitrogen and carbon from wastewater and can be made into biochar, biofertilizers, and biofuels. However, problematically, this technology has been in the laboratory research stage, and existing research results cannot provide effective basis for its application. Microplastic removal via algae is influenced by wastewater flow rate, microplastic types, and pollutants. Microplastics are only physically fixed by algae, and ensuring that microplastics do not re-enter the environment during resource and capacity recovery is also a key factor limiting the implementation of this technology. The topic of this paper is to discuss the performance of the current tertiary wastewater treatment process - algae process to remove microplastics. Algae can remove nitrogen and phosphorus pollutants in sewage and remove microplastics at the same time, which can realize energy recovery and reduce ecological risks of the effluent. Although algae combined tertiary sewage treatment is a green technology for microplastic removal, its application still needs to be explored. The key challenges that need to be addressed, from single laboratory conditions to complex conditions, from small-scale testing to large-scale simulations, lie ahead of the application of this friendly technology.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
5
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
6
|
Lage S, Gentili FG. Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO 2 from flue gases. CHEMOSPHERE 2023; 313:137344. [PMID: 36457266 DOI: 10.1016/j.chemosphere.2022.137344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The production potential of a locally isolated Chlorella vulgaris strain and a local green-algae consortium, used in municipal wastewater treatment combined with CO2 sequestration from flue gases, was evaluated for the first time by comparing the elemental and biochemical composition and heating value of the biomass produced. The microalgae were grown in outdoor pilot-scale ponds under subarctic summer conditions. The impact of cultivation in a greenhouse climate was also tested for the green-algae consortium; additionally, the variation in species composition over time in the three ponds was investigated. Our results showed that the biomass produced in the consortium/outdoor pond had the greatest potential for bioenergy production because both its carbohydrates and lipids contents were significantly higher than the biomasses from the consortium/greenhouse and C. vulgaris/outdoor ponds. Although greenhouse conditions significantly increased the consortium biomass's monounsaturated fatty acid content, which is ideal for biodiesel production, an undesirable increase in ash and chemical elements, as well as a reduction in heating value, were also observed. Thus, the placement of the pond inside a greenhouse did not improve the production potential of the green-algae consortium biomass in the current study infrastructure and climate conditions.
Collapse
Affiliation(s)
- Sandra Lage
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| | - Francesco G Gentili
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
7
|
Tawfik A, M Azzam A, El-Dissouky A, Ibrahim AY, Nasr M. Synergistic effects of paper mill sludge and sulfonated graphene catalyst for maximizing bio-hydrogen harvesting from sugarcane bagasse de-polymerization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116724. [PMID: 36372032 DOI: 10.1016/j.jenvman.2022.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, hydrogen harvesting from fermentation of sugarcane bagasse (SCB) was promoted by maintaining synergism between sulfonated graphene (SGR) catalyst and paper mill sludge (PMS). The sulfonic acid (-SO3H) groups in the catalyst played a major role in destructing the β-1,4 glycosidic bonds of sugarcane bagasse, releasing readily biodegradable sugars into the fermentation medium. The cellulose, hemicellulose, and lignin conversion efficiency were improved by 127.5%, 495.0%, and 109.2%, respectively with 20 mgSGR/gVS catalyst addition, compared with the control samples. These values were also higher than those obtained by non-sulfonated graphene catalyst. The hydrogenation of sugarcane bagasse was maximized at a sulfonated graphene catalyst dosage of 60 mgSGR/gVS, providing the highest hydrogen harvesting of 4104 ± 321 mL. This was associated with an increase of the Proteobacteria phyla up to 52.0%, Firmicutes phyla to 13.9%, and Acinetobacter sp. to 39.8% compared with only 37.0%, 11.3% and 11.1% in the control assay respectively. Moreover, sulfonated graphene catalyst supplementation promoted the acetate fermentation reaction pathway by increasing the acetate/butyrate ratio up to 4.1. Nevertheless, elevating the catalyst dosage up to 120 mgSGR/gVS reduced the hydrogen harvesting (1190 ± 92 mL) due to the release of furfural (1.76 ± 0.02 g/L) in the fermentation cultures, deteriorating the microbes' internal composition and metabolism bioactivities. Finally maximizing the hydrogen productivity from sugarcane bagasse is feasible by incorporation of paper mill sludge and sulfonated graphene catalyst at dosage not exceeding 60 mgSGR/gVS. However, investigating the recyclability and disposal of digestate containing sulfonated graphene catalyst and the associated economic feasibility needs more attention in the future.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Dept., 12622, Dokki, Cairo, Egypt.
| | - Ahmed M Azzam
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza, P.O. Box 30, No. 12411, Egypt
| | - A El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Aya Y Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| |
Collapse
|
8
|
Dębowski M, Kazimierowicz J, Świca I, Zieliński M. Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls- Scenedesmus sp. and Pinnularia sp. PLANTS (BASEL, SWITZERLAND) 2022; 12:53. [PMID: 36616189 PMCID: PMC9823343 DOI: 10.3390/plants12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Microalgae are considered to be very promising feedstocks for biomethane production. It has been shown that the structure of microalgal cell walls can be highly detrimental to the anaerobic digestibility of biomass. Therefore, there is a real need to seek ways to eliminate this problem. The aim of the present study was to assess the effect of ultrasonic disintegration of Scenedesmus sp. and Pinnularia sp. microalgal biomass on the performance and energy efficiency of anaerobic digestion. The pretreatment was successful in significantly increasing dissolved COD and TOC in the system. The highest CH4 yields were noted for Scenedesmus sp. sonicated for 150 s and 200 s, which produced 309 ± 13 cm3/gVS and 313 ± 15 cm3/gVS, respectively. The 50 s group performed the best in terms of net energy efficiency at 1.909 ± 0.20 Wh/gVS. Considerably poorer performance was noted for Pinnularia sp., with biomass yields and net energy gains peaking at CH4 250 ± 21 cm3/gVS and 0.943 ± 0.22 Wh/gVS, respectively. Notably, the latter value was inferior to even the non-pretreated biomass (which generated 1.394 ± 0.19 Wh/gVS).
Collapse
Affiliation(s)
- Marcin Dębowski
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Izabela Świca
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Marcin Zieliński
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| |
Collapse
|
9
|
Abomohra A, Hanelt D. Recent Advances in Micro-/Nanoplastic (MNPs) Removal by Microalgae and Possible Integrated Routes of Energy Recovery. Microorganisms 2022; 10:microorganisms10122400. [PMID: 36557653 PMCID: PMC9788109 DOI: 10.3390/microorganisms10122400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Reliance on plastic has resulted in the widespread occurrence of micro-/nanoplastics (MNPs) in aquatic ecosystems, threatening the food web and whole ecosystem functions. There is a tight interaction between MNPs and microalgae, as dominant living organisms and fundamental constituents at the base of the aquatic food web. Therefore, it is crucial to better understand the mechanisms underlying the interactions between plastic particles and microalgae, as well as the role of microalgae in removing MNPs from aquatic ecosystems. In addition, finding a suitable route for further utilization of MNP-contaminated algal biomass is of great importance. The present review article provides an interdisciplinary approach to elucidate microalgae-MNP interactions and subsequent impacts on microalgal physiology. The degradation of plastic in the environment and differences between micro- and nanoplastics are discussed. The possible toxic effects of MNPs on microalgal growth, photosynthetic activity, and morphology, due to physical or chemical interactions, are evaluated. In addition, the potential role of MNPs in microalgae cultivation and/or harvesting, together with further safe routes for biomass utilization in biofuel production, are suggested. Overall, the current article represents a state-of-the-art overview of MNP generation and the consequences of their accumulation in the environment, providing new insights into microalgae integrated routes of plastic removal and bioenergy production.
Collapse
|
10
|
New energy approaches to the use of waste biosorbents of microalgae Chlorella kessleri (Chlorellaceae, Chlorellales). POVOLZHSKIY JOURNAL OF ECOLOGY 2022. [DOI: 10.35885/1684-7318-2022-3-322-335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The use of microalgae Chlorella kessleri VKPM A1-11 ARM (RF, NPO Algobiotechnology) for environmental and energy purposes is considered. The results of our study of the use of C. kessleri microalgae biomass as a biosorbent to purify model wastewater from Cu2+ ions under static conditions are presented. Biosorption is a promising technology for the treatment of industrial effluents containing various heavy metal compounds, but the issues of economic benefits of using biosorbents, their environmental safety and the cost of disposal of used sorbents are subject to much discussion. The paper proposes to dispose the used biosorbent formed after wastewater treatment from copper as an additional fuel. The copper concentration in the filtrate was determined by colorimetric analysis with sodium diethyldithiocarbamate. The cleaning efficiency and sorption capacity of the dry mass of C. kessleri were obtained by calculation. The maximum sorption capacity for Cu2+ ions was 4.2 mg/g. The purification efficiency reached 87% at the initial concentration of Cu2+ ions being 97 mg/l. Tests to estimate the specific heat of combustion of C. kessleri biomass and used biosorbents based thereon were carried out by the calorimetric method using a bomb calorimeter. The specific heats of combustion were 22,125 kJ/kg and 21,674 kJ/kg, respectively. A comparison of these values with traditional energy carriers is given. A technological scheme has been developed for a waste-free cycle of using C. kessleri to treat wastewater from industrial enterprises with the production of several valuable resources as end products, such as purified water, energy resources, fertilizers, and recycled metals. The obtained results of our study can be applied in technologies for post-treatment of wastewater from various industrial enterprises using biological non-waste resources.
Collapse
|