1
|
Liao P, Liu Z, Xie X, Chen Z, Ji H, Xiang X, Liao L, Zheng W, Fu Z, Chen R. QSAR modeling to describe n-octanol-water partition coefficients of perfluorinated/polyfluorinated alkyl compounds. MARINE POLLUTION BULLETIN 2025; 212:117594. [PMID: 39879850 DOI: 10.1016/j.marpolbul.2025.117594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
The widespread use of perfluoro/polyfluoroalkyl compounds (PFACs) makes it inevitable for them to be released into and affect the environment, and the octanol-water partition coefficient (logKOW) is a key indicator for evaluating the environmental behavior of trace pollutants and their impact on the environment. However, the determination of logKOW using experimental means is often time-consuming and laborious, or even unattainable. Therefore, the logKow of 20 per/polyfluoroalkyl compounds obtained from the PubChem database was selected as the object of study, and the 41 chemical descriptors required for modeling were obtained by density-functional theory calculations, and it was found that only two molecular descriptors (ADF, Vs+) were significantly correlated with the logKOW, with the correlation of the descriptor ADF being the was the strongest. Finally, the QSAR description model was built using one method: stepwise multiple linear regression analysis.
Collapse
Affiliation(s)
- Peng Liao
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Zhenzhong Liu
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China.
| | - Xianchuan Xie
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Zhanli Chen
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Hongliang Ji
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Xiaofang Xiang
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Lili Liao
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Weikang Zheng
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Zhengguo Fu
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| | - Ronglong Chen
- School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China
| |
Collapse
|
2
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
3
|
Chen ZW, Hua ZL. Effect of Co-exposure to Additional Substances on the Bioconcentration of Per(poly)fluoroalkyl Substances: A Meta-Analysis Based on Hydroponic Experimental Evidence. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:270-286. [PMID: 39367139 DOI: 10.1007/s00244-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024]
Abstract
A consensus has yet to emerge regarding the bioconcentration responses of per(poly)fluoroalkyl substances under co-exposure with other additional substances in aqueous environments. This study employed a meta-analysis to systematically investigate the aforementioned issues on the basis of 1,085 published datasets of indoor hydroponic simulation experiments. A hierarchical meta-analysis model with an embedded variance covariance matrix was constructed to eliminate the non-independence and shared controls of the data. Overall, the co-exposure resulted in a notable reduction in PFAS bioaccumulation (cumulative effect size, CES = - 0.4287, p < 0.05) and bioconcentration factor (R2 = 0.9507, k < 1, b < 0) in hydroponics. In particular, the inhibition of PFAS bioconcentration induced by dissolved organic matter (percentage form of the effect size, ESP = - 48.98%) was more pronounced than that induced by metal ions (ESP = - 35.54%), particulate matter (ESP = - 24.70%) and persistent organic pollutants (ESP = - 18.66%). A lower AS concentration and a lower concentration ratio of ASs to PFASs significantly promote PFAS bioaccumulation (p < 0.05). The bioaccumulation of PFASs with long chains or high fluoride contents tended to be exacerbated in the presence of ASs. Furthermore, the effect on PFAS bioaccumulation was also significantly dependent on the duration of co-exposure (p < 0.05). The findings of this study provide novel insights into the fate and bioconcentration of PFAS in aquatic environments under co-exposure conditions.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Yangtze Institute for Conservation and Development, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
4
|
Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG, Sunday Okeke E. Scientometric trends and knowledge maps of global polychlorinated naphthalenes research over the past four decades. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124407. [PMID: 38908679 DOI: 10.1016/j.envpol.2024.124407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Polychlorinated naphthalenes (PCNs) were included in the banned list of the Stockholm Convention due to their potential to provoke a wide range of adverse effects on living organisms and the environment. Many reviews have been written to clarify the state of knowledge and identify the research needs of this pollutant class. However, studies have yet to analyse the scientometric complexities of PCN literature. In this study, we used bibliometric R and vosviewer programs as a scientometric tool to fill this gap by focusing on articles indexed on Web of Science and Scopus databases and those published between 1973 and 2022. A total of 707 articles were published within this period with a publication/author, author/publication, and co-authors/publication ratios of 0.45, 2.19, and 4.86, respectively. Developed countries dominated most scientometric indices (number of publications, citations, and collaboration networks) in the survey period. Lotka's inverse square rule of author productivity showed that Lotka's laws do not fit PCN literature. An annual percentage growth rate of 7.46% and a Kolmogorov-Smirnoff goodness-of-fit of 0.88 suggests that more output on PCNs is likely in years to come. More research is needed from scholars from developing countries to measure the supremacy of the developed nations and to effectively comply with the Stockholm Convention agreement.
Collapse
Affiliation(s)
- Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic.
| | - Alhadji Malloum
- Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon; Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Potsdam Site, East London, 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
5
|
Kusuma HS, Christa Jaya DE, Illiyanasafa N, Ikawati KL, Kurniasari E, Darmokoesoemo H, Amenaghawon AN. A critical review and bibliometric analysis of methylene blue adsorption using leaves. CHEMOSPHERE 2024; 356:141867. [PMID: 38583535 DOI: 10.1016/j.chemosphere.2024.141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The rapid development of the industrial world causes wastewater containing dyes to continue to increase. Even in recent years, the food, textile, cosmetic, plastic, and printing industries have developed the use of dyes. Methylene blue (MB) is one of the cationic dyes widely used in dyeing silk, wood, and cotton because of its absorbency and good fastness to materials. The adsorption process is the best technique and preferred in removing dyes from wastewater due to excellent selectivity, high efficiency from high-quality treated effluent, flexibility in design, and simplicity. Therefore, there is a growing interest to identify low-cost alternative adsorbents that have reasonable adsorption efficiency, especially natural materials such as leaves. In this study, research on MB adsorption using leaves was analyzed using bibliometric analysis. Information of bibliometric is extracted from the Scopus database with the keyword "Methylene Blue", "Adsorption or Desorption", and "Leaves or leaf". The results showed that India, Desalination and Water Treatment, and SASTRA Deemed University were the country, journal, and institution that contributed the most publications on this topic. Therefore, it is expected that with the use of bibliometrics, the use of leaf-based MB adsorption processes in their potential for MB dye removal can be investigated especially for large-scale development.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Debora Engelien Christa Jaya
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Kania Ludia Ikawati
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Endah Kurniasari
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
6
|
Li J, Li X, An R, Duan L, Wang G. Occurrence, source apportionment, and ecological risk of legacy and emerging per- and poly-fluoroalkyl substances (PFASs) in the Dahei river basin of a typical arid region in China. ENVIRONMENTAL RESEARCH 2024; 246:118111. [PMID: 38184065 DOI: 10.1016/j.envres.2024.118111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are artificial chemicals with broad commercial and industrial applications. Many studies about PFASs have been conducted in densely industrial and populated regions. However, fewer studies have focused on the PFASs' status in a typical arid region. Here, we investigated 30 legacy and emerging PFASs in surface water from the mainstream and tributaries of the Dahei River. Our results revealed that total PFASs concentrations (∑30PFASs) in water ranged from 3.13 to 289.1 ng/L (mean: 25.40 ng/L). Perfluorooctanoic acid (PFOA) had the highest mean concentration of 2.44 ng/L with a 100% detection frequency (DF), followed by perfluorohexanoic acid (PFHxA) (mean concentration: 1.34 ng/L, DF: 59.26%). Also, perfluorohexane sulfonate (DF: 44.44%), perfluorobutane sulfonate (DF: 88.89%), and perfluorooctane sulfonate (PFOS) (DF: 92.59%) had mean concentrations of 12.94, 2.00, and 1.05 ng/L, respectively. Source apportionment through ratio analysis and principal component analysis-multiple linear regression analysis showed that treated or untreated sewage, aqueous film-forming foam, degradation of precursors, and fluoropolymer production were the primary sources. The PFOS alternatives were more prevalent than those of PFOA. Conductivity, total phosphorus, and chlorophyll a positively correlated with Σ30PFASs and total perfluoroalkane sulfonates concentrations. Furthermore, ecological risk assessment showed that more attention should be paid to perfluorooctadecanoic acid, perfluorohexadecanoic acid, perfluorooctane sulfonate, perfluorohexane sulfonate, and (6:2 and 6:2/8:2) polyfluoroalkyl phosphate mono- and di-esters. The mass load of PFASs to the Yellow River was 1.28 kg/year due to the low annual runoff in the Dahei River in the arid region. This study provides baseline data for PFASs in the Dahei River that can aid in the development of effective management strategies for controlling PFASs pollution in typical arid regions in China.
Collapse
Affiliation(s)
- Jie Li
- . Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Xinlei Li
- . Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Rui An
- . China Institute for Geo-Environmental Monitoring, Beijing, 100081, China
| | - Limin Duan
- . Inner Mongolia Key Laboratory of Water Resource Protection and Utilization, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guoqiang Wang
- . Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Klingelhöfer D, Braun M, Groneberg DA, Brüggmann D. The "forever" per- and polyfluoroalkyl substances (PFAS): A critical accounting of global research on a major threat under changing regulations. CHEMOSPHERE 2024; 354:141694. [PMID: 38484998 DOI: 10.1016/j.chemosphere.2024.141694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The European Commission's current efforts to launch the largest proposal to restrict per- and polyfluoroalkyl substances (PFAS) in history reflect the dire global plight of PFAS accumulation in the environment and their health impacts. While there are existing studies on PFAS research, there is a lack of comprehensive analysis that both covers the entire research period and provides deep insights into global research patterns, incentives, and barriers based on various parameters. We have been able to demonstrate the increasing interest in PFAS research, although citation numbers are declining prematurely. Policy regulations based on proving and establishing the toxicity of PFASs have stimulated research in developed countries and vice versa, with increasing emphasis on ecological aspects. China, in particular, is investing increasingly in PFAS research, but without defining or implementing regulations - with devastating effects. The separation of industrial and environmental research interests is clear, with little involvement of developing countries, even though their exposure to PFAS is devastating. It, therefore, requires increased globally networked and multidisciplinary approaches to address PFAS contamination challenges.
Collapse
Affiliation(s)
- Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Dörthe Brüggmann
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
8
|
Chen ZW, Shen ZW, Hua ZL, Li XQ. Global development and future trends of artificial sweetener research based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115221. [PMID: 37421893 DOI: 10.1016/j.ecoenv.2023.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Artificial sweeteners have sparked a heated debate worldwide due to their ambiguous impacts on public and environmental health and food safety and quality. Many studies on artificial sweeteners have been conducted; however, none scientometric studies exist in the field. This study aimed to elaborate on the knowledge creation and development of the field of artificial sweeteners and predict the frontiers of knowledge based on bibliometrics. In particular, this study combined VOSviewer, CiteSpace, and Bibliometrix to visualize the mapping of knowledge production, covered 2389 relevant scientific publications (1945-2022), and systematically analyzed articles and reviews (n = 2101). Scientific publications on artificial sweeteners have been growing at an annual rate of 6.28% and globally attracting 7979 contributors. Susan J. Brown with total publications (TP) of 17, average citation per article (AC) of 36.59, and Hirsch (h)-index of 12 and Robert F. Margolskee (TP = 12; AC = 2046; h-index = 11) were the most influential scholars. This field was clustered into four groups: eco-environment and toxicology, physicochemical mechanisms, public health and risks, and nutrition metabolism. The publications about environmental issues, in particular, "surface water," were most intensive during the last five years (2018-2022). Artificial sweeteners are gaining importance in the monitoring and assessment of environmental and public health. Results of the dual-map overlay showed that the future research frontiers tilt toward molecular biology, immunology, veterinary and animal sciences, and medicine. Findings of this study are conducive to identifying knowledge gaps and future research directions for scholars.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhi-Wei Shen
- Jiangsu Construction Engineering Branch, Shanghai Dredging Co., Ltd., China Communications Construction Co., Ltd., Nanjing 210000, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| |
Collapse
|
9
|
Munschy C, Bely N, Héas-Moisan K, Olivier N, Pollono C, Govinden R, Bodin N. Species-specific bioaccumulation of persistent organohalogen contaminants in a tropical marine ecosystem (Seychelles, western Indian Ocean). CHEMOSPHERE 2023; 336:139307. [PMID: 37354954 DOI: 10.1016/j.chemosphere.2023.139307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Affiliation(s)
- C Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France.
| | - N Bely
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - K Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - N Olivier
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - C Pollono
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - R Govinden
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; Institute for Research and Development (IRD), Fishing Port, Victoria, Mahé, Seychelles; Sustainable Ocean Seychelles (SOS), BeauBelle, Mahé, Seychelles
| |
Collapse
|
10
|
Zhao L, Cheng Z, Zhu H, Chen H, Yao Y, Baqar M, Yu H, Qiao B, Sun H. Electronic-waste-associated pollution of per- and polyfluoroalkyl substances: Environmental occurrence and human exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131204. [PMID: 36931218 DOI: 10.1016/j.jhazmat.2023.131204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Occupational exposure to per- and polyfluoroalkyl substances (PFASs) is of serious concern because their adverse health effects. Nevertheless, knowledge regarding contamination in e-waste dismantling regions is rather scarce. We therefore analysed seven neutral PFASs (n-PFASs) and forty ionized PFASs (i-PFASs) in dust and hand wipes collected from an e-waste dismantling plant and homes. Both dust (1370 ng/g) and workers' hand wipe (1100 ng/m2) in e-waste dismantling workshops contained significantly higher median levels of ∑PFASs than those from homes (684 ng/g and 444 ng/m2) (p < 0.01). ∑PFAS concentrations in dust and on workers' hand wipes from workshops were significantly higher than those from storage area. 8:2 fluorotelomer alcohol was the dominant n-PFAS in workshop dust (70.7%) and on worker's hand wipes (46.6%). Perfluoroalkyl carboxylic acids (C2 -C3) were the significant components (based on concentration) of i-PFASs in dust (57.9%) and on hand wipes (89.6%). A significant positive correlation (p < 0.001) of ∑PFAS concentrations between workshop dust and workers' hand wipes was observed, indicating that they come from common sources. Compared to dust ingestion, hand-to-mouth contact was highlighted as a vital exposure route, accounting for 68.8% for workers and 72.2% for residential population, respectively, of the sum of two exposure doses.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Zhao L, Teng M, Zhao X, Li Y, Sun J, Zhao W, Ruan Y, Leung KMY, Wu F. Insight into the binding model of per- and polyfluoroalkyl substances to proteins and membranes. ENVIRONMENT INTERNATIONAL 2023; 175:107951. [PMID: 37126916 DOI: 10.1016/j.envint.2023.107951] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) have elicited much concern because of their ubiquitous distribution in the environment and the potential hazards they pose to wildlife and human health. Although an increasing number of effective PFAS alternatives are available in the market, these alternatives bring new challenges. This paper comprehensively reviews how PFASs bind to transport proteins (e.g., serum albumin, liver fatty acid transport proteins and organic acid transporters), nuclear receptors (e.g., peroxisome proliferator activated receptors, thyroid hormone receptors and reproductive hormone receptors) and membranes (e.g., cell membrane and mitochondrial membrane). Briefly, the hydrophobic fluorinated carbon chains of PFASs occupy the binding cavities of the target proteins, and the acid groups of PFASs form hydrogen bonds with amino acid residues. Various structural features of PFAS alternatives such as chlorine atom substitution, oxygen atom insertion and a branched structure, introduce variations in their chain length and hydrophobicity, which potentially change the affinity of PFAS alternatives for endogenous proteins. The toxic effects and mechanisms of action of legacy PFASs can be demonstrated and compared with their alternatives using binding models. In future studies, in vitro experiments and in silico quantitative structure-activity relationship modeling should be better integrated to allow more reliable toxicity predictions for both legacy and alternative PFASs.
Collapse
Affiliation(s)
- Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yunxia Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
12
|
Olisah C, Adeola AO, Iwuozor KO, Akpomie KG, Conradie J, Adegoke KA, Oyedotun KO, Ighalo JO, Amaku JF. A bibliometric analysis of pre- and post-Stockholm Convention research publications on the Dirty Dozen Chemicals (DDCs) in the African environment. CHEMOSPHERE 2022; 308:136371. [PMID: 36088967 DOI: 10.1016/j.chemosphere.2022.136371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) are toxic chemicals that stay in the environment for a long time. To address the toxicity issues, global nations, including 53 African countries, ratified the Stockholm Convention to minimize or eliminate the production of 12 POPs known as the "Dirty Dozen". However, these Dirty Dozen Chemicals (DDCs) still exist in significant concentration in the African environment, prompting numerous research to investigate the level of their occurrences. Here, we conducted a bibliometric analysis to examine the publication trends in DDCs-related research in Africa using articles published between 1949 and 2021 from the Web of Science and Scopus databases. A total of 884 articles were published within the survey period, with a publication/author and author/publication ratio of 0.36 and 2.76, respectively. South Africa ranked first in terms of number of publications (n = 133, 15.05%), and total citations (n = 3115), followed by Egypt (n = 117), Nigeria (n = 77), USA (n = 40), and Ghana (n = 38). Research collaboration was relatively high (collaboration index = 2.88). The insignificant difference between the theoretical and observed Lotka's distribution indicates Lotka's law does not fit the DDC literature. An annual growth rate of 0.57% implies that a substantial increase of articles in years to come is not expected. More research programs should be established in other African countries to measure up to South Africa's supremacy. This is critical in order to provide a basis for effective compliance to the Stockholm Convention on POPs in Africa.
Collapse
Affiliation(s)
- Chijioke Olisah
- Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa.
| | - Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kingsley O Iwuozor
- Department of Pure & Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Kayode A Adegoke
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kabir O Oyedotun
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria, 0028, South Africa
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B, 5025, Awka, Nigeria
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
13
|
Li X, Xu G, Xia M, Liu X, Fan F, Dou J. Research on the remediation of cesium pollution by adsorption: Insights from bibliometric analysis. CHEMOSPHERE 2022; 308:136445. [PMID: 36113663 DOI: 10.1016/j.chemosphere.2022.136445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
While nuclear energy with zero carbon emissions will continue to occupy an indispensable position in future scenarios for power generation, the proper disposal of nuclear waste is still highly challenging in many countries. Adsorption is currently one of the primary methods used for removal of cesium from wastewater. However, no available literature has systematically summarized advances and outlooks on the adsorptive removal of cesium, and research issues such as relevant adsorption mechanisms remain largely unexplored. In this study, a bibliometric analysis was used to quantitatively analyze 10141 publications in the Web of Science Core Collection that were published from 1900 to 2022. Current publication trends and active countries, most influential authors and institutions, journal distribution, and research hotspots and trends were reviewed and summarized. The results for the conceptual structure and evolution of investigations in this field showed three distinct periods of rapid development in recent decades. The first period concerned the scope, degree, and influences of pollution by cesium and the development of natural adsorbents. The second period included the exploration and verification of adsorption mechanisms, the fabrication and optimization of new materials, and the application of density functional theory for chemical calculations. The third period involved the development of more advanced biodegradable, nanoscale and synthetic materials with great potential for use as adsorbents as well as advances in engineering applications. Notably, the study showed that it is necessary to further enhance application-driven laboratory investigations. Future directions for research were proposed, such as the investigation of complex adsorption mechanisms, development of new materials, and engineering applications of materials developed in the laboratory. The findings will provide valuable insights and serve as a reference for researchers and policymakers as they address the adsorptive remediation of cases of pollution by cesium.
Collapse
Affiliation(s)
- Xindai Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Fujii Y, Fujitani T, Zou X, Harada KH. Letter to the editor on "Global performance and trends of research on per- and polyfluoroalkyl substances (PFASs) between 2001 and 2018 using bibliometric analysis": How can we identify PFAS studies? CHEMOSPHERE 2022; 306:135130. [PMID: 35667510 DOI: 10.1016/j.chemosphere.2022.135130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka, 815-8511, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, China
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|