1
|
Xu W, Qin R, Cao G, Qiang Y, Lai M, Lu Y. Magnetic composite photocatalyst NiFe₂O₄/ZnIn₂S₄/biochar for efficient removal of antibiotics in water under visible light: Performance, mechanism and pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124602. [PMID: 39079654 DOI: 10.1016/j.envpol.2024.124602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The widespread presence of antibiotics in aquatic environments, resulting from excessive use and accumulation, has raised significant concerns. A NiFe₂O₄/ZnIn₂S₄/Biochar (NFO/ZIS/BC) magnetic nanocomposite was successfully synthesized, demonstrating significantly enhanced electron-hole separation properties. Comprehensive investigations were conducted to evaluate the impact of various parameters, including catalyst mass, pH, and the presence of co-existing ions on the composite's performance. The nanoparticles of NiFe₂O₄ (NFO) and ZnIn₂S₄ (ZIS) were found to improve the surface stability and sulfamethoxazole removal capabilities of porous biochar, while also demonstrating high total organic carbon removal efficiencies. •O₂⁻ and h⁺ were identified as the predominant reactive oxygen species (ROS) in NFO/ZIS/BC-4 during the degradation process. The degradation outcomes of sulfamethoxazole under natural sunlight and water conditions were consistent with laboratory findings, affirming the robust applicative potential of NFO/ZIS/BC. Density functional theory (DFT) calculations were performed to elucidate the photocatalytic mechanism and identify potential intermediate products. Additionally, the types of heterojunctions present in the system were characterized and discussed. After multiple iterations, NFO/ZIS/BC-4 maintained effective photodegradation capabilities through five cycles. This study presents an effective method for the treatment of antibiotics in aquatic environments, offering significant potential for environmental applications.
Collapse
Affiliation(s)
- Wan Xu
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031 China
| | - Ronggao Qin
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031 China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China Kunming, Yunnan, 650228, China.
| | - Guangzhu Cao
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031 China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China Kunming, Yunnan, 650228, China
| | - Yi Qiang
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031 China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China Kunming, Yunnan, 650228, China
| | - Meidan Lai
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031 China
| | - Yanfeng Lu
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031 China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China Kunming, Yunnan, 650228, China
| |
Collapse
|
2
|
Shafali Singh, Kansal SK. Enhanced performance of dual-functional ZIF-8/red phosphorus photocatalysts for concurrent degradation of organic dyes and hydrogen generation under natural solar light irradiation. Chem Commun (Camb) 2024; 60:10970-10973. [PMID: 39264221 DOI: 10.1039/d4cc02644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Herein, zeolitic imidazole framework (ZIF)-8/red phosphorus photocatalysts were prepared via a solvothermal method for simultaneous organic dye degradation and hydrogen (H2) generation. The 5 wt% ZIF-8/RP photocatalyst achieved the highest H2 generation rate of 822.5 μmol h-1 g-1 and 92% rhodamine dye degradation under natural sunlight irradiation. This approach offers an effective strategy to replace costly and toxic traditional electron donors with organic dye pollutants for H2 generation.
Collapse
Affiliation(s)
- Shafali Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh-160014, India.
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
3
|
Li Y, Adili G, Liang G, Ma Y, Liu J. CuInS 2/Red Phosphorus Nanosheet Interleaved Heterostructures with Improved Interfacial Charge Transfer for Photoelectrochemical Aptasensing. Anal Chem 2024; 96:11985-11996. [PMID: 38989829 DOI: 10.1021/acs.analchem.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Accelerating the migration of interfacial carriers in heterojunctions is crucial for achieving highly sensitive photoelectrochemical (PEC) sensing. In this study, we developed three-dimensional (3D)/two-dimensional (2D) CuInS2/red phosphorus nanosheet (CuInS2/RP NS) n-n heterojunction functional materials with enhanced interfacial charge transfer capabilities for PEC sensing. The 3D CuInS2 serves as a conductive layer, providing excellent electronic conductivity and superior electron absorption and transport properties. In contrast, the ultrathin RP NS acts as a transport layer that enhances carrier mobility. The 3D/2D heterojunction ensures a large interface contact surface, shortening the carrier transport distance. A well-aligned band position generates a substantial built-in electric field, providing a significant driving force for efficient carrier separation and migration, thereby improving response sensitivity. A PEC aptamer sensor was constructed based on the synthesized heterostructure for ciprofloxacin detection. The detection limit of the CuInS2/RP NS aptamer sensor for ciprofloxacin is 2.03 × 10-15 mg·mL-1, with a linear range from 1.0 × 10-14 to 1.0 × 10-5 mg·mL-1. This work presents a strategy for enhancing the photoelectric response by modulating the interface structure of heterojunctions, thereby opening new prospects for the application of highly sensitive PEC sensors in antibiotic detection.
Collapse
Affiliation(s)
- Yunpeng Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Guliqire Adili
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yuhua Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi 830054, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
4
|
Wei G, Chen J, Yue Q, Guo C, Qu F, Lin H. The loading of Fe ions on N-doped carbon nanosheets to boost photocatalytic cascade for water disinfection. J Colloid Interface Sci 2024; 664:992-1001. [PMID: 38508034 DOI: 10.1016/j.jcis.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
The pervasive presence of pathogenic bacteria in water environment poses a serious threat to public health. Here, a photocatalytic cascade was developed to reveal great water disinfection. Firstly, N-doped carbon nanosheets (N-CNSs) about 30-50 nm in size were synthesized by a hydrothermal strategy. It revealed wide-spectrum photocatalysis for H2O2 generation via a typical two-step single-electron process. A Fenton agent (Fe ion) was loaded, N-CNSs-Fe can in-situ convert photocatalytic H2O2 into ·OH with high oxidation potential. Moreover, its Fenton active is three times greater than pure Fe2+ owing to electron enrichment from N-CNSs to Fe for Fe3+/Fe2+ cycle. Further investigation displayed that Fe loading also could decrease bad gap and promote charge separation to boost photocatalysis. In addition, N-CNSs-Fe possesses positive surface potential to exhibit strong interaction with negative bacteria, facilitating the capture. Therefore, the nanocomposite can effectively inactivate E. coli with a lethality rate of 99.7 % under stimulated sunlight irradiation. In addition, it also was employed to treat a complex lake water sample, revealing great antibacterial (95.1 %) and dye-decolored (92.3 %) efficiency at the same time. With novel biocompatibility and antibacterial ability, N-CNSs-Fe possessed great potential for water disinfection.
Collapse
Affiliation(s)
- Guoyu Wei
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jiaxin Chen
- College of life sciences and technology, Harbin Normal University, Harbin 150025, China
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Changhong Guo
- College of life sciences and technology, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
5
|
Zhou Y, Wang Z, Yin H, Cui X, Tian Y, Qiao Z, Wang S, Hu R, Lv W, Mao A, Wang J. One-pot synthesis of 2D Ag/BiOCl/Bi 2O 2CO 3 S-scheme heterojunction with oxygen vacancy for photocatalytic disinfection of Fusarium graminearum in vitro and in vivo. CHEMOSPHERE 2023; 331:138768. [PMID: 37127194 DOI: 10.1016/j.chemosphere.2023.138768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
2D Ag/BiOCl/Bi2O2CO3 S-scheme heterojunction was prepared with oxygen vacancy (OVs) via one-pot hydrothermal method. The XRD and XPS analysis indicated the synthesized sample contained Ag nanoparticles (AgNPs) instead of Ag ions. The SEM and HRTEM pictures showed that BiOCl/Bi2O2CO3 nanosheets were modified with AgNPs. Compared with AgNPs, BiOCl, and Bi2O2CO3, Ag/BiOCl/Bi2O2CO3 exhibited highly photocatalytic inactivation of pathogenic fungi (Fusarium graminearum) due to the wide light absorption range and S-scheme heterojunction structure, which improved the production and transfer of photogenerated carrier, and enhanced the separation of photogenerated e-/h+ pairs. In addition, the improved photocatalytic disinfection against Fusarium graminearum of Ag/BiOCl/Bi2O2CO3 was verified in Sedeveria Letizia plant. Furthermore, active species capture assay and ESR experiments disclosed the involvement of OVs, h+, ∙O2-, ∙OH, and -for Fusarium graminearum destruction during photocatalysis process. The S-scheme heterojunction was proved via oxygen vacancy, which was extensively beneficial to increase charge transmission and separation efficiency. Our work proposed Ag/BiOCl/Bi2O2CO3 was an efficient and ecological fungicide to inactive Fusarium graminearum in vitro and vivo for crop disease.
Collapse
Affiliation(s)
- Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Zhuangzhuang Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China.
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Ying Tian
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Zhen Qiao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Runye Hu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Wenjing Lv
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - An Mao
- State Forestry and Grassland Administration Key Laboratory of Siviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, 271018, Taian, Shandong, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, 271018, Taian, Shandong, China
| |
Collapse
|
6
|
Wang Z, Ma Y, Shi Y, Wang S, Gao M, Qiu Y, Li C. Bi2WO6/red phosphorus heterojunction photocatalyst with excellent visible light photodegrading activity. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Facile fabrication of sulfuretted NiFe-layered double hydroxides/oxalic acid induced g-C3N4 Z-scheme heterojunction for enhanced photocatalytic removal of tetracycline and Cr(Ⅵ) under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Tuerhong M, Chen P, Ma Y, Li Y, Li J, Yan C, Zhu B. Bi2MoO6/red phosphorus heterojunction for reducing Cr(VI) and mitigating Escherichia coli infection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Liu X, Wang K. A PPy/MoS 2 core–shell heterojunction modified by carbon dots exhibits high photocatalytic antibacterial performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj04388b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CQDs and PPy facilitate the separation of MoS2 electron–hole pairs and enhance their photocatalytic antibacterial performance.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Sha Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Xiaoyu Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|