1
|
Hsu CY, Mustafa MA, Ghadir GK, Bansal P, Kaur H, Mohammed AQ, Abdulwahid AS, Hussein AR, Namaha SQ, Ami AA, Radi UK, Alzubaidi LH, Kazemi A. Optimization of variables for cadmium and copper removal using magnetic nanocomposite. BMC Chem 2025; 19:132. [PMID: 40383819 PMCID: PMC12087181 DOI: 10.1186/s13065-025-01502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
This study aims to investigate cadmium and copper ultrasound-assisted removal efficiency on a laboratory scale using a cobalt ferrite/activated carbon (COF/AC) composite as an adsorbent. For this purpose, the effect of four independent variables (i.e., composite amount, pH, heavy metal concentrations, and ultrasound radiation time) on the performance of the cadmium and copper removal was investigated. The COF/AC composite was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and vibrating-sample magnetometer (VSM). The SEM and XRD techniques showed the successful synthesis of the COF/AC composite. The COF/AC composite has a surface area of 659.4 m2 g-1, an average diameter of 3.6 nm, and a pore volume of 0.482 cm3 g-1. In this study, R2 ˃ 0.99 and Adj-R2 ˃ 0.98 for both analytes signify a high agreement between the obtained laboratory data and the model-predicted data. The analysis results for heavy metal removal revealed the following optimal conditions: the composite content of 0.22 g, ultrasound radiation time of 22 min, concentration of 19 mg L-1, and pH of 5. Under optimal conditions, the maximum removal efficiency reached 93.46% and 97.45% for cadmium and copper, respectively. The COF/AC composite reuse results showed no significant decrease in removal efficiency up to 4 times of use during the adsorption and desorption process. Analysis of real samples showed that the removal rates of cadmium and copper were 89.62% and 96.37%, respectively.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
| | - Mohammed Ahmed Mustafa
- Department of Biology, College of Education, University of Samarra, Samarra, 34010, Iraq
| | - Ghadir Kamil Ghadir
- Department of Computer Engineering, Institute of Graduate Programs, Al-Turath University, Al Mansour, Baghdad, 10013, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Amjed Qasim Mohammed
- Department of Dentistry, Al-Manara College for Medical Sciences, University of Misan, Amarah, Maysan, Iraq
| | | | | | | | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Iraq
| | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University of Najaf, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Kazemi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Khan K, Khan MS, Younas M, Yaseen M, Al-Sehemi AG, Kavil YN, Su C, Ali N, Maryam A, Liang R. Pathways and risk analysis of arsenic and heavy metal pollution in riverine water: Application of multivariate statistics and USEPA-recommended risk assessment models. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104483. [PMID: 39705782 DOI: 10.1016/j.jconhyd.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities. Along the monitored sites (S1-S10), the mass flow of ∑metals showed a dynamic pattern: progressively increasing downstream, decreasing at S6-S7, rising again at S7-S8, and then steadily declining toward S10, with Ni being the most abundant metal, followed by Cr > As> Cu > Mn > Co > Zn > Hg > Cd > Pb. The As and Heavy Metal Pollution Index (HPI), As and Heavy Metal Evaluation Index (HEI), and Pollution Index (PI) revealed variations in pollution levels, ranking the metals in the orders of Co > As> Cr > Cd > Mn > Hg > Ni > Pb > Cu > Zn, As> Cr > Ni > Hg > Cd > Co > Mn > Cu > Zn > Pb, and Hg > Ni > As> Co > Cu > Cd > Mn > Zn > Pb, respectively. However, according to the risk assessment, overall individual metal contamination in the River Swat water was below the ecological risk threshold (ERI 〈110). Where, the Chronic Daily Intakes (CDIs), Hazard Quotients (HQs), Hazard Indices (HIs), Cancer Risks (CRs), and Total Cancer Risks (TCRs) of Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb associated with daily river water intake and dermal contact indicate that long-term exposure to untreated river water may pose both carcinogenic and non-carcinogenic health risks to residents.
Collapse
Affiliation(s)
- Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Muhammad Sajawal Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | | | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Renewable Environment Company for Environmental Consulting (REC), Jeddah 21589, Saudi Arabia
| | - Chao Su
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Niaz Ali
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Ruoyu Liang
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
3
|
Luo H, Xie K, Dong P, Zhang Y, Ren T, Sui C, Ma C, Zhao C, Dewangan NK, Gong Z. Assessing the Risks of Potential Pathogens and Antibiotic Resistance Genes Among Heterogeneous Habitats in a Temperate Estuary Wetland: a Meta-analysis. MICROBIAL ECOLOGY 2025; 87:172. [PMID: 39820498 PMCID: PMC11739316 DOI: 10.1007/s00248-024-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Temperate estuary wetlands act as natural filters for microbiological contamination and have a profound impact on "One Health." However, knowledge of microbiological ecology security across the different habitats in temperate estuarine wetlands remains limited. This study employed meta-analysis to explore the characteristics of bacterial communities, potential pathogens, and antibiotic resistance genes (ARGs) across three heterogeneous habitats (water, soil, and sediment) within the Liaohe Estuary landscape. The diversity and composition of the three bacterial communities differed with biogeography, temperature, and pH, with the highest α-diversity showing a significantly negative correlation along latitude in soil. Furthermore, aminoglycosides were significantly enriched in water and soil, while dihydrofolate was more likely to be enriched in soil. The potential pathogens, Pseudoalteromonas and Planococcus, were dominant in water and sediment, while Stenotrophomonas was the dominant bacterium in soil. The network topology parameter revealed interspecific interactions within the community. PLS-PM highlights the main direct factors affecting the abundance of potential pathogens and the spread of ARGs, while temperature and pH indirectly influence these potential pathogens. This study advances our understanding of bacterial communities in estuarine wetlands, while highlighting the need for effective monitoring to mitigate the risks associated with potential pathogens and ARGs in these ecosystems.
Collapse
Affiliation(s)
- Hongjing Luo
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Kunpeng Xie
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Pengsheng Dong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongsheng Zhang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Tingyi Ren
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Caihong Sui
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Changwei Ma
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Caiyuan Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Naresh Kumar Dewangan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
4
|
Eid MH, Awad M, Mohamed EA, Nassar T, Abukhadra MR, El-Sherbeeny AM, Kovács A, Szűcs P. Comprehensive approach integrating water quality index and toxic element analysis for environmental and health risk assessment enhanced by simulation techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:409. [PMID: 39215896 PMCID: PMC11365846 DOI: 10.1007/s10653-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Due to water shortages and the potential impact of Ethiopia's new dam on the Nile River, Egypt is seeking new water resources. This study assesses the drinking water quality and associated risks from potentially toxic elements (PTEs) in the Quaternary aquifer (QA) in Beni-Suef, Egypt. Using a comprehensive approach, including PHREEQC geochemical modeling, ionic ratios, multivariate statistical analyses, and the integrated weight water quality index (WQI), the study evaluated the sources of ion contamination and the mixing of Nile water with QA. Various indices, such as the Heavy Metal Pollution Index (HPI), ecological Risk Index (RI), Hazard Quotient (HQ), and Hazard Index (HI), were used to assess ecological and health risks. Monte Carlo simulations provided probabilistic assessments of non-carcinogenic risks for adults and children. GIS tools were used to map risk indices, identifying the most deteriorated locations for sustainable management. The hydrochemical analysis revealed water facies including Na-Cl, Ca-Mg-HCO3, and mixed types, influenced by carbonate dissolution, ion exchange, and silicate weathering. Contamination sources, particularly in the north and south, were linked to agricultural activities, irrigation return flow, municipal waste, and evaporation. The WQI indicated that 10.14% of samples were extremely poor, 21.7% were poor, 26% were medium, and 42% were good to excellent. PTE contamination varied, with HPI values indicating good water quality in the central area in 53.6% of the collected samples (HPI < 30), but contamination in the north and south is high (HPI > 51). Ecological Risk Index values were below the threshold in 100% of samples (RI < 30), confirming water safety regarding PTEs. In comparison, for hazard index (HI) through oral/ingestion, adults exhibited HI values ranging from 0.012 to 2.16, while children showed higher values, ranging from 0.045 to 8.25. However, the hazard index for oral/ingestion exceeded safe limits in the north and south (HI oral > 1), posing non-carcinogenic risks. Monte Carlo simulations revealed significant risks from oral exposure to manganese (HQ oral > 1), particularly in El-Wasta and El-Fashn, necessitating further treatment and management.
Collapse
Affiliation(s)
- Mohamed Hamdy Eid
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, 3515, Miskolc- Egyetemváros, Hungary.
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt.
| | - Mahmoud Awad
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Essam A Mohamed
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Tamer Nassar
- Geology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Attila Kovács
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, 3515, Miskolc- Egyetemváros, Hungary
| | - Péter Szűcs
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, 3515, Miskolc- Egyetemváros, Hungary
| |
Collapse
|
5
|
Saeed O, Székács A, Jordán G, Mörtl M, Abukhadra MR, El-Sherbeeny AM, Szűcs P, Eid MH. Assessing surface water quality in Hungary's Danube basin using geochemical modeling, multivariate analysis, irrigation indices, and Monte Carlo simulation. Sci Rep 2024; 14:18639. [PMID: 39128943 PMCID: PMC11317494 DOI: 10.1038/s41598-024-69312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
Evaluation of water quality is crucial for managing surface water effectively, ensuring its suitability for human use, and sustaining the environment. In the lower Danube River basin, various methods were employed to assess surface water quality for irrigation, drinking, human health risk purposes and the main mechanism control the surface water chemistry. These methods included water quality indicators (WQIs), complex statistical analyses, geographic information systems (GIS), Monte Carlo simulation, and geochemical modeling. Physicochemical analyses of surface water samples revealed primarily Ca-Mg-HCO3- is the dominant water types. Principal component analysis (PCA), ionic ratios and piper, chloro alkaline index, Chadha, and Gibbs diagrams identified three distinct water characteristics influenced by water-rocks interaction, evaporation, ions exchange, and human activities. The geochemical modeling showed Danube River water's strong ability to dissolve gypsum, halite, and anhydrite (SI < 0) and precipitate aragonite, dolomite, and calcite with saturation index (SI) value greater than 0 along its flow path. The irrigation water quality index (IWQI = 99.6-107.6), sodium adsorption ratio (SAR = 0.37-0.68), sodium percentage (Na% = 13.7-18.7), soluble sodium percentage (SSP = 12.5-17.5), Potential Salinity (PS = 0.73-1.6), and Residual Sodium Carbonate (RSC = - 1.27-0.58) values were used, mainly indicating acceptable quality with some limitations. Danube River water was unsuitable for drinking based on WQI value (WQI = 81-104). Oral exposure of children to specific components showed a higher hazard index (HI > 1) compared to adults, indicating a 2.1 times higher overall non-carcinogenic risk hazard index. However, Monte Carlo simulation demonstrated negligible iron, manganese, and nitrate health hazards for both age groups. These findings are valuable for water quality management decisions, contributing to long-term resource sustainability.
Collapse
Affiliation(s)
- Omar Saeed
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - András Székács
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Győző Jordán
- Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Péter Szűcs
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| | - Mohamed Hamdy Eid
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt.
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary.
| |
Collapse
|
6
|
Eid MH, Tamma AA, Saeed O, Székács A, Abukhadra MR, El-Sherbeeny AM, Bence C, Mikita V, Kovács A, Szűcs P. Advanced approach combines integrated weight water quality index and potential toxic elements for environmental and health risk assessment supported by simulation technique in Oued Souf, Algeria. Sci Rep 2024; 14:17805. [PMID: 39090209 PMCID: PMC11294618 DOI: 10.1038/s41598-024-68854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
The current research study evaluated the health and environmental risks issues associated with potentially toxic elements (PTEs) in the complex terminal aquifer located in the Algerian desert. The methods used included principal component and cluster (dendrogram) analysis to estimate source of ions and contamination. Various indices such as the Heavy Metal Pollution Index (HPI), Metal Index, hazard quotient, hazard index (HI), and cancer risk (CR) were applied to assess both environmental and human health risks. Furthermore, the Monte Carlo method was applied for probabilistic assessment of carcinogenic and non-carcinogenic risks through oral and dermal exposure routes in both adults and children. The results revealed that approximately 16% of the samples fell within the low pollution category (HPI < 100), indicating relatively lower levels of heavy metal contamination. However, the remaining 84% of the samples exhibited high pollution levels, indicating a significant presence of heavy metal pollutants in the northeastern part of the investigated area. The calculated average risk index (RI) for the collected samples was 18.99, with a range from 0.03 to 103.21. This indicates that a large portion, 82% of the samples, could cause low ecological risk (RI < 30), whereas the remaining 18% indicate a significant environmental pollution risk. The HI for oral ingestion showed that adults had HI values ranging from 0.231 to 1.54, while children exhibited higher values, ranging from 0.884 to 5.9 (Fig. 5a). For dermal exposure, HI values in adults ranged from 2.71E-07 to 8.74E-06 and in children, from 2.18E-06 to 7.03E-05. These findings highlight the potential non-carcinogenic risks associated with oral exposure to PTEs and underscore the increased vulnerability of children to metals such as Fe, Mn, Pb, and Cr. Most samples showed CR exceeding 1 × 10-4 for chromium (Cr) and lead (Pb), indicating a significant vulnerability to carcinogenic effects in both children and adults.
Collapse
Affiliation(s)
- Mohamed Hamdy Eid
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary.
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt.
| | - Ahmed A Tamma
- Institute of Environmental Engineering, Faculty of Environmentsl Engineering and Geodesy, Wroclaw University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Omar Saeed
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - András Székács
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Czímer Bence
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| | - Viktoria Mikita
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| | - Attila Kovács
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| | - Péter Szűcs
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| |
Collapse
|
7
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
8
|
Latif M, Nasir N, Nawaz R, Nasim I, Sultan K, Irshad MA, Irfan A, Dawoud TM, Younous YA, Ahmed Z, Bourhia M. Assessment of drinking water quality using Water Quality Index and synthetic pollution index in urban areas of mega city Lahore: a GIS-based approach. Sci Rep 2024; 14:13416. [PMID: 38862670 PMCID: PMC11166916 DOI: 10.1038/s41598-024-63296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
The aim of the present study was to assess the drinking water quality in the selected urban areas of Lahore and to comprehend the public health status by addressing the basic drinking water quality parameters. Total 50 tap water samples were collected from groundwater in the two selected areas of district Lahore i.e., Gulshan-e-Ravi (site 1) and Samanabad (site 2). Water samples were analyzed in the laboratory to elucidate physico-chemical parameters including pH, turbidity, temperature, total dissolved solids (TDS), electrical conductivity (EC), dissolved oxygen (DO), total hardness, magnesium hardness, and calcium hardness. These physico-chemical parameters were used to examine the Water Quality Index (WQI) and Synthetic Pollution Index (SPI) in order to characterize the water quality. Results of th selected physico-chemical parameters were compared with World Health Organization (WHO) guidelines to determine the quality of drinking water. A GIS-based approach was used for mapping water quality, WQI, and SPI. Results of the present study revealed that the average value of temperature, pH, and DO of both study sites were within the WHO guidelines of 23.5 °C, 7.7, and 6.9 mg/L, respectively. The TDS level of site 1 was 192.56 mg/L (within WHO guidelines) and whereas, in site 2 it was found 612.84 mg/L (higher than WHO guidelines), respectively. Calcium hardness of site 1 and site 2 was observed within the range from 25.04 to 65.732 mg/L but, magnesium hardness values were higher than WHO guidelines. The major reason for poor water quality is old, worn-out water supply pipelines and improper waste disposal in the selected areas. The average WQI was found as 59.66 for site 1 and 77.30 for site 2. Results showed that the quality of the water was classified as "poor" for site 1 and "very poor " for site 2. There is a need to address the problem of poor water quality and also raise the public awareness about the quality of drinking water and its associated health impacts.
Collapse
Affiliation(s)
- Maria Latif
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Nimra Nasir
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan.
- Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Iqra Nasim
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Turki M Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Zulkifl Ahmed
- College of Resource and Civil Engineering, Northeast University, Shenyang, China
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| |
Collapse
|
9
|
Nativio A, Jovanovic O, Kapelan Z, van der Hoek JP. Human health risk assessment framework for new water resource recovery-based bio-composite materials. JOURNAL OF WATER AND HEALTH 2024; 22:652-672. [PMID: 38678420 DOI: 10.2166/wh.2024.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/12/2024] [Indexed: 04/30/2024]
Abstract
A new type of bio-composite material is being produced from water-recovered resources such as cellulose fibres from wastewater, calcite from the drinking water softening process, and grass and reed from waterboard sites. These raw materials may be contaminated with pathogens and chemicals such as Escherichia coli, heavy metals, and resin compounds. A novel risk assessment framework is proposed here, addressing human health risks during the production of new bio-composite materials. The developed framework consists of a combination of existing risk assessment methods and is based on three main steps: hazard identification, qualitative risk mapping, and quantitative risk assessment. The HAZOP and Event Tree Analysis methodologies were used for hazard identification and risk mapping stages. Then, human health risks were quantitatively assessed using quantitative chemical risk assessment, evaluating cancer and non-cancer risk, and quantitative microbial risk assessment. The deterministic and the stochastic approaches were performed for this purpose. The contamination of raw materials may pose human health concerns, resulting in cancer risk above the threshold. Microbial risk is also above the safety threshold. Additional analysis would be significant as future research to better assess the microbial risk in biocomposite production. The framework has been effectively used for chemical and microbial risk assessment.
Collapse
Affiliation(s)
- Arianna Nativio
- Department of Water Management, Delft University of Technology, Stevinweg 1,2628 CN Delft, The Netherlands E-mail:
| | - Oriana Jovanovic
- Department of Water Management, Delft University of Technology, Stevinweg 1,2628 CN Delft, The Netherlands
| | - Zoran Kapelan
- Department of Water Management, Delft University of Technology, Stevinweg 1,2628 CN Delft, The Netherlands
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, Stevinweg 1,2628 CN Delft, The Netherlands; Waternet, Korte Ouderkerkerdijk 7,1096 AC Amsterdam, The Netherlands
| |
Collapse
|
10
|
Tiwari R, Upadhyay V, Bhat SA, Kumar S. Sewage treatment plant dust: An emerging concern for heavy metals-induced health risks in urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169231. [PMID: 38072263 DOI: 10.1016/j.scitotenv.2023.169231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Metal-related pollution from dust is a significant source of toxic elements in urban areas. The present study aimed to assess the health risk posed by heavy metals present in dust samples to the people residing near the Sewage Treatment Plant (STP). Dust samples were collected from an STP with a capacity of 130 mega litres per day (MLD). Data analysis indicated highly contaminated STP dust with Enrichment Factor (EF) suggesting an anthropogenic origin of selected metals (As, Co, Al, Cu, Cr, Cd, Ba, Pb, Ni, Mn). The contamination factor values of metals highlighted a greater degree of contamination in the selected area. Notably, a strong correlation (>0.5) was observed between metals. The EF value was found to be >40 indicating high enrichment for all the metals except Fe. In-depth chemical analysis and health risk assessments were conducted, revealing an Excess Lifetime Cancer Risk (ELCR) value of 1 × 10-6 and HQ (Hazard Quotient) value of 1. These values are significantly exceeding the safe limits for both children and adults which could develop cancerous properties in human beings. In an effort to reduce toxicity, dust samples were also subjected to vermicomposting treatment to assess the potential effectiveness of the earthworms. The EF value of vermicomposted dust came out to be lower than the untreated one. The Hazard Quotient (HQ) values for adults exhibited the following pattern of HQing > HQder > HQinh (indicating that the Hazard Quotient from ingestion is greater than that from dermal contact, which is in turn greater than inhalation). This investigation offers crucial insights into the increased risks of cancerous and non-cancerous ailments for individuals living or working in proximity to STPs. This research also highlights the pressing need to implement effective measures for safeguarding public health and mitigating environmental pollution in urban areas.
Collapse
Affiliation(s)
- Rahul Tiwari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Vidisha Upadhyay
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Sartaj Ahmad Bhat
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India.
| |
Collapse
|
11
|
Le TV, Nguyen BT. Heavy metal pollution in surface water bodies in provincial Khanh Hoa, Vietnam: Pollution and human health risk assessment, source quantification, and implications for sustainable management and development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123216. [PMID: 38145637 DOI: 10.1016/j.envpol.2023.123216] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
The global issue of heavy metal pollution in surface water poses a significant concern, with the potential to harm public health through various pathways. Given that pollution levels are dependent on water bodies and seasons and their potential impacts on human health vary with children and adults, it is crucial to identify and quantify pollution sources for the development of sustainable management strategies. The current study aimed to evaluate pollution levels and associated health risks of heavy metals and to quantify their pollution sources in various surface water bodies in Khanh Hoa, Vietnam. Water samples were taken from three water bodies (reservoirs, rivers, and narrow waterways) during two seasons (dry and rainy) from 2016 to 2020 and analyzed for seven heavy metals. The results showed that iron had the highest concentration of 392.4 (μg L-1), followed by zinc (25.7 μg L-1), arsenic (3.93 μg L-1), copper (3.77 μg L-1), lead (2.77 μg L-1), chromium (2.71 μg L-1), and cadmium (0.57 μg L-1). Narrow waterways were more polluted with heavy metals (heavy metal pollution index, HPI = 29.5) than other water bodies, such as rivers (23.3) and reservoirs (21.7), and the dry season had a higher HPI (26.5) than the rainy season (24.0). The hazard index for children varied from 1.2 to 1.48, while that for adults was less than 1, suggesting that surface water may have adverse impacts on children's health. The factor analysis identified three primary sources of contamination, namely combustion emissions/street dust, agricultural run-off, and other sources. Cadmium is the most critical metal in determining HPI, while arsenic and chromium are the two key elements potentially influencing children's health. Managing pollution sources, reducing the metal concentration, and controlling the pathways through which metals enter the human body should be implemented for a healthier environment and long-term development.
Collapse
Affiliation(s)
- Thang Viet Le
- Institute of Environmental Science, Engineering, and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Viet Nam
| | - Binh Thanh Nguyen
- Institute of Environmental Science, Engineering, and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Debertin JG, Holzhausen EA, Walker DI, Pacheco BP, James KA, Alderete TL, Corlin L. Associations between metals and metabolomic profiles related to diabetes among adults in a rural region. ENVIRONMENTAL RESEARCH 2024; 243:117776. [PMID: 38043890 PMCID: PMC10872433 DOI: 10.1016/j.envres.2023.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Exposure to metals is associated with increased risk of type 2 diabetes (T2D). Potential mechanisms for metals-T2D associations involve biological processes including oxidative stress and disruption of insulin-regulated glucose uptake. In this study, we assessed whether associations between metal exposure and metabolite profiles relate to biological pathways linked to T2D. MATERIALS AND METHODS We used data from 29 adults rural Colorado residents enrolled in the San Luis Valley Diabetes Study. Urinary concentrations of arsenic, cadmium, cobalt, lead, manganese, and tungsten were measured. Metabolic effects were evaluated using untargeted metabolic profiling, which included 61,851 metabolite signals detected in serum. We evaluated cross-sectional associations between metals and metabolites present in at least 50% of samples. Primary analyses adjusted urinary heavy metal concentrations for creatinine. Metabolite outcomes associated with each metal exposure were evaluated using pathway enrichment to investigate potential mechanisms underlying the relationship between metals and T2D. RESULTS Participants had a mean age of 58.5 years (standard deviation = 9.2), 48.3% were female, 48.3% identified as Hispanic/Latino, 13.8% were current smokers, and 65.5% had T2D. Of the detected metabolites, 455 were associated with at least one metal, including 42 associated with arsenic, 22 with cadmium, 10 with cobalt, 313 with lead, 66 with manganese, and two with tungsten. The metabolic features were linked to 24 pathways including linoleate metabolism, butanoate metabolism, and arginine and proline metabolism. Several of these pathways have been previously associated with T2D, and our results were similar when including only participants with T2D. CONCLUSIONS Our results support the hypothesis that metals exposure may be associated with biological processes related to T2D, including amino acid, co-enzyme, and sugar and fatty acid metabolism. Insight into biological pathways could influence interventions to prevent adverse health outcomes due to metal exposure.
Collapse
Affiliation(s)
- Julia G Debertin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | | | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Brismar Pinto Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
13
|
Saha A, Das BK, Sarkar DJ, Samanta S, Vijaykumar ME, Khan MF, Kayal T, Jana C, Kumar V, Gogoi P, Chowdhury AR. Trace metals and pesticides in water-sediment and associated pollution load indicators of Netravathi-Gurupur estuary, India: Implications on coastal pollution. MARINE POLLUTION BULLETIN 2024; 199:115950. [PMID: 38183833 DOI: 10.1016/j.marpolbul.2023.115950] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Various environmental indicators were used to evaluate the water and sediment quality of the Netravathi-Gurupur estuary, India, for trace metals and pesticide pollution. The descended order of studied metal concentrations (μg/L) in the water was Fe (592.71) > Mn (98.35) > Zn (54.69) > Cu (6.64) > Cd (3.24) > Pb (2.38) > Cr (0.82) and in sediment (mg/kg) was Fe (11,396.53) > Mn (100.61) > Cr (75.41) > Zn (20.04) > Cu (12.77) > Pb (3.46) > Cd (0.02). However, pesticide residues were not detected in this estuarine environment. The various metal indexes categorised the water as uncontaminated, whereas contamination factor, enrichment factor, geo-accumulation index, degree of contamination and pollution load index indicated low to moderate sediment contamination. Multivariate statistics showed that the dominance of natural sources of trace metals with little anthropogenic impact. Improvement in water/sediment quality during the study period might be due to COVID-19 imposed lockdown.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - D J Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
14
|
Elumalai S, Prabhu K, Selvan GP, Ramasamy P. Review on heavy metal contaminants in freshwater fish in South India: current situation and future perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119594-119611. [PMID: 37945961 DOI: 10.1007/s11356-023-30659-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The primary natural resource we use in our daily lives for a variety of activities is freshwater for drinking and various developmental goals. Furthermore, the pace of human population increase worldwide is rising rapidly and has a great impact on the Earth's natural resources. Natural water quality has diminished owing to various anthropogenic activities. Water is crucial to the life cycle. On the other hand, chemical and agricultural industries pollute heavy metals. Acute and chronic diseases caused by heavy metals, such as slow metabolism and damage to the gills and epithelial layer of fish species, are divided into two categories. Pollutants can also harm liver tissues and result in ulceration as well as diseases such as fin rot, tail rot, and gill disease. The most prevalent heavy metals are As, Cr, Pb, and Hg, which are systemic toxicants that affect human health. These metals are categorized as carcinogens by the US Environmental Protection Agency and the worldwide agency for cancer research because they cause organ damage even at low exposure levels. The focus of the current study is to review various freshwater sources of heavy metal pollution.
Collapse
Affiliation(s)
- Saranya Elumalai
- Department of Biotechnology, Vinayaka Missions Kirupananda Variyar Engineering College, Salem, Tamil Nadu, 636308, India
| | - Kolandhasamy Prabhu
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Gopi Palani Selvan
- Department of Oceanography & Coastal Area Studies, Alagappa University, Thondi Campus, Thondi, Tamil Nadu, 623409, India
| | - Pasiyappazham Ramasamy
- Department of Physiology, Basic Medical Sciences, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
15
|
Saeed O, Székács A, Jordán G, Mörtl M, Abukhadra MR, Eid MH. Investigating the impacts of heavy metal(loid)s on ecology and human health in the lower basin of Hungary's Danube River: A Python and Monte Carlo simulation-based study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9757-9784. [PMID: 37843689 PMCID: PMC10673977 DOI: 10.1007/s10653-023-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to determine the environmental and health risks of the heavy metal levels in the Danube River in Hungary. The metals, including Fe, Mn, Zn, Cu, Ni, Cr, Pb, and As, were measured in the period from 2013 to 2019. The Spearman correlation and heatmap cluster analysis were utilized to determine the origin of pollution and the factors that control surface water quality. Several indices, such as the heavy metal pollution index (HPI), metal index (MI), hazard quotient oral and dermal (HQ), hazard index oral and dermal (HI), and carcinogenic risk (CR), were conducted to evaluate the potential risks for the environment and human health. The values of the HPI were between the range of 15 < HPI < 30, which indicated moderate pollution; however, the MI results showed high pollution in Dunaföldvár and Hercegszántó cities. The ecological risk (RI < 30) and HI values (< 1) showed low environmental risks and non-carcinogenic impacts of the existing metals, either on adults or children. The mean CR value of oral arsenic was 2.2E-04 and 2.5E-04 during April-September and October-March, respectively, indicating that children were the most vulnerable to arsenic-carcinogenic oral effects. While lead's CR oral values for children during April-September exceeded the threshold of 1.0E-04, chromium's oral and dermal CR values for both adults and children were 2.08E-04, 6.11E-04, 1.97E-04, and 5.82E-04 during April-September and October-March, respectively. These results demonstrate the potential carcinogenic risks related to chromium exposure within the two pathways in Hungary and highlight the need for effective measures to mitigate these risks.
Collapse
Affiliation(s)
- Omar Saeed
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - András Székács
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Győző Jordán
- Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Mohamed Hamdy Eid
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| |
Collapse
|
16
|
Serdyukova AD, Vlasov DV, Popovicheva OB, Kosheleva NE, Chichaeva MA, Kasimov NS. Elemental composition of atmospheric PM 10 during COVID-19 lockdown and recovery periods in Moscow (April-July 2020). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7909-7931. [PMID: 37498434 DOI: 10.1007/s10653-023-01698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Changes in the concentrations of PM10-bound potentially toxic elements (PTEs) during the COVID-19 lockdown period and after the revocation of restrictions were analyzed using the data received at the Aerosol Complex of Moscow State University in April-July 2020. During the lockdown, the input of biomass combustion products enriched in PTEs from the Moscow region hindered the decrease in pollutant concentrations. After the introduction of the self-isolation regime, lower concentrations of most PTEs occurred due to the decrease in anthropogenic activity and the rainy meteorological conditions. After the revocation of restrictive measures, the PTE concentrations began to increase. Multivariate statistical analysis (APCA-MLR) identified the main sources of atmospheric pollutants as urban dust, non-exhaust traffic emissions, and combustion and exhaust traffic emissions. PM10 particles were significantly enriched with Sb, Cd, Sn, Bi, S, Pb, Cu, Mo, and Zn. The total non-carcinogenic and carcinogenic risks, calculated according to the U.S. EPA model, decreased by 24% and 23% during the lockdown; after the removal of restrictions, they increased by 61% and 72%, respectively. The study provides insight into the PTE concentrations and their main sources at different levels of anthropogenic impact.
Collapse
Affiliation(s)
- Anastasia D Serdyukova
- Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Dmitrii V Vlasov
- Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.
- Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL, 61790, USA.
| | - Olga B Popovicheva
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Natalia E Kosheleva
- Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Marina A Chichaeva
- Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Nikolay S Kasimov
- Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| |
Collapse
|
17
|
He M, Liu G, Li Y, Zhou L, Arif M, Liu Y. Spatial-temporal distribution, source identification, risk assessment and water quality assessment of trace elements in the surface water of typical tributary in Yangtze River delta, China. MARINE POLLUTION BULLETIN 2023; 192:115035. [PMID: 37209661 DOI: 10.1016/j.marpolbul.2023.115035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
As China's first cross-province ecological compensation mechanism pilot area in the hinterland of the Yangtze River Delta, Xin'an River has been hotspot in the study of rational utilization of ecological resources, and the functional value of its ecosystem services has been widely concerned. As an important tributary of the upper reaches of Xin'an River, Fengle River may affect the whole basin. The spatial-temporal distributions, occurrence, water quality and risk assessment of trace elements were studied in Fengle River in three seasons. High element concentrations were found in the downstream. Traceability models results showed that the major sources of trace elements were related to different human activities. The water quality was worse downstream in the wet season, and was more suitable for irrigation in the dry season. Risk assessment results showed that Zn, Cu, Mn, Co, and As were able to pose the risk to the ecological environment and human.
Collapse
Affiliation(s)
- Miao He
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Yongli Li
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Yuan Liu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States
| |
Collapse
|
18
|
Sahoo MM, Swain JB. Investigation and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India. MARINE POLLUTION BULLETIN 2023; 190:114894. [PMID: 37018906 DOI: 10.1016/j.marpolbul.2023.114894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sediments and surface water from 8 stations each from Dhamara and Paradeep estuarine areas were sampled for investigation of heavy metals, Cd, Cu, Pb, Mn, Ni, Zn, Fe, and Cr contamination. The objective of the sediment and surface water characterization is to find the existing spatial and temporal intercorrelation. The sediment accumulation index (Ised), enrichment index (IEn), ecological risk index (IEcR) and probability heavy metals (p-HMI) reveal the contamination status with Mn, Ni, Zn, Cr, and Cu showing permissible (0 ≤ Ised ≤ 1, IEn ˂ 2, IEcR ≤ 150) to moderate (1 ≤ Ised ≤ 2, 40 ≤ Rf ≤ 80) contamination. The p-HMI reflects the range from excellent (p-HMI = 14.89-14.54) to fair (p-HMI = 22.31-26.56) in off shore stations of the estuary. The spatial patterns of the heavy metals load index (IHMc) along the coast lines indicate that the pollution hotspots are progressively divulged to trace metals pollution over time. Heavy metal source analysis coupled with correlation analysis and principal component analysis (PCA) was used as a data reduction technique, which reveals that the heavy metal pollution in marine coastline might originate from redox reactions (FeMn coupling) and anthropogenic sources.
Collapse
|
19
|
Rather RA, Ara S, Padder SA, Sharma S, Pathak SP, Baba TR. Seasonal fluctuation of water quality and ecogenomic phylogeny of novel potential microbial pollution indicators of Veshaw River Kashmir-Western Himalaya. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121104. [PMID: 36682619 DOI: 10.1016/j.envpol.2023.121104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nearly a billion people, especially in underdeveloped nations, need safe drinking water. Indian studies suggest that most drinking water sources have high coliform levels, and quality assurance is required. This study was conducted in rural parts of South Kashmir in the Western Himalaya from February 2019 to January 2020. Standard river water sampling was done from upstream to downstream of the river. This study examined the detection, molecular identification, and chemical water quality of coliform-contaminated drinking water, which sums up river water pollution. Water quality varied significantly, indicating downstream contamination. Sangam (downstream) had the highest coliform count, showing 72.2600 cfu per litre in summer, while Kongwaton (upstream), near the Veshaw River, had no coliform count in winter. In summer, Sangam (downstream) had the highest water quality metrics (pH 6.847, Electrical conductivity (EC) 71.620 dS/m, Biological oxygen demand (BOD) 1.120 mg/L, and Chemical oxygen demand (COD) 24.637 mg/L) in all seasons. The lowest winter water quality metrics in Kongwaton were pH 8.947, EC 253.680 dS/m, BOD 4.963 mg/L, and COD 51.440 mg/L. Coliforms in water suggest faecal contamination. This study examines the water quality attributes of drinking water and associated factors to determine river pollution. Total DNA was collected and sequenced for 16 S rDNA and metagenomics. Universal primers were used to amplify the bacterial 16 S rRNA. Using BLAST, the amplified 16 S rRNA gene sequence was matched to the NCBI database. A metagenomic study revealed 27 species with different relative abundance. These species include Escherichia coli, E. fergusonii, E. albertii, Klebsiella grimontii, and Shigella dysenteriae. This study is thought to be the first to discriminate against E. fergusonii, E. albertii, K. grimontii, and S. dysenteriae from E. coli and to report on E. fergusonii and E. albertii, K. grimontii, and S. dysenteriae in the river Veshaw water sources in Kulgam, Western Himalaya.
Collapse
Affiliation(s)
- Rauoof Ahmad Rather
- Division of Environmental Sciences, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Kashmir, Jammu &Kashmir, 190025, India.
| | - Shoukat Ara
- Division of Environmental Sciences, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Kashmir, Jammu &Kashmir, 190025, India
| | - Shahid Ahmad Padder
- Division of Basic Sciences and Humanities, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Kashmir, Jammu &Kashmir, 190025, India
| | - Sanjeev Sharma
- Dr. Ambedkar International Centre, Ministry of Social Justice & Empowerment, Govt. of India, 15 Janpath, New Delhi, 110001, India
| | - Shiv Poojan Pathak
- Dr. Ambedkar International Centre, Ministry of Social Justice & Empowerment, Govt. of India, 15 Janpath, New Delhi, 110001, India
| | - Tawseef Rehman Baba
- Division of Fruit Sciences, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Kashmir, Jammu &Kashmir, 190025, India
| |
Collapse
|
20
|
Alam MW, Rahman MM, Bhuyan MS, Senapathi V, Chung SY, Karthikeyan S, Sekar S, Elzain HE, Nadiri AA. Inferences on metal pollution in the natural spawning zone of Bangladesh river and pollution management strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:56. [PMID: 36326897 DOI: 10.1007/s10661-022-10544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to evaluate the metal concentrations in the Halda River in Bangladesh to determine the quality of the water and sediment in the natural spawning zone. Fe > Zn > Cr > Cd > Cu was the order of the metals in water, whereas Fe > Zn > Cd > Cu was the order in sediments. Almost all of the heavy metals in the water and sediment had been found within the established limits, with the exception of Cr and Fe in the river and Cu in the sediment. In the case of water, Cr vs. Zn was found to have the strongest correlation (r = 0.96). Due to the coagulation and adsorption processes, it was shown that Fe and Zn had a substantial correlation of 0.96, Cu and Cd of 0.91, and Cr of 0.78 with Zn. Hazard quotient values of Cd show the not potable nature of Halda river surface water and might give adverse health effects for all age groups except Cu and Zn. Pollution load index values indicated the uncontaminated nature of the river bottom sediments. Natural and human activities were the key factors influencing the accumulation and movement of heavy metals in the water and sediments. Contamination sources are industrial effluents, garbage runoff, farming operations, and oil spills from fishing vessels which are comparable according to multivariate statistical analysis. Ion exchange, absorption, precipitation, complexation, filtration, bio-absorption, redox reaction, and reverse osmosis were considered to be effective for the degradation of metal concentrations. The feasibility of the suggested metal reduction procedures has to be studied to know which is optimally appropriate for this river region. It is expected that this study could provide a useful suggestion to decrease the metal pollution in the river.
Collapse
Affiliation(s)
- Md Wahidul Alam
- Department of Oceanography, Faculty of Marine Sciences & Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Mohammad Mostafizur Rahman
- Institute of Marine Sciences, Faculty of Marine Sciences & Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh
| | | | - Sang Yong Chung
- Department of Earth and Environmental Sciences, Pukyong National University, Busan, 608737, South Korea.
| | - Sivakumar Karthikeyan
- Department of Geology, Faculty of Science, Alagappa University, Karaikudi, 630003, India
| | - Selvam Sekar
- Department of Geology, V.O. Chidambaram College, Thoothukudi, 628008, Tamil Nadu, India
| | | | - Ata Allah Nadiri
- Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Institute of Environment, University of Tabriz, Tabriz, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Geography & Environmental Studies, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|