1
|
Guo Z, Xiao Q, Li T, Deng Y, Liu P, Ren X, Xu B, Chen X, Huang H, Qin W, Huang C, Luo L, Liu J, Lu S. Co-exposure to polycyclic aromatic hydrocarbons and nicotine and their associations with cognitive impairment risk in older adults from southern China. Food Chem Toxicol 2025; 197:115255. [PMID: 39828119 DOI: 10.1016/j.fct.2025.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke is widespread and linked to various adverse health outcomes. Their potential to disturb the neurological system has raised much concern, particularly among older adults. Thus, we conducted a case-control study to assess the associations between co-exposure to PAHs and nicotine, and the risk of cognitive impairment and oxidative stress in older adults. A total of 384 adults aged 60 years and older were recruited from 2017 to 2018 in Shenzhen, China. Morning spot urine samples were collected for the analysis of 6 mono-hydroxylated PAHs, 8 nicotine metabolites, and a typical biomarker for oxidative stress, 8-hydroxy-2'-deoxyguanosine (8-OHdG). The Mini-Mental State Examination was used to assess the cognitive function of participants. Quantile-based g-computation (QGC), weighted quantile sum regression, and Bayesian kernel machine regression were used to analyze the associations between the exposure mixture and outcomes. QGC showed co-exposure to PAHs and nicotine were positively associated with cognitive impairment risk (OR: 1.66, 95% CI: 1.36-2.03, P < 0.001) and 8-OHdG (β:11.19, 95% CI: 3.90-18.48, P < 0.001). The primary contributors to cognitive impairment risk were (S)-nicotine-N-β-glucuronide (NicGluc), cotinine N-β-D-glucuronide (CotGluc) and (S)-cotinine N-oxide (CNO) and Cotinine (Cot), with no-linear dose-response relationships. However, 8-OHdG did not mediate the association between PAHs, nicotine and cognitive impairment risk.
Collapse
Affiliation(s)
- Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qunlin Xiao
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Tian Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China; Beijing Daxing District Center for Disease Control and Prevention, Beijng, 102699, China
| | - Yilan Deng
- Zhuhai Maternity and Child Health Care Hospital, Zhuhai, 519001, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Weizhen Qin
- Physical and Chemical Testing Department, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Chengpeng Huang
- Physical and Chemical Testing Department, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Lan Luo
- Physical and Chemical Testing Department, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Xu P, Liu B, Chen H, Wang H, Guo X, Yuan J. PAHs as environmental pollutants and their neurotoxic effects. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109975. [PMID: 38972621 DOI: 10.1016/j.cbpc.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are widely present in incompletely combusted air particulate matter <2.5 μm (PM2.5), tobacco and other organic materials, can enter the human body through various routes and are a class of environmental pollutants with neurotoxic effects. PAHs exposure can lead to abnormal development of the nervous system and neurobehavioral abnormalities in animals, including adverse effects on the nervous system of children and adults, such as a reduced learning ability, intellectual decline, and neural tube defects. After PAHs enter cells of the nervous system, they eventually lead to nervous system damage through mechanisms such as oxidative stress, DNA methylation and demethylation, and mitochondrial autophagy, potentially leading to a series of nervous system diseases, such as Alzheimer's disease. Therefore, preventing and treating neurological diseases caused by PAHs exposure are particularly important. From the perspective of the in vitro and in vivo effects of PAHs exposure, as well as its effects on human neurodevelopment, this paper reviews the toxic mechanisms of action of PAHs and the corresponding prevention and treatment methods to provide a relevant theoretical basis for preventing the neurotoxicity caused by PAHs, thereby reducing the incidence of diseases related to the nervous system and protecting human health.
Collapse
Affiliation(s)
- Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bingchun Liu
- Stem Cell Laboratory / Central Laboratory Of Organ Transplantation / Inner Mongolia Autonomous Region Engineering Laboratory For Genetic Test And Research Of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
3
|
Kuang HX, Dong CY, Yan L, Zhou Y, Xiang MD, Yu YJ. Exposure to synthesized tribromobisphenol A and critical effects: Metabolic pathways, disease signature, and benchmark dose derivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173117. [PMID: 38734097 DOI: 10.1016/j.scitotenv.2024.173117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 μg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Chen-Yin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lei Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
4
|
Feng Y, Wan Y, Wang H, Jiang Q, Zhu K, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Dyslexia is associated with urinary polycyclic aromatic hydrocarbon metabolite concentrations of children from China: Data from the READ program. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123538. [PMID: 38341065 DOI: 10.1016/j.envpol.2024.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
It has been found that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the risk of certain childhood neurodevelopmental disorders. However, no research has investigated the relationship between exposure to PAHs and children's dyslexia odds. The objective of this research was to investigate whether urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are associated with increased dyslexia odds in Chinese children. We recruited 1,089 children (542 dyslexic children and 547 non-dyslexic children) for this case-control study. Ten OH-PAHs were measured in the participants' urine samples, which were collected between November 2017 and March 2023. Odds ratios (ORs) of the associations between the OH-PAHs and dyslexia were calculated using logistic regression models, after adjustment for the potential confounding factors. A significant association was found between urinary concentrations of 2-hydroxynaphthalene (2-OHNap) and the elevated odds of dyslexia. The children in the highest quartile of 2-OHNap had a higher OR of dyslexia (1.87, 95% CI: 1.07-3.27) than those in the lowest quartile (P-trend = 0.02) after adjustment for the covariates. After excluding children with maternal disorders during pregnancy, logistic regression analyses showed similar results. Our results suggested a possible association between PAH exposure and the elevated odds of dyslexia.
Collapse
Affiliation(s)
- Yanan Feng
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Nursing, Medical School, Shihezi University, Shihezi, 832003, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Hernández Paniagua IY, Amador Muñoz O, Rosas Pérez I, Arrieta García O, González Buendía RI, Andraca Ayala GL, Jazcilevich A. Reduced commuter exposure to PM 2.5 and PAHs in response to improved emission standards in bus rapid transit systems in Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122236. [PMID: 37481026 DOI: 10.1016/j.envpol.2023.122236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
We evaluated impacts of progressive technological updates to bus rapid transit (BRT) systems on in-cabin concentrations of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and the various polyaromatic hydrocarbons (PAHs) to which commuters were exposed. PM2.5 samples were collected and real-time concentrations measured from October 2017 to March 2020 inside cabins of BRT buses equipped with Euro IV, V and VI diesel emission standards in the Mexico City Metropolitan Area (MCMA). For effective comparison, similar samplings and measurements were carried out on trains in the MCMA underground (MCU) system. Peak in-cabin PM2.5 concentrations decreased significantly (p < 0.05) by 35% from Euro IV to Euro V buses, and by 80% from Euro IV to Euro VI buses. PM2.5 concentrations inside Euro VI buses were significantly lower (p < 0.05) than in Euro IV and Euro V buses and in underground trains. The in-cabin excess (ICE) of PM2.5 relative to ambient concentrations was significantly (p < 0.05) higher for Euro IV than for Euro V buses during morning the traffic peak, and consistently higher than for Euro VI buses. Indeed, ICEs calculated for Euro VI buses were always lower than those for electricity-powered underground trains. The frequency of hotspots decreased from Euro IV to Euro VI buses due to the combined effect of low emissions and closed, air-conditioned cabins. Concentrations of total PAHs including carcinogenic species also decreased from Euro IV to Euro V buses and were below limits of detection aboard Euro VI buses. This work shows that in real-life conditions, advanced diesel technologies and cabin design significantly reduce commuters' exposure to PM2.5 and to toxic PAH compounds.
Collapse
Affiliation(s)
- Iván Y Hernández Paniagua
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Omar Amador Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Irma Rosas Pérez
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Oscar Arrieta García
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Raymundo I González Buendía
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Gema L Andraca Ayala
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Arón Jazcilevich
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Zhi J, Tang Q, Wu S, Kong B, Jiang J, Li Z, Wang Y, Xue C. Degradation of curcumin‐mediated photodynamic technology (PDT) on polycyclic aromatic hydrocarbons in oysters and toxicity evaluation of PDT‐treated oysters. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jinjin Zhi
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Qingjuan Tang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Shuangjie Wu
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Jiali Jiang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhaojie Li
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Yuming Wang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|