1
|
Laishram D, Kim SB, Lee SY, Park SJ. Advancements in Biochar as a Sustainable Adsorbent for Water Pollution Mitigation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410383. [PMID: 40245172 DOI: 10.1002/advs.202410383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/05/2025] [Indexed: 04/19/2025]
Abstract
Biochar, a carbon-rich material produced from the partial combustion of biomass wastes is often termed "black gold" for its potential in water pollution mitigation and carbon sequestration. By customizing biomass feedstock and optimizing preparation strategies, biochar can be engineered with specific physicochemical properties to enhance its effectiveness in removing contaminants from wastewater. Recent studies demonstrate that biochar can achieve > 90% removal efficiency for heavy metals such as lead and cadmium, > 85% adsorption capacity for organic pollutants such as dyes and phenols, and > 80% reduction in microplastics and nanoplastics. This review explores recent advancements in biochar preparation technologies, such as pyrolysis, carbonization, gasification, torrefaction, and rectification, along with physical, chemical, and biological modifications that are crucial for efficient pollutant removal. The core of this review focuses on biochar's applications in removing a wide range of pollutants from wastewater, detailing mechanisms for organic pollutants, inorganic salts, pharmaceutical contaminants, microplastics, nanoplastics, and volatile organic compounds. In addition, the review introduces machine learning as a key technique for optimizing biochar production and functionality, showcasing its potential in advancing biochar technology. The conclusion provides a comprehensive outlook on biochar's future, emphasizing ongoing research and its role in sustainable environmental management.
Collapse
Affiliation(s)
- Devika Laishram
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Su-Bin Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seul-Yi Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
2
|
Song Q, Kong F, Liu BF, Song X, Ren HY. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100420. [PMID: 38765891 PMCID: PMC11099330 DOI: 10.1016/j.ese.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Li Y, Wang W, Chen L, Ma H, Lu X, Ma H, Liu Z. Visible-Light-Driven Z-Type Pg-C 3N 4/Nitrogen Doped Biochar/BiVO 4 Photo-Catalysts for the Degradation of Norfloxacin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1634. [PMID: 38612148 PMCID: PMC11012328 DOI: 10.3390/ma17071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Antibiotics cannot be effectively removed by traditional wastewater treatment processes, and have become widespread pollutants in various environments. In this study, a Z-type heterojunction photo-catalyst Pg-C3N4 (PCN)/Nitrogen doped biochar (N-Biochar)/BiVO4 (NCBN) for the degradation of norfloxacin (NOR) was prepared by the hydrothermal method. The specific surface area of the NCBN (42.88 m2/g) was further improved compared to BiVO4 (4.528 m2/g). The photo-catalytic performance of the catalyst was investigated, and the N-Biochar acted as a charge transfer channel to promote carrier separation and form Z-type heterojunctions. Moreover, the NCBN exhibited excellent performance (92.5%) in removing NOR, which maintained 70% degradation after four cycles. The main active substance of the NCBN was •O2-, and the possible degradation pathways are provided. This work will provide a theoretical basis for the construction of heterojunction photo-catalysts.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenyu Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lei Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huifang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xi Lu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhibao Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Bobde P, Sharma AK, Kumar R, Pal S, Pandey JK, Wadhwa S. Adsorptive removal of oxytetracycline using MnO 2-engineered pine-cone biochar: thermodynamic and kinetic investigation and process optimization. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1291. [PMID: 37821660 DOI: 10.1007/s10661-023-11932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Indiscriminate use of oxytetracycline is linked to the development of antibiotic-resistant genes, posing a serious threat to human health and ecosystem balance. This article reports the adsorptive elimination of oxytetracycline (OTC) from aqueous solution using a newly developed MnO2-modified pine-cone biochar (MnO2/PCBC). The MnO2/PCBC was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, CHNS analyzer, inductively coupled plasma-optical emission spectroscopy, and Brunauer-Emmett-Teller N2 adsorption analyzer. Batch adsorption experiments, designed using the central composite design framework of response surface methodology, were conducted to investigate the influence of process variables on the adsorption of OTC onto MnO2/PCBC. The optimized conditions for achieving maximum removal (88.1%) were found to be at pH 8, MnO2/PCBC dose 0.44 g/L, initial OTC concentration 200 mg/L, and temperature 303 K. The adsorption process follows Langmuir (R2=0.95) and Freundlich (R2=0.95) isotherms and pseudo-second-order (R2=0.99) adsorption kinetics. The adsorption process was found to be endothermic (ΔH0 = 33.04 kJ/mol) and spontaneous in nature (ΔG0 from -1.33 kJ/mol at 283 K to -5.65 kJ/mol at 313 K). The synthesized MnO2/PCBC could be recycled and reused for OTC removal with a percentage removal of around 80% after fifth cycle. The results indicate an effective removal of oxytetracycline with only 0.44 g/L MnO2/PCBC with maximum adsorption capacity of 357.14 mg/g which demonstrates improved performance in comparison to many adsorbents reported in literature. This implies that MnO2/PCBC offers potential to be developed into a cost-effective technique for antibiotic removal from water.
Collapse
Affiliation(s)
- Prakash Bobde
- Department of Research & Development, UPES University, Energy Acres Building, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Amit Kumar Sharma
- Center for Alternate Energy Research, UPES University, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Ranjit Kumar
- Center for Advanced Materials, Department of Chemical Engineering, Shiv Nadar Institution of Eminence, NCR, Delhi, 201314, India
| | - Sukdeb Pal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jitendra Kumar Pandey
- School of Engineering, UPES University, Energy Acres Building, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Shikha Wadhwa
- Applied Science Cluster, School of Engineering, UPES University, Energy Acres Building, Bidholi, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
5
|
Naraginti S, Kuppusamy S, Lavanya K, Zhang F, Liu X. Sunlight-driven intimately coupled photocatalysis and biodegradation (SDICPB): A sustainable approach for enhanced detoxification of triclosan. CHEMOSPHERE 2023:139210. [PMID: 37315856 DOI: 10.1016/j.chemosphere.2023.139210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Triclosan is considered as recalcitrant contaminant difficult to degrade from the contaminated wastewater. Thus, promising, and sustainable treatment method is necessary to remove triclosan from the wastewater. Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging, low-cost, efficient, and eco-friendly method for the removal of recalcitrant pollutants. In this study BiOI photocatalyst coated bacterial biofilm developed at carbon felt for efficient degradation and mineralization of triclosan was studied. Based on the characterization of BiOI prepared using methanol had lower band gap 1.85 eV which favors lower recombination of electron-hole pair and higher charge separation which ascribed to enhanced photocatalytic activity. ICPB exhibits 89% of triclosan degradation under direct sunlight exposure. The results showed that production of reactive oxygen species hydroxyl radical and superoxide radical anion played crucial role in the degradation of triclosan into biodegradable metabolites further the bacterial communities mineralized the biodegradable metabolites into water and carbon dioxide. The confocal laser scanning electron microscope results emphasized that interior of the biocarrier shows a large number of live bacterial cells existing in the photocatalyst-coated carrier, where the little toxic effect on bacterial biofilm occurred on the exterior of the carrier. The extracellular polymeric substances characterization result remarkable confirms that which could act as sacrificial agent of photoholes further helped by preventing the toxicity to the bacterial biofilm from the reactive oxygen species and triclosan. Hence, this promising approach can be a possible alternative method for the wastewater treatment polluted with triclosan.
Collapse
Affiliation(s)
| | - Sathishkumar Kuppusamy
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Kubendiran Lavanya
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India.
| |
Collapse
|
6
|
Tan M, Shi W, Wang H, Di G, Xie Z, Fan S, Tang J, Dong F. Effective photodegradation of antibiotics by guest-host synergy between photosensitizer and bismuth vanadate: Underlying mechanism and toxicity assessment. CHEMOSPHERE 2023; 325:138362. [PMID: 36905996 DOI: 10.1016/j.chemosphere.2023.138362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The removal of antibiotics in wastewater has attracted increasing attention. Herein, a superior photosensitized photocatalytic system was developed with acetophenone (ACP) as the guest photosensitizer, bismuth vanadate (BiVO4) as the host catalyst and poly dimethyl diallyl ammonium chloride (PDDA) as the bridging complex, and used for the removal of sulfamerazine (SMR), sulfadiazine (SDZ) and sulfamethazine (SMZ) in water under simulated visible light (λ > 420 nm). The obtained ACP-PDDA-BiVO4 nanoplates attained a removal efficiency of 88.9%-98.2% for SMR, SDZ and SMZ after 60 min reaction and achieved kinetic rate constant approximately 10, 4.7 and 13 times of BiVO4, PDDA-BiVO4 and ACP-BiVO4, respectively, for SMZ degradation. In the guest-host photocatalytic system, ACP photosensitizer was found to have a great superiority in enhancing the light absorption, promoting the surface charge separation-transfer and efficient generation of holes (h+) and superoxide radical (·O2-), greatly contributing to the photoactivity. The SMZ degradation pathways were proposed based on the identified degradation intermediates, involving three main pathways of rearrangement, desulfonation and oxidation. The toxicity of intermediates was evaluated and the results demonstrated that the overall toxicity was reduced compared with parent SMZ. This catalyst maintained 92% photocatalytic oxidation performance after five cyclic experiments and displayed a co-photodegradation ability to others antibiotics (e.g., roxithromycin, ciprofloxacin et al.) in effluent water. Therefore, this work provides a facile photosensitized strategy for developing guest-host photocatalysts, which enabling the simultaneous antibiotics removal and effectively reduce the ecological risks in wastewater.
Collapse
Affiliation(s)
- Meihong Tan
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wanping Shi
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Haifeng Wang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Guanglan Di
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengxin Xie
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Tang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| |
Collapse
|
7
|
Kamble GS, Natarajan TS, Patil SS, Thomas M, Chougale RK, Sanadi PD, Siddharth US, Ling YC. BiVO 4 As a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091528. [PMID: 37177074 PMCID: PMC10180559 DOI: 10.3390/nano13091528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Bismuth vanadate (BiVO4) is one of the best bismuth-based semiconducting materials because of its narrow band gap energy, good visible light absorption, unique physical and chemical characteristics, and non-toxic nature. In addition, BiVO4 with different morphologies has been synthesized and exhibited excellent visible light photocatalytic efficiency in the degradation of various organic pollutants, including volatile organic compounds (VOCs). Nevertheless, the commercial scale utilization of BiVO4 is significantly limited because of the poor separation (faster recombination rate) and transport ability of photogenerated electron-hole pairs. So, engineering/modifications of BiVO4 materials are performed to enhance their structural, electronic, and morphological properties. Thus, this review article aims to provide a critical overview of advanced oxidation processes (AOPs), various semiconducting nanomaterials, BiVO4 synthesis methodologies, engineering of BiVO4 properties through making binary and ternary nanocomposites, and coupling with metals/non-metals and metal nanoparticles and the development of Z-scheme type nanocomposites, etc., and their visible light photocatalytic efficiency in VOCs degradation. In addition, future challenges and the way forward for improving the commercial-scale application of BiVO4-based semiconducting nanomaterials are also discussed. Thus, we hope that this review is a valuable resource for designing BiVO4-based nanocomposites with superior visible-light-driven photocatalytic efficiency in VOCs degradation.
Collapse
Affiliation(s)
- Ganesh S Kamble
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Affiliated Shivaji University Kolhapur Maharashtra, Kolhapur 416004, Maharashtra, India
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 600113, Uttar Pradesh, India
| | - Santosh S Patil
- Department of Applied Mechanics, ECTO Group, FEMTO-ST Institute, 24, Rue de l'Epitaph, 25000 Besançon, France
| | - Molly Thomas
- School of Studies in Chemistry & Research Centre, Maharaja Chhatrasal Bundelkhand University, Chhatarpur 471001, Madhya Pradesh, India
| | - Rajvardhan K Chougale
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Affiliated Shivaji University Kolhapur Maharashtra, Kolhapur 416004, Maharashtra, India
| | - Prashant D Sanadi
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Affiliated Shivaji University Kolhapur Maharashtra, Kolhapur 416004, Maharashtra, India
| | - Umesh S Siddharth
- Department of Basic Sciences and Humanities, Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji), Ichalkaranji 416115, Maharashtra, India
| | - Yong-Chein Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
8
|
Sathishkumar K, Kannan VR, Alsalhi MS, Rajasekar A, Devanesan S, Narenkumar J, Kim W, Liu X. Intimately coupled gC 3N 4 photocatalysis and mixed culture biofilm enhanced detoxification of sulfamethoxazole: Elucidating degradation mechanism and toxicity assessment. ENVIRONMENTAL RESEARCH 2022; 214:113824. [PMID: 35830909 DOI: 10.1016/j.envres.2022.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, wide spread of antibiotic-resistant microorganisms and genes emerging globally, an eco-friendly method for efficient degradation of antibiotics from the polluted environment is essential. Intimately coupled photocatalysis and biodegradation (ICPB) using gC3N4 for enhanced degradation of sulfamethoxazole (SMX) was investigated. The gC3N4 were prepared and coated on the carbon felt. The mixed culture biofilm was developed on the surface as a biocarrier. The photocatalytic degradation showed 74%, and ICPB exhibited 95% SMX degradation efficiency. ICPB showed superior visible light adsorption, photocatalytic activity, and reduced charge recombination. The electron paramagnetic resonance spectrum confirms that the generation of •OH and O2• radicals actively participated in the degradation of SMX into biodegradable intermediated compounds, and then, the bacterial communities present in the biofilm mineralized the biodegradable compound into carbon dioxide and water. Moreover, the addition of NO3-, PO4-, and Cl- significantly enhanced the degradation efficiency by trapping the surface electron. Stability experiments confirmed that gC3N4 biohybrid can maintain 85% SMX degradation efficiency after 5 consecutive recycling. Extracellular polymeric substances characterization results show that biohybrid contains 47 mg/L, 14 mg/L, and 13 mg/L protein, carbohydrate, and humic acid, respectively, which can protect the bacterial communities from the antibiotic toxicity and reactive oxygen species. Furthermore, biotoxicity was investigated using degradation products on E.coli and results revealed 83% detoxification efficiency. Overall, this study suggested that gC3N4 photocatalyst in an ICPB can be used as a promising eco-friendly method to degrade sulfamethoxazole efficiently.
Collapse
Affiliation(s)
- Kuppusamy Sathishkumar
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Velu Rajesh Kannan
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Mohamad S Alsalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, Tamil Nadu, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, 600073, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|