1
|
Smith CE, Finlayson K, Barraza A, Young EJ, Gilby BL, van de Merwe JP, Townsend KA. Distinct population-wide differences in contaminants and blood parameters in foraging green sea turtles. MARINE POLLUTION BULLETIN 2025; 212:117541. [PMID: 39813878 DOI: 10.1016/j.marpolbul.2025.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The rising diversity and concentration of contaminants have surpassed ecological thresholds, threatening marine ecosystems. The effects of pollutants on marine animals, particularly sea turtles, are receiving increased attention due to their role as indicators of human impacts. This study examined the health implications of contaminant exposure in three green turtle (Chelonia mydas) foraging sites in the southern Great Barrier Reef, Australia. Assessments were performed on 45 immature turtles from offshore (Heron, Lady Elliot Island) and inshore (Hervey Bay) foraging sites, hypothesising greater anthropogenic exposure inshore. A cytotoxicity assay tested blood toxicity, while trace element concentrations were compared with baseline reference intervals. Interestingly, this analysis revealed elevated cobalt and manganese levels in Hervey Bay turtles, and offshore turtles showed higher cytotoxicity despite appearing healthier, contrasting with low cytotoxicity and low body condition in Hervey Bay. These findings highlight the complexities of ecotoxicology and the need for comprehensive data on contaminant impacts.
Collapse
Affiliation(s)
- Caitlin E Smith
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland 4655, Australia; Centre for Tropical Water and Aquatic Ecosystems Research, James Cook University, Cairns, QLD, Australia.
| | - Kimberly Finlayson
- Griffith University, Australian Rivers Institute, Southport, QLD, Australia
| | - Arthur Barraza
- Griffith University, Australian Rivers Institute, Southport, QLD, Australia
| | - Erina J Young
- Centre for Tropical Water and Aquatic Ecosystems Research, James Cook University, Cairns, QLD, Australia; EnviroVet Consultancy, Sunshine Coast, QLD, Australia
| | - Ben L Gilby
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland 4502, Australia
| | | | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland 4655, Australia
| |
Collapse
|
2
|
Claudia Lorena RS, Mauricio CG, Fernando Alberto MT, Tania ZS, Vanessa LM. Genotoxic damage in green turtles (Chelonia mydas) exhibits regional and annual fluctuations. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106877. [PMID: 39616815 DOI: 10.1016/j.marenvres.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 02/09/2025]
Abstract
Tourism, urban development, and sargasso beaching caused environmental alterations in the Mexican Caribbean coasts. Little ecotoxicological information exists on the green turtle (Chelonia mydas) population inhabiting this region. Micronucleus (MN) and erythrocytic nuclear abnormalities (ENA) tests are non-destructive DNA damage biomarkers. We aimed to determine local (Punta Arenas, Akumal, Punta Herrero, and Xcalak) and annual (2015-2019) variability in MN/ENA frequency to understand genotoxic damage extent. Almost all the individuals sampled (n = 166) presented DNA damage (98.8%); the lack of correlations between MN/ENA and biological variables confirmed the usefulness of these tests as biomarkers. The southern foraging site had the highest number of MN/ENA; an increase over time was found in the most urbanized and the most protected sites, coinciding with previously reported regional variability of persistent organic compounds, heavy metals, and annual massive influx of sargasso. Considering the sentinel status of green turtles, the advantages of the blood tests, and the continuous accelerated urban development in the Caribbean, long-term monitoring of this species is advised.
Collapse
Affiliation(s)
- Rodríguez-Salazar Claudia Lorena
- Laboratorio Ecología de la Salud, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec #1570, Privadas del Pedregal, C.P. 78295, San Luis Potosí, San Luis Potosí, Mexico; Posgrado en Ciencias Biomédicas Básicas, Facultad de Medicina, Av. Venustiano Carranza #2405, Lomas los Filtros, C.P. 78210, San Luis Potosí, Mexico
| | - Comas-García Mauricio
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Lomas de San Luis, C.P. 78210, San Luis Potosí, Mexico; Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec #1570, Privadas del Pedregal, C.P. 78295, San Luis Potosí, Mexico
| | - Muñoz Tenería Fernando Alberto
- Laboratorio de Inmunología, Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Carretera San Luis - Matehuala Km. 14.5 Ejido Palma de la Cruz, C.P. 78399, Soledad de Graciano Sánchez, San Luis Potosí, Mexico
| | - Zenteno-Savín Tania
- Laboratorio de Estrés Oxidativo, Programa de Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noreste, Avenida Instituto Politécnico Nacional #195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Labrada-Martagón Vanessa
- Laboratorio Ecología de la Salud, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec #1570, Privadas del Pedregal, C.P. 78295, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
3
|
Johnson M, Finlayson K, van de Merwe JP, Leusch FDL. Adaption and application of cell-based bioassays to whole-water samples. CHEMOSPHERE 2024; 361:142572. [PMID: 38852631 DOI: 10.1016/j.chemosphere.2024.142572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The increasing presence of contaminants of emerging concern in wastewater and their potential environmental risks require improved monitoring and analysis methods. Direct toxicity assessment (DTA) using bioassays can complement chemical analysis of wastewater discharge, but traditional in vivo tests have ethical considerations and are expensive, low-throughput, and limited to apical endpoints (mortality, reproduction, development, and growth). In vitro bioassays offer an alternative approach that is cheaper, faster, and more ethical, and can provide higher sensitivity for some environmentally relevant endpoints. This study explores the potential benefits of using whole water samples of wastewater and environmental surface water instead of traditional solid phase extraction (SPE) methods for in vitro bioassays testing. Whole water samples produced a stronger response in most bioassays, likely due to the loss or alteration of contaminants during SPE sample extraction. In addition, there was no notable difference in results for most bioassays after freezing whole water samples, which allows for increased flexibility in testing timelines and cost savings. These findings highlight the potential advantages of using whole water samples in DTA and provide a framework for future research in this area.
Collapse
Affiliation(s)
- Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA, 5064, Australia.
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| |
Collapse
|
4
|
Morão IFC, Simões T, Casado RB, Vieira S, Ferreira-Airaud B, Caliani I, Di Noi A, Casini S, Fossi MC, Lemos MFL, Novais SC. Metal accumulation in female green sea turtles (Chelonia mydas) from Eastern Atlantic affects their egg quality with potential implications for embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172710. [PMID: 38670375 DOI: 10.1016/j.scitotenv.2024.172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Sea turtles, with their global distribution and complex life cycle, often accumulate pollutants such as metals and metalloids due to their extended lifespan and feeding habits. However, there are limited studies exploring the impact of metal pollution on the reproductive health of female sea turtles, specifically focusing on the quality of their eggs, which has significant implications for the future generations of these charismatic animals. São Tomé Island, a crucial nesting and feeding habitat for green sea turtles, underscores the urgent need for comprehensive research in this ecologically significant area. This study aimed to investigate whether metals and metalloids in the blood of nesting female green sea turtles induce genotoxic effects in their erythrocytes and affect their egg morphometric characteristics and the composition of related compartments. Additionally, this study aimed to evaluate whether the quality of energetic reserves for embryo development (fatty acids in yolk's polar and neutral lipids) is influenced by the contamination status of their predecessors. Results revealed correlations between Cu and Hg levels and increased "lobed" erythrocytes, while As and Cu negatively influenced shell thickness. In terms of energy reserves, both polar and neutral lipid fractions contained primarily saturated and monounsaturated fatty acids, with prevalent 18:1n-9, 18:0, 16:0, 14:0, and 12:0 fatty acids in yolk samples. The yolk polar fraction was more susceptible to contaminant levels in female sea turtles, showing consistent negative correlations between pollution load index and essential n3 fatty acids, including linolenic, eicosatrienoic, eicosapentaenoic, and docosapentaenoic acids, crucial for embryonic development. These metals accumulation, coupled with the reduced availability of these key fatty acids, may disrupt the eicosanoid and other important pathways, affecting reproductive development. This study reveals a negative correlation between metal contamination in female sea turtles' blood and egg lipid reserves, raising concerns about embryonic development and the species' future generations.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal; Faculdade de Ciências & CESAM, Universidade de Lisboa, Lisboa, Portugal.
| | - Tiago Simões
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Roger B Casado
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Betânia Ferreira-Airaud
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Agata Di Noi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Maria C Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
5
|
Leusch FDL, Allen H, De Silva NAL, Hodson R, Johnson M, Neale PA, Stewart M, Tremblay LA, Wilde T, Northcott GL. Effect-based monitoring of two rivers under urban and agricultural influence reveals a range of biological activities in sediment and water extracts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119692. [PMID: 38039589 DOI: 10.1016/j.jenvman.2023.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tāmaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment. Two complementary passive sampling devices, Chemcatcher for polar chemicals and polyethylene (PED) for non-polar chemicals, were applied to capture a wide range of contaminants in water, while composite sediment samples were collected at each sampling site. Bioassays indicative of induction of xenobiotic metabolism, receptor-mediated effects, genotoxicity, cytotoxicity and apical effects were applied to the water and sediment extracts. Most sediment extracts induced moderate to strong estrogenic and aryl hydrocarbon (AhR) activity, along with moderate toxicity to bacteria. The water extracts showed similar patterns to the sediment extracts, but with lower activity. Generally, the polar Chemcatcher extracts showed greater estrogenic activity, photosynthesis inhibition and algal growth inhibition than the non-polar PED extracts, though the PED extracts showed greater AhR activity. The observed effects in the water extracts were compared to available ecological effect-based trigger values (EBT) to evaluate the potential risk. For the polar extracts, most sites in both catchments exceeded the EBT for estrogenicity, with many sites exceeding the EBTs for AhR activity and photosynthesis inhibition. Of the wide range of endpoints considered, estrogenic activity, AhR activity and herbicidal activity appear to be the primary risk drivers in both the Whau and Koreti Estuary catchments.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Hamish Allen
- Research and Evaluation Unit, Auckland Council, Auckland, 1010, New Zealand
| | | | - Roger Hodson
- Environment Southland Regional Council, Invercargill, 9810, New Zealand; Riverscape Enhancement Consulting, Invercargill, 9840, New Zealand
| | - Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | | - Louis A Tremblay
- Cawthron Institute, Nelson, 7010, New Zealand; School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Taylor Wilde
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | |
Collapse
|
6
|
Jiang W, Wang H, Dong X, Zhao Y, Long C, Chen D, Yan B, Cheng J, Lin Z, Zhuo S, Wang H, Yan J. Association of the pathomics-collagen signature with lymph node metastasis in colorectal cancer: a retrospective multicenter study. J Transl Med 2024; 22:103. [PMID: 38273371 PMCID: PMC10811897 DOI: 10.1186/s12967-024-04851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) is a prognostic biomarker and affects therapeutic selection in colorectal cancer (CRC). Current evaluation methods are not adequate for estimating LNM in CRC. H&E images contain much pathological information, and collagen also affects the biological behavior of tumor cells. Hence, the objective of the study is to investigate whether a fully quantitative pathomics-collagen signature (PCS) in the tumor microenvironment can be used to predict LNM. METHODS Patients with histologically confirmed stage I-III CRC who underwent radical surgery were included in the training cohort (n = 329), the internal validation cohort (n = 329), and the external validation cohort (n = 315). Fully quantitative pathomics features and collagen features were extracted from digital H&E images and multiphoton images of specimens, respectively. LASSO regression was utilized to develop the PCS. Then, a PCS-nomogram was constructed incorporating the PCS and clinicopathological predictors for estimating LNM in the training cohort. The performance of the PCS-nomogram was evaluated via calibration, discrimination, and clinical usefulness. Furthermore, the PCS-nomogram was tested in internal and external validation cohorts. RESULTS By LASSO regression, the PCS was developed based on 11 pathomics and 9 collagen features. A significant association was found between the PCS and LNM in the three cohorts (P < 0.001). Then, the PCS-nomogram based on PCS, preoperative CEA level, lymphadenectasis on CT, venous emboli and/or lymphatic invasion and/or perineural invasion (VELIPI), and pT stage achieved AUROCs of 0.939, 0.895, and 0.893 in the three cohorts. The calibration curves identified good agreement between the nomogram-predicted and actual outcomes. Decision curve analysis indicated that the PCS-nomogram was clinically useful. Moreover, the PCS was still an independent predictor of LNM at station Nos. 1, 2, and 3. The PCS nomogram displayed AUROCs of 0.849-0.939 for the training cohort, 0.837-0.902 for the internal validation cohort, and 0.851-0.895 for the external validation cohorts in the three nodal stations. CONCLUSIONS This study proposed that PCS integrating pathomics and collagen features was significantly associated with LNM, and the PCS-nomogram has the potential to be a useful tool for predicting individual LNM in CRC patients.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
- School of Science, Jimei University, Xiamen, Fujian, 361021, People's Republic of China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yandong Zhao
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Chenyan Long
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530000, People's Republic of China
| | - Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Botao Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Zexi Lin
- School of Science, Jimei University, Xiamen, Fujian, 361021, People's Republic of China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, 361021, People's Republic of China.
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
7
|
Chaousis S, Leusch FDL, Nouwens A, Melvin SD, van de Merwe JP. Influence of chemical dose and exposure duration on protein synthesis in green sea turtle primary cells. J Proteomics 2023; 285:104942. [PMID: 37285907 DOI: 10.1016/j.jprot.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 μg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Frederic D L Leusch
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, The University of Queensland, Building 76, QLD 4067, Australia
| | - Steven D Melvin
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Jason P van de Merwe
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
8
|
Dos Santos A, Botelho MT, Vannuci-Silva M, Artal MC, Vacchi FI, Magalhães GR, Gomes V, Henry TB, Umbuzeiro GDA. The amphipod Parhyale hawaiensis as a promising model in ecotoxicology. CHEMOSPHERE 2022; 307:135959. [PMID: 35944683 DOI: 10.1016/j.chemosphere.2022.135959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Near-shore marine/estuarine environments play an important role in the functioning of the marine ecosystem and are extremely vulnerable to the presence of chemical pollution. The ability to investigate the effects of pollution is limited by a lack of model organisms for which sufficient ecotoxicological information is available, and this is particularly true for tropical regions. The circumtropical marine amphipod Parhyale hawaiensis has become an important model organism in various disciplines, and here we summarize the scientific literature regarding the emergence of this model within ecotoxicology. P. hawaiensis is easily cultured in the laboratory and standardized ecotoxicity protocols have been developed and refined (e.g., miniaturized), and effects of toxicants on acute toxicity (Cd, Cu, Zn, Ag, ammonia, dyes, pesticides, environmental samples), genotoxicity as comet assay/micronuclei, and gene expression (Ag ion and Ag nanoparticles) and regeneration (pesticides) have been published. Methods for determination of internal concentrations of metals (Cu and Ag) and organic substances (synthetic dye) in hemolymph were successfully developed providing sources for the establishment of toxicokinetics models in aquatic amphipods. Protocols to evaluate reproduction and growth, for testing immune responses and DNA damage in germ cells are under way. The sensitivity of P. hawaiensis, measured as 50% lethal concentration (LC50), is in the same range as other amphipods. The combination of feasibility to culture P. hawaiensis in laboratory, the recent protocols for ecotoxicity evaluation and the rapidly expanding knowledge on its biology make it especially attractive as a model organism and promising tool for risk assessment evaluations in tropical environments.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | - Francine I Vacchi
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Vicente Gomes
- Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, Scotland, UK; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
| | - Gisela de Aragão Umbuzeiro
- School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|