1
|
Balci E, Sanli-Mohamed G, Sofuoglu A. Esterase-mediated degradation of dibutyl and diethylhexyl phthalates in aqueous and soil systems. CHEMOSPHERE 2025; 380:144459. [PMID: 40319613 DOI: 10.1016/j.chemosphere.2025.144459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Phthalate esters (PAEs), widely used as plasticizers, pose severe environmental and health risks. This study investigated the enzymatic hydrolysis of PAE congeners (dibutyl phthalate (DBP) and diethylhexyl phthalate (DEHP)) in aqueous and soil systems using Bacillus subtilis esterase and a new thermoalkaliphilic Geobacillus sp. esterase. A novel esterase secreted from Geobacillus sp. which was isolated from a geothermal region (Türkiye) was expressed in E.coli and purified. Geobacillus sp. esterase was able to degrade almost 30% of DBP and 40% of DEHP (100 mg/L) in the aqueous system within 336 h, while it degraded virtually 59% and 98% of DBP in agricultural area soil (soil-1) and forest area soil (soil-2), respectively, at the same time. To compare with Geobacillus sp. esterase, Bacillus subtilis esterase was used, which fully degraded DBP with 100 mg/L in the soil-1 and soil-2 for 72 h and 2 h, respectively. The performances of both esterases to degrade DEHP (100 mg/L) were similar in soil-1 (∼35%) and soil-2 (∼50%) for 336 h. Soil characteristics significantly influenced PAE degradation. Compared to that in the aqueous system, Geobacillus sp. esterase in soil systems had a higher degradation efficiency. This was likely due to its origin from a soil microorganism. Variations in the degradation ability of two enzymes most probably arose from substrate specificities and enzyme dynamics. Molecular docking results showed that DBP had a higher affinity to both enzymes than DEHP. Overall, this study offers important evidence that Bacillus subtilis esterase and Geobacillus sp. esterase are effective biocatalysts for removing the pollutants with ester bonds in the environment.
Collapse
Affiliation(s)
- Esin Balci
- Izmir Institute of Technology, Faculty of Engineering, Department of Environmental Engineering, 35430, Urla/İzmir, Türkiye.
| | - Gulsah Sanli-Mohamed
- Izmir Institute of Technology, Science Faculty, Department of Chemistry, 35430, Urla/İzmir, Türkiye.
| | - Aysun Sofuoglu
- Izmir Institute of Technology, Faculty of Engineering, Department of Chemical Engineering, 35430, Urla/İzmir, Türkiye.
| |
Collapse
|
2
|
Lorre E, Bianchi F, Broman E, Bonaglia S, Nascimento FJA, Samuilovienė A, Woźniczka A, Zilius M. Phthalate esters in baltic lagoons: Spatial distribution, ecological risks, and novel insights into their fate using transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177526. [PMID: 39549755 DOI: 10.1016/j.scitotenv.2024.177526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Plasticizers such as phthalate esters (PAEs) are organic compounds widely used in various consumer and industrial products, raising strong environmental concerns due to their pervasive presence and potential adverse effects. Lagoon ecosystems are particularly vulnerable to PAE pollution as they are semi-enclosed and receive high loads of organic materials. The present study investigates the distribution of seven common PAEs in three large European lagoons (Curonian, Vistula and Szczecin) in the southern Baltic Sea. The concentration levels of PAEs in the water column, encompassing both the dissolved and particulate-bound phases, and in sediments were assessed to elucidate distribution patterns and potential ecological risks within these lagoon ecosystems. The average concentration of total PAEs in the water column ranged from 0.03 to 1.45 μg L-1, whereas sediment concentration varied from 0.008 to 1.06 μg g-1, levels comparable to or lower than those found in other European coastal areas. Distribution patterns of PAEs in sediment showed notable similarity across all three lagoons, whereas variations were observed in the water column. Notably, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DOP) and dimethyl phthalate (DMP) emerged as the most concerning congeners in studied lagoons, all of which pose a moderate risk to aquatic organisms. This study applied shotgun transcriptomic analysis to field samples, revealing active microbial communities involved in PAEs degradation in the Baltic lagoons for the first time. The degradation of phthalic acid (PA) into intermediate compounds such as protocatechuate was not identified as a rate-limiting step in the studied environment. The degradation activity was primarily localized in the sediment layers, with Gram-negative bacteria playing a major role, while Gram-positive bacteria appeared incapable of degrading PA. These findings provide valuable insights into the distribution and transformation mechanisms of PAEs in estuarine environments.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295 Klaipeda, Lithuania.
| | - Federica Bianchi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy; Interdepartmental Center for Energy and Environment (CIDEA), University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Adam Woźniczka
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295 Klaipeda, Lithuania
| |
Collapse
|
3
|
Du X, Li X, Yang M, He Z, Xu T, Liu J, Guo X, Tang Z. Toxicological effects of di(2-ethylhexyl)phthalate on dandelions: Insights into physiological, metabolic, and molecular docking perspectives. CHEMOSPHERE 2024; 364:143229. [PMID: 39218265 DOI: 10.1016/j.chemosphere.2024.143229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is one of the most widely used plasticizers in plastic manufacturing. However, the toxicological effects of DEHP on dandelions remain poorly understood. This study comprehensively analyzed and explored the response mechanisms of dandelions to 1, 10, 50, and 100 mg L-1 DEHP influencing the morphophysiological growth, metabolomics, and molecular docking. DEHP reduced chlorophyll synthesis, inhibited plant growth, and induced oxidative-state-associated stress, which was manifested by the excessive production of reactive oxygen species, an increase in antioxidant enzyme activities, and enhanced synthesis of some osmoregulatory compounds, including proline and soluble protein. An analysis of the integrated biological response index showed that the toxicity was dose-dependent. Molecular docking demonstrated that DEHP could bind stably to three enzymes, and the binding energy was peroxidase (POD) > catalase (CAT) > superoxide dismutase (SOD). Metabolomics revealed that metabolite abundance and metabolic pathways were altered by DEHP, with 88 and 72 primary metabolites identified in shoots and roots, respectively. Amino acid, sugar, and organic acid metabolism were severely disturbed, with the most significant effects being on carbohydrate metabolism, valine, leucine, and isoleucine biosynthesis. Our study elucidated the influence of DEHP exposure on dandelions, providing new insights into the toxicity mechanisms and toxicological risk assessment.
Collapse
Affiliation(s)
- Xinyi Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Minghui Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhiqiang He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Tianwei Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Panthi G, Bajagain R, Chaudhary DK, Kim PG, Kwon JH, Hong Y. The release, degradation, and distribution of PVC microplastic-originated phthalate and non-phthalate plasticizers in sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134167. [PMID: 38598880 DOI: 10.1016/j.jhazmat.2024.134167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
This study investigated the leaching of phthalate and non-phthalate plasticizers from polyvinyl chloride microplastics (MPs) into sediment and their degradation over a 30-d period via abiotic and biotic processes. The results showed that 3579% of plasticizers were released into the sediment from the MPs and > 99.9% degradation was achieved. Although a significantly higher degradation was found in plasticizer-added microcosms under biotic processes (overall, 94%), there was a noticeable abiotic loss (72%), suggesting that abiotic processes also play a role in plasticizer degradation. Interestingly, when compared with the initial sediment-water partitioning for plasticizers, the partition constants for low-molecular-weight compounds decreased in both microcosms, whereas those for high-molecular-weight compounds increased after abiotic degradation. Furthermore, changes in the bacterial community, abundance of plasticizer-degrading bacterial populations, and functional gene profiles were assessed. In all the microcosms, a decrease in bacterial community diversity and a notable shift in bacterial composition were observed. The enriched potential plasticizer-degrading bacteria were Arthrobacter, Bacillus, Desulfovibrio, Desulfuromonas, Devosia, Gordonia, Mycobacterium, and Sphingomonas, among which Bacillus was recognized as the key plasticizer degrader. Overall, these findings shed light on the factors affecting plasticizer degradation, the microbial communities potentially involved in biodegradation, and the fate of plasticizers in the environment.
Collapse
Affiliation(s)
- Gayatri Panthi
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Pil-Gon Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Environmental Education, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea.
| |
Collapse
|
5
|
Lin Z, Wu W, Yang C, Yang G, Wu W, Wei T, Huang F, Li H, Ren L, Liang Y, Zhang D, Li Z, Zhen Z. Mechanisms of biochar assisted di-2-ethylhexyl phthalate (DEHP) biodegradation in tomato rhizosphere by metabolic and metagenomic analysis. CHEMOSPHERE 2024; 353:141520. [PMID: 38395368 DOI: 10.1016/j.chemosphere.2024.141520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The intensive accumulation of di-2-ethylhexyl phthalate (DEHP) in agricultural soils has resulted in severe environmental pollution that endangers ecosystem and human health. Biochar is an eco-friendly material that can help in accelerating organic pollutant degradation; nevertheless, its roles in enhancing DEHP removal in rhizosphere remain unclear. This work investigated the impacts of biochar dosage (0%-2.0%) on DEHP degradation performance in tomato rhizosphere by comprehensively exploring the change in DEHP metabolites, bacterial communities and DEHP-degrading genes. Our results showed a significant increase of rhizosphere pH, organic matter and humus by biochar amendment, which achieved a satisfactorily higher DEHP removal efficiency, maximally 77.53% in treatments with 1.0% of biochar. Biochar addition also remarkably changed rhizosphere bacterial communities by enriching some potential DEHP degraders of Nocardioides, Sphingomonas, Bradyrhizobium and Rhodanobacter. The abundance of genes encoding key enzymes (hydrolase, esterase and cytochrome P450) and DEHP-degrading genes (pht3, pht4, pht5, benC-xylZ and benD-xylL) were increased after biochar amendment, leading to the change in DEHP degradation metabolism, primarily from benzoic acid pathway to protocatechuic acid pathway. Our findings evidenced that biochar amendment could accelerate DEHP degradation by altering rhizosphere soil physicochemical variables, bacterial community composition and metabolic genes, providing clues for the mechanisms of biochar-assisted DEHP degradation in organic contaminated farmland soils.
Collapse
Affiliation(s)
- Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
| | - Weijian Wu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Zhe Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China.
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
6
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
7
|
Lu YS, Liu ZB, Xu YY, Sha JY, Qu D, Sun YS. Uptake and accumulation of di(2-ethylhexyl) phthalate (DEHP) in a soil-ginseng system and toxicological mechanisms on ginseng (Panax ginseng C.A. Meyer). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170040. [PMID: 38215853 DOI: 10.1016/j.scitotenv.2024.170040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is regarded as a priority environmental pollutant. This study explored the adsorption and accumulation of DEHP within the ginseng-soil system and the mechanism of DEHP toxicity to ginseng (Panax ginseng C.A. Meyer). Under exposure to 22.10 mg/kg DEHP in soil, DEHP mainly accumulated in ginseng leaves (20.28 mg/kg), stems (4.84 mg/kg) and roots (2.00 mg/kg) after 42 days. The oxidative damage, metabolism, protein express of ginseng were comprehensively measured and analyzed. The results revealed that MDA presented an activation trend in ginseng stems and leaves after 42 days of DEHP exposure, while the opposite trend was observed for POD. Levels of ginsenoside metabolites Rg2, Rg3, Rg5, Rd, Rf and CK decreased in the ginseng rhizosphere exudates under DEHP stress. Further investigations revealed that DEHP disrupts ginsenoside synthesis by inducing glycosyltransferase (GS) and squalene synthase (SS) protein interactions. Molecular docking indicated that DEHP could stably bind to GS and SS by intermolecular forces. These findings provide new information on the ecotoxicological effect of DEHP on ginseng root.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng-Bo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
8
|
Cheng J, Du H, Zhou MS, Ji Y, Xie YQ, Huang HB, Zhang SH, Li F, Xiang L, Cai QY, Li YW, Li H, Li M, Zhao HM, Mo CH. Substrate-enzyme interactions and catalytic mechanism in a novel family VI esterase with dibutyl phthalate-hydrolyzing activity. ENVIRONMENT INTERNATIONAL 2023; 178:108054. [PMID: 37354883 DOI: 10.1016/j.envint.2023.108054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/19/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Microbial degradation has been confirmed as effective and environmentally friendly approach to remediate phthalates from the environment, and hydrolase is an effective element for contaminant degradation. In the present study, a novel dibutyl phthalate (DBP)-hydrolyzing carboxylesterase (named PS06828) from Pseudomonas sp. PS1 was heterogeneously expressed in E. coli, which was identified as a new member of the lipolytic family VI. Purified PS06828 could efficiently degrade DBP with a wide range of temperature (25-37 °C) and pH (6.5-9.0). Multi-spectroscopy methods combined with molecular docking were employed to study the interaction of PS06828 with DBP. Fluorescence and UV-visible absorption spectra revealed the simultaneous presence of static and dynamic component in the fluorescence quenching of PS06828 by DBP. Synchronous fluorescence and circular dichroism spectra showed inconspicuous alteration in micro-environmental polarity around amino acid residues but obvious increasing of α-helix and reducing of β-sheet and random coil in protein conformation. Based on the information on exact binding sites of DBP on PS06828 provided by molecular docking, the catalytic mechanism mediated by key residues (Ser113, Asp166, and His197) was proposed and subsequently confirmed by site-directed mutagenesis. The results can strengthen our mechanistic understanding of family VI esterase involved in hydrolysis of phthalic acid esters, and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou, China
| | - Meng-Sha Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Ji
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - You-Qun Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shu-Hui Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Temperature-regulated and starvation-induced refractory para-toluic acid anaerobic biotransformation. CHEMOSPHERE 2023; 311:137008. [PMID: 36377119 DOI: 10.1016/j.chemosphere.2022.137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Little research was focused on the anerobic degradation of refractory para-toluic acid at present. Thus, temperature-regulated anaerobic system of para-toluic acid fed as sole substrate was built and investigated via microbiota, metabolism intermediates, and function prediction in this study. Results showed that low methane yield was produced in para-toluic acid anaerobic system at alkaline condition. And the causes were owing to anaerobic methane oxidation and potentially H2S production at 37 °C, N2 production by denitrification before starvation and propionic acid occurrence after starvation at 27 °C, and production of N2 and free ammonia, and accumulation of acetic acid at 52 °C. Simultaneously, hydrogenotrophic methanogenesis dependent on syntrophic acetate oxidation (SAO) was predominant, facilitating the removal of para-toluic acid at 52 °C. Moreover, the key intermediate changed from phthalic acid of 37 °C and 27 °C before starvation to terephthalic acid of 52 °C. Starvation promoted removal of para-toluic acid through benzoyl-CoA pathway by Syntrophorhabdus, enrichment of syntrophic propionate degraders of Bacteroidetes and Ignavibacteriaceae, and increase of methylotrophic methanogens.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin, 150090, China.
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin, 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|