1
|
Li H, Li Y, Lv X, Liu C, Zhang N, Zang J, Yue P, Gao Y, Liu C, Li Y. A Covalent Organic Framework as Photocatalyst for Smart Conversion Between Photooxidation and Photoreduction and H 2O 2 Production in Full pH Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415126. [PMID: 39916543 DOI: 10.1002/adma.202415126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/21/2025] [Indexed: 03/21/2025]
Abstract
Developing multifunctional photocatalysts with intelligent self-adjusting is of great significance in the photocatalytic process. Herein, a smart covalent organic framework (Por-HQ-COF) with a phenol-quinone conversion structure with pH changes is constructed for photooxidation, photoreduction, and H2O2 production. As a smart photocatalyst, Por-HQ-COF can convert into Por-BQ-COF intelligently with a trigger including solution pH, and vice versa. The reconstruction of phenol-quinone conversion not only significantly alters the morphologies and the specific surface areas of the COF, but also leads to an entirely change in the band energy and charge distribution to influence photoelectric properties. As a result, under acidic conditions, Por-BQ-COF converts into Por-HQ-COF automatically and can photoreduce high concentration Cr(VI) to Cr(III) efficiently. Under neutral conditions, the superoxide anions (·O2 -) initiate the Por-HQ-COF reconstruction into Por-BQ-COF to accelerate photooxidation to degrade high-concentration TC. Under alkaline conditions, Por-HQ-COF converts into Por-BQ-COF, can effectively photosynthesize H2O2 (1525 µmol h-1 g-1 at λ > 420 nm) in the absence of any sacrificial reagents, and reveal the strong alkalinity lower the energy barrier of hydrogen extraction from H2O and clarify active sites for H2O2 production. This work provides a new strategy for developing smart photocatalysts and fulfill the application across the full pH environment.
Collapse
Affiliation(s)
- Hao Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yanwei Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoling Lv
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chong Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Nazhen Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jing Zang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Penghan Yue
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yue Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Cong Liu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yanhui Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
2
|
Wang S, Li C, Yin H, Gao B, Yu Z, Zhou Y, Wang J, Xu H, Wu J, Sun Y. A novel Ag/Bi/Bi 2O 2CO 3 photocatalyst effectively removes antibiotic-resistant bacteria and tetracycline from water under visible light irradiation. ENVIRONMENTAL RESEARCH 2025; 264:120313. [PMID: 39510230 DOI: 10.1016/j.envres.2024.120313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Currently, achieving dual applications of Bi2O2CO3-based photocatalysts in photocatalytic degradation and sterilization under visible-light conditions is challenging. In this study, a novel Ag/Bi/Bi2O2CO3 visible-light photocatalyst with bimetallic doping and rich oxygen vacancies was successfully synthesized using a one-pot hydrothermal crystallization method. The existence of oxygen vacancies was verified by X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR) analysis. The experimental results showed that Ag/Bi/Bi2O2CO3 killed ∼100% (log 7) of antibiotic-resistant Escherichia coli (AR-E. coli) within 60 min and degraded 83.81% of tetracycline (TC) within 180 min under visible light irradiation. Moreover, Ag/Bi/Bi2O2CO3 can still remove 61.07% of TC in water after 5 cycles, showing excellent photocatalytic cycle stability and reusability. The possible degradation pathway of TC was determined by liquid chromatography-mass spectrometry. It was found that the main active substances in the photocatalytic disinfection of AR-E. coli were 1O2, h+, and ·OH, while 1O2 was the dominant active species in the photocatalytic degradation of TC. This study presents a promising Bi2O2CO3-based visible light photocatalyst for treating both antibiotics (TC) and antibiotic-resistant bacteria (AR-E. coli) in water.
Collapse
Affiliation(s)
- Suo Wang
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Changyu Li
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Zhengkun Yu
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
3
|
Yin H, Pu B, Jiang H, He H, Han T, Wang W, Yu C, Wang Z, Li X. Highly Active MXene Quantum Dots/CuSe n-p Plasmonic Heterostructures for Ultrafast Photocatalytic Removal of Cr(VI) under Full Solar Spectrum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24484-24493. [PMID: 39523977 DOI: 10.1021/acs.langmuir.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Identifying effective plasmonic photocatalysts exhibiting robust activities across the entire solar spectrum poses a significant challenge. CuSe, with its local surface plasmon resonance (LSPR) effect, has garnered attention as a prospective plasmonic photocatalyst. However, severe charge recombination and insufficient light absorption limit its photocatalytic performance. To enhance the performance, constructing CuSe-based n-p plasmonic semiconductor heterostructures is a potential strategy. MXene quantum dots (MQDs), a kind of n-type plasmonic semiconductor with metallic conductivity and a high LSPR effect, are a promising candidate to couple with p-type CuSe. According to the complementary principle, we designed a 0D/2D MQDs/CuSe n-p plasmonic semiconductor, achieved by wrapping CuSe nanosheets with MQDs. This n-p plasmonic heterostructure exhibits a synergistic effect on an enhanced electronic field, facilitating charge transfer and separation, thereby enhancing charge excitation, carrier migration, and photothermal effect. Furthermore, optimizing the MQD loading content leads to an ultrafast photocatalytic reaction rate, achieving 100% Cr(VI) reduction efficiency within just 60 min with a reaction kinetics of 0.069 min-1, surpassing the performance of bare CuSe. Our work presents a promising approach for developing advanced n-p plasmonic heterostructures based on MQDs for wastewater treatment and other photocatalytic applications.
Collapse
Affiliation(s)
- Hongdie Yin
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
- Sichuan Tianyu Oleochemical Co., Ltd., Luzhou, Sichuan 646300, China
| | - Biao Pu
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanmei Jiang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Huichao He
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tao Han
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrong Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chaojun Yu
- Jidong Cement Bishan Co., Ltd., Chongqing 402760, China
| | - Zili Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xingxin Li
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
4
|
Zhang Y, Bo X, Zhu T, Zhao W, Cui Y, Chang J. Synthesis of TiO 2-ZnO n-n Heterojunction with Excellent Visible Light-Driven Photodegradation of Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1802. [PMID: 39591043 PMCID: PMC11597633 DOI: 10.3390/nano14221802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Zinc oxide-based photocatalysts with non-toxicity and low cost are promising candidates for the degradation of tetracycline. Despite the great success achieved in constructing n-n-type ZnO-based heterojunctions for the degradation of tetracycline under full-spectrum conditions, it is still challenging to realize rapid and efficient degradation of tetracycline under visible light using n-n-type ZnO-based heterojunctions, as they are constrained by the quick recombination of electron-hole pairs in ZnO. Here, we report highly efficient and stable n-n-type ZnO-TiO2 heterojunctions under visible light conditions, with a degradation efficiency reaching 97% at 1 h under visible light, which is 1.2 times higher than that of pure zinc oxide, enabled by constructing an n-n-type heterojunction between ZnO and TiO2 to form a built-in electric field. The photocatalytic degradation mechanism of n-n TiO2-ZnO to tetracycline is also proposed in detail. The demonstration of efficient and stable heterojunction-type ZnO photocatalysts under visible light is an important step toward commercialization and opens up new opportunities beyond conventional ZnO technologies, such as composite ZnO catalysts.
Collapse
Affiliation(s)
- Ying Zhang
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang 236037, China; (X.B.); (T.Z.); (W.Z.); (Y.C.)
| | | | | | | | | | - Jianguo Chang
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang 236037, China; (X.B.); (T.Z.); (W.Z.); (Y.C.)
| |
Collapse
|
5
|
Hassan SSM, Mahmoud ME, Tharwat RM, Abdelfattah AM. Effective capture of As(V) from water by a facile one step hydrothermal synthesized of 2-D bismuthene quantum dots nanosorbent. BMC Chem 2024; 18:202. [PMID: 39420425 PMCID: PMC11487798 DOI: 10.1186/s13065-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Arsenic species have been known for their toxic impact on human. Therefore, removal of such pollutant requires efficient and effective removal methodology from polluted water. In this study, bismuthene quantum dots (Bi-ene-QDs) were fabricated by a green and facile one pot-hydrothermal conversion reaction of Bi(NO3)3·5H2O. Bi-ene-QDs exhibited semi-spherical crystalline providing 6.0 nm 157.78 m2/g. Consequently, As(V) capturing by Bi-ene-QDs revealed optimum practical conditions at pH 3, interaction duration time 40 min and 10 mg Bi-ene-QDs dosage. The interaction of As(V) ions with Bi-ene-QDs were confirmed by the appearance of As-O stretching vibration. Moreover, Bi-ene-QDs achieved excellent adsorptive capture percentages of Arsenic ions from sea, tap and wastewater providing 94.61, 95.21 and 94.38% from contaminated samples with 5 mg L-1 Arsenic ions. Therefore, Bi-ene-QDs can be categorized as an unprecedented and efficient nanosorbent for the successful removal of Arsenic ions pollution from various wastewater matrices with > 90.0% efficiency.
Collapse
Affiliation(s)
- Saad S M Hassan
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| | - Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| | - Rana M Tharwat
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| | - Amir M Abdelfattah
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt
| |
Collapse
|
6
|
Zhou Y, Jiang J, Yin H, Zhang S. In situ fabrication of a plasmonic Bi@Bi 2O 2CO 3 core-shell heterostructure for photocatalytic CO 2 reduction: structural insights into selectivity modulation. Dalton Trans 2024; 53:16066-16075. [PMID: 39295573 DOI: 10.1039/d4dt02203c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The precise design of active sites and light absorbers is essential for developing highly efficient photocatalysts for CO2 reduction. Core-shell heterostructures constructed based on large-sized plasmonic Bi metals are ideal candidates because of the utilization of full-spectrum light and effective charge separation. However, the mechanism of selectivity modulation of large-sized Bi@semiconductor photocatalysts has yet to be explored in depth. Herein, a plasmonic Bi@Bi2O2CO3 core-shell heterostructure was successfully synthesized via a facile solvothermal treatment in deep eutectic solvents, demonstrating highly efficient photocatalytic CO2 reduction. This structure features a sizeable Bi sphere with a thin, epitaxially grown Bi2O2CO3 shell, which allows for the utilization of the entire light spectrum. Additionally, the oxygen vacancies in the Bi2O2CO3 shell can rapidly trap electrons transferred from the Bi core via Bi-O-Bi bonds, thereby forming abundant electron-rich interfaces that serve as the active sites for activating reactant molecules and facilitating the reaction.
Collapse
Affiliation(s)
- Yannan Zhou
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jingyun Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Hang Yin
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| |
Collapse
|
7
|
Zhang S, Han D, Wang Z, Gu F. Bi-Doped and Bi Nanoparticles Loaded CeO 2 Derived from Ce-MOF for Photocatalytic Degradation of Formaldehyde Gas and Tetracycline Hydrochloride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309656. [PMID: 38686693 DOI: 10.1002/smll.202309656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Bi/CeO2 (BC-x) photocatalysts are successfully prepared by solvothermal loading Bi nanoparticles and Bi-doped CeO2 derived by Ce-MOF (Ce-BTC). Formaldehyde gas (HCHO) and tetracycline hydrochloride (HTC) are used to evaluate the photocatalytic activity of the synthesized Bi/CeO2. For BC-1000 photocatalyst, the degradation of HTC by 420 nm < λ < 780 nm light reaches 91.89% for 90 min, and HCHO by 350 nm < λ < 780 nm light reaches 94.66% for 120 min. The photocatalytic cycle experiments prove that BC-1000 has good cyclic stability and repeatability. The results of photoluminescence spectra, fluorescence lifetime, photocurrent response, and electrochemical impedance spectroscopy showed that the SPR (Surface Plasmon Resonance) effect of Bi nanoparticles acted as a bridge and promoted electron transfer and enhanced the response-ability of Bi/CeO2 to visible light. Bi-doping produced more oxygen vacancies to provide adsorption sites for adsorbing oxygen and generated more ·O2 - thus promoting photocatalytic reactions. The mechanism of photocatalytic degradation is analyzed in detail utilizing active free radical capture experiments and electron paramagnetic resonance (EPR) characterization. The experimental results indicate that ·O2 - and h+ active free radicals significantly promote the degradation of pollutants.
Collapse
Affiliation(s)
- Shuqing Zhang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Song Y, Bao Z, Gu Y. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts. CHEM REC 2024; 24:e202300307. [PMID: 38084448 DOI: 10.1002/tcr.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Indexed: 03/10/2024]
Abstract
Semiconductor photocatalysis has great potential in the fields of solar fuel production and environmental remediation. Nevertheless, the photocatalytic efficiency still constrains its practical production applications. The development of new semiconductor materials is essential to enhance the solar energy conversion efficiency of photocatalytic systems. Recently, the research on enhancing the photocatalytic performance of semiconductors by introducing bismuth (Bi) has attracted widespread attention. In this review, we briefly overview the main synthesis methods of Bi/semiconductor photocatalysts and summarize the control of the micromorphology of Bi in Bi/semiconductors and the key role of Bi in the catalytic system. In addition, the promising applications of Bi/semiconductors in photocatalysis, such as pollutant degradation, sterilization, water separation, CO2 reduction, and N2 fixation, are outlined. Finally, an outlook on the challenges and future research directions of Bi/semiconductor photocatalysts is given. We aim to offer guidance for the rational design and synthesis of high-efficiency Bi/semiconductor photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Yankai Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zongqi Bao
- Foreign Language Department, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yingying Gu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
9
|
Kohila Rani K, Yang Q, Xiao YH, Devasenathipathy R, Lu Z, Chen X, Jiang L, Li Z, Liu Q, Chen H, Yu L, Li Z, Khayour S, Wang J, Wang K, Li G, Wu DY, Lu G. Boosting the Plasmon-Mediated Electrochemical Oxidation of p-Aminothiophenol with p-Hydroxythiophenol as Molecular Cocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038343 DOI: 10.1021/acsami.3c12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Plasmon-mediated electrochemistry is an emerging area of interest in which the electrochemical reactions are enhanced by employing metal nanostructures possessing localized surface plasmon resonance (LSPR). However, the reaction efficacy is still far below its theoretical limit due to the ultrafast relaxation of LSPR-generated hot carriers. Herein, we introduce p-hydroxythiophenol (PHTP) as a molecular cocatalyst to significantly improve the reaction efficacy in plasmon-mediated electrochemical oxidation of p-aminothiophenol (PATP) on gold nanoparticles. Using electrochemical techniques, in situ Raman spectroscopy, and theoretical calculations, we elucidate that the presence of PHTP improves the hot hole-mediated electrochemical oxidation of PATP by 2-fold through the trapping of plasmon-mediated hot electrons. In addition, the selectivity of PATP oxidation could also be modulated by the introduction of PHTP cocatalyst. This tactic of employing molecular cocatalyst can be drawn out to endorse various plasmonic electrochemical reactions because of its simple protocol, high efficiency, and high selectivity.
Collapse
Affiliation(s)
- Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qiong Yang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yuan-Hui Xiao
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming Road, Xiamen 361005, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zhihao Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Xinya Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Lu Jiang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zemin Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qinghua Liu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haonan Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Soukaina Khayour
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - De-Yin Wu
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming Road, Xiamen 361005, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| |
Collapse
|
10
|
Zhang X, Zhu J, Yang Z, Li Y, Zhang P, Li H. Enhancing photocathodic protection with Bi quantum dots and ZIF-8 nanoparticle co-sensitized TiO 2nanotubes. NANOTECHNOLOGY 2023; 35:045701. [PMID: 37863074 DOI: 10.1088/1361-6528/ad0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Since hole trapping agents do not persist in the marine environment, it is more practical to test metal protection in 3.5 wt% NaCl solution so that the photocathodic protection (PCP) technique can be effectively applied in an actual marine environment. In this paper, Bi quantum dots (QDs) and ZIF-8 nanoparticles (NPs) were successfully deposited on TiO2by hydrothermal and impregnation methods. The PCP performances of ZIF-8/Bi/TiO2composites in the marine environment without hole trapping agents were evaluated, and compared with the performances of pure TiO2, Bi/TiO2and ZIF-8/TiO2. The electrochemical impedance spectrum (EIS) fitting results demonstrate that theRctvalue of the ZIF-8/Bi/TiO2composite coupled with 316 stainless steel (SS) decreased from 7678 Ω cm2to 519.3 Ω cm2in 3.5 wt% NaCl solution, which is a decrease of about 14.8-fold compared with TiO2under the same conditions. This indicates that the deposition of Bi QDs and ZIF-8 NPs on TiO2nanotubes can improve the electron transport efficiency, which in turn slows down the rate of corrosion of 316 SS and significantly improves the PCP performance. This is not only attributable to the Schottky junction and heterojunction structures formed by Bi QDs and ZIF-8 NPs with TiO2, but also to the surface plasmon resonance effect of Bi QDs and the N-Ti-O bond structure formed between ZIF-8 and TiO2, leading to a lower electron-hole recombination efficiency and a higher electron transfer efficiency.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jinke Zhu
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Zhanyuan Yang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Hong Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
11
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
12
|
Liao W, Zheng L, Hao J, Huang L, Wang Q, Yin Z, Qi T, Jia L, Liu K. Eco-friendly fabrication of multifunctional magnetic plasmonic photocatalyst for adsorption, SERS monitoring and photodegradation of residual fluoroquinolone antibiotics in water. CHEMOSPHERE 2023; 331:138842. [PMID: 37142102 DOI: 10.1016/j.chemosphere.2023.138842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
In this work, a kind of multifunctional magnetic plasmonic photocatalyst was prepared by a green and efficient process. Magnetic mesoporous anatase titanium dioxide (Fe3O4@mTiO2) was synthesized by microwave-assisted hydrothermal, and Ag NPs were simultaneously in-situ grown on Fe3O4@mTiO2 (Fe3O4@mTiO2@Ag), graphene oxide (GO) was then wrapped on Fe3O4@mTiO2@Ag (Fe3O4@mTiO2@Ag@GO) to increase its adsorption capacity for fluoroquinolone antibiotics (FQs). Owing to the localized surface plasmon resonance (LSPR) effect of Ag, as well as the photocatalytic capacity of TiO2, a multifunctional platform based on Fe3O4@mTiO2@Ag@GO was constructed for adsorption, surface-enhanced Raman spectroscopy (SERS) monitoring and photodegradation of FQs in water. The quantitative SERS detection of norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR) was demonstrated with LOD of 0.1 μg mL-1, and the qualitative analysis was confirmed by density functional theory (DFT) calculation. The photocatalytic degradation rate of NOR over Fe3O4@mTiO2@Ag@GO was about 4.6 and 1.4 times faster than that of Fe3O4@mTiO2 and Fe3O4@mTiO2@Ag, indicating the synergetic effects of Ag NPs and GO, the used Fe3O4@mTiO2@Ag@GO can be easily recovered and recycled for at least 5 times. Thus, the eco-friendly magnetic plasmonic photocatalyst provided a potential solution for the removal and monitoring of residual FQs in environmental water.
Collapse
Affiliation(s)
- Wenlong Liao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China; Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Li Zheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Juan Hao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lijuan Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qinghui Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhihang Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Ting Qi
- Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lingpu Jia
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China; Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
13
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
14
|
Li W, Wang Y, Zhang Y, Pan Y, Xu M, Song Y, Li N, Yan T. Pine Dendritic Bi/BiOBr Photocatalyst for Efficient Degradation of Antibiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4140-4149. [PMID: 36877128 DOI: 10.1021/acs.langmuir.3c00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Constructing Bi/BiOX (X = Cl, Br) heterostructures with unique electron transfer channels enables charge carriers to transfer unidirectionally at the metal/semiconductor junction and inhibits the backflow of photogenerated carriers. Herein, novel pine dendritic Bi/BiOX (X = Cl, Br) nanoassemblies with multiple electron transfer channels have been successfully synthesized with the assistance of l-cysteine (l-Cys) through a one-step solvothermal method. Such a pine dendritic Bi/BiOBr photocatalyst shows excellent activity toward the degradation of many antibiotics such as tetracycline (TC), norfloxacin, and ciprofloxacin. In particular, its photocatalytic degradation activity of TC is higher than those of reference spherical Bi/BiOBr, lamellar BiOBr, and BiOBr/Bi/BiOBr double-sided nanosheet arrays. Comprehensive characterizations demonstrate that the pine dendritic structure can construct multiple electron transfer channels from BiOBr to metallic Bi, resulting in an obviously promoted separation efficiency of photogenerated carriers. The synthesis method that uses l-Cys to control the morphology provides a guidance to prepare special metal/semiconductor photocatalysts and would be helpful to design a highly efficient photocatalytic process.
Collapse
Affiliation(s)
- Wenjuan Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yipin Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yining Pan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Menglu Xu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yang Song
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Na Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Tingjiang Yan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
15
|
Oladipo AA, Mustafa FS. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:291-321. [PMID: 36895441 PMCID: PMC9989679 DOI: 10.3762/bjnano.14.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A serious threat to human health and the environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one of the most prominent study topics compared to the commonly used semiconductors (TiO2 and ZnO). In this review, the most recent developments in the use of photocatalysts based on bismuth (e.g., BiFeO3, Bi2MoO6, BiVO4, Bi2WO6, Bi2S3) to remove dyes and antibiotics from wastewater are thoroughly covered. The creation of Z-schemes, Schottky junctions, and heterojunctions, as well as morphological modifications, doping, and other processes are highlighted regarding the fabrication of bismuth-based photocatalysts with improved photocatalytic capabilities. A discussion of general photocatalytic mechanisms is included, along with potential antibiotic and dye degradation pathways in wastewater. Finally, areas that require additional study and attention regarding the usage of photocatalysts based on bismuth for removing pharmaceuticals and textile dyes from wastewater, particularly for real-world applications, are addressed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| | - Faisal Suleiman Mustafa
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| |
Collapse
|
16
|
Shi L, Yin J, Liu Y, Liu H, Zhang H, Tang H. Embedding Cu3P quantum dots onto BiOCl nanosheets as a 0D/2D S-scheme heterojunction for photocatalytic antibiotic degradation. CHEMOSPHERE 2022; 309:136607. [PMID: 36179920 DOI: 10.1016/j.chemosphere.2022.136607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The development of highly efficient photocatalysts is vital for solvinge the problem of environmental pollution. In this study, a novel zero-/two-dimensional (0D/2D) S-scheme heterojunction was fabricated by integrating 0D copper phosphide (Cu3P) quantum dots (QDs) with a size in the range of 3-8 nm onto 2D bismuth oxychloride (BiOCl) nanosheets using a self-assembly tactic. The Cu3P/BiOCl presented intimate interface contact and high photocatalytic activity for the degradation of antibiotics (tetracycline hydrochloride (TC), oxytetracycline, ofloxacin). The optimal sample exhibited the highest photocatalytic TC degradation, with a total removal rate of 86% after 6 min under full-spectrum irradiation, which was higher than that of compared to individual BiOCl. The improved activity of the Cu3P/BiOCl heterojunction was attributed to the enhanced separation of the photogenerated carriers due to the S-scheme mode which can promote the recombination of useless photogenerated carriers and maintain photogenerated carriers with stronger redox potentials for photocatalytic reaction. In addition, employing Cu3P QDs and BiOCl nanosheets to construct an S-scheme composite can offer abundant active sites for antibiotic degradation. In brief, this study demonstrates that Cu3P QDs are an effective cocatalyst for degrading organic pollutants, which provides novel inspiration for the future design of green recycling photocatalysts for wastewater remediation.
Collapse
Affiliation(s)
- Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Jiangning Yin
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yanru Liu
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hanqiong Liu
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hao Zhang
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
17
|
Arumugam S, Bavani T, Preeyanghaa M, Alaswad SO, Neppolian B, Madhavan J, Murugesan S. A facile synthesis of visible light driven Ni 3V 2O 8 nano-cube/BiVO 4 nanorod composite photocatalyst with enhanced photocatalytic activity towards degradation of acid orange 7. CHEMOSPHERE 2022; 308:136100. [PMID: 36064027 DOI: 10.1016/j.chemosphere.2022.136100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis is one of the promising method to degrade harmful organic pollutants under visible light exposure. In this work, a novel Ni3V2O8/BiVO4 nanocomposite has been prepared by one-pot hydrothermal method, and investigated through X-ray diffraction, FT-IR, UV-visible diffuse reflectance spectroscopy, scanning and transmission electron microscopy and photoluminescence techniques. Subsequently, the photocatalytic performance of Ni3V2O8/BiVO4 nanocomposite has been examined by degrading AO7 under visible light illumination. The photocatalytic efficiency of the optimized 1:2 ratio of Ni3V2O8/BiVO4 nanocomposite photocatalyst is found to be 87% with a rate constant value of 0.03387 min-1 which are higher than those of other prepared photocatalysts. This nanocomposite exhibits excellent stability even after 3 three cycles, and shows 1.135- and 1.17-times higher photocurrent intensity than pure BiVO4 and Ni3V2O8 respectively. The mechanism for the degradation of AO7 over Ni3V2O8/BiVO4 nanocomposite photocatalyst has been proposed.
Collapse
Affiliation(s)
- Swaminathan Arumugam
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Saleh O Alaswad
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Sepperumal Murugesan
- Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| |
Collapse
|
18
|
Dutta V, Chauhan A, Verma R, Gopalkrishnan C, Nguyen VH. Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1316-1336. [PMID: 36447562 PMCID: PMC9663973 DOI: 10.3762/bjnano.13.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 05/31/2023]
Abstract
One of the most enticing approaches to environmental restoration and energy conversion is photocatalysis powered by solar light. Traditional photocatalysts have limited practical uses due to inadequate light absorption, charge separation, and unknown reaction mechanisms. Discovering new visible-light photocatalysts and investigating their modification is crucial in photocatalysis. Bi-based photocatalytic nanomaterials have gotten much interest as they exhibit distinctive geometric shapes, flexible electronic structures, and good photocatalytic performance under visible light. They can be employed as stand-alone photocatalysts for pollution control and energy production, but they do not have optimum efficacy. As a result, their photocatalytic effectiveness has been significantly improved in the recent decades. Numerous newly created concepts and methodologies have brought significant progress in defining the fundamental features of photocatalysts, upgrading the photocatalytic ability, and understanding essential reactions of the photocatalytic process. This paper provides insights into the characteristics of Bi-based photocatalysts, making them a promising future nanomaterial for environmental remediation. The current review discusses the fabrication techniques and enhancement in Bi-based semiconductor photocatalysts. Various environmental applications, such as H2 generation and elimination of water pollutants, are also discussed in terms of semiconductor photocatalysis. Future developments will be guided by the uses, issues, and possibilities of Bi-based photocatalysts.
Collapse
Affiliation(s)
- Vishal Dutta
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Ankush Chauhan
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Chengalpattu district, Kelambakkam, Tamil Nadu, 603103, India
| | - Ritesh Verma
- University Centre for Research and Development, Chandigarh University, 140413, India
| | - C Gopalkrishnan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Tamil Nadu, 603203, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Chengalpattu district, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
19
|
Huang H, Lei Y, Bai L, Liang Y, Yang H. Morphology-dependent quasi 2D/2D point-flat-plate ternary CdS/MoS2/WS2 heterojunction with improved visible photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Hemmatpour P, Nezamzadeh-Ejhieh A. A Z-scheme CdS/BiVO 4 photocatalysis towards Eriochrome black T: An experimental design and mechanism study. CHEMOSPHERE 2022; 307:135925. [PMID: 35952786 DOI: 10.1016/j.chemosphere.2022.135925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The synergistic photocatalytic activity was obtained when CdS and BiVO4 nanoparticles (NPs) were coupled. The samples were characterized by XRD, FTIR, SEM-EDX, and UV-DRS techniques, and their pHpzc was also estimated. The crystallite size of the coupled sample was estimated at 37.3 and 12.5 nm by the Scherrer and Williamson-Hall equations, respectively. The band gaps and the potential positions of VB and CB levels of the semiconductors used were determined. The highest boosted photocatalytic activity was obtained when the CdS: BiVO4 mole ratio was 1:1. RSM studied the simultaneous interactions between the selected variables, and the model F-value of 110.61> F0.05, 14, 13 = 2.4 accompanied by the LOF F-value of 5.20 < F0.05, 10, 3 = 8.79 confirm the model significance. The correlation coefficients of R2 = 0.9861, the adjusted R2 = 0.9710, and the predicted R2 = 0.9417, also establish a satisfactory model for processing the experimental data. In the scavenging agent study, photodegradation mechanisms were suggested; among them, the direct Z-scheme mechanism is more favorable for illustrating the EBT-photodegradation by the binary CdS-BiVO4 photocatalyst. The proposed system, especially the direct Z-scheme mechanism, is suitable as a potential hydrogen production system.
Collapse
Affiliation(s)
- Pooneh Hemmatpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
21
|
Multifunctional magnetic bentonite induced hierarchical BiOBr coupling Bi nanoparticles and oxygen vacancies for enhanced photocatalytic performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Han T, Chen Y, Shi H. Construction of a Bi 2MoO 6/CoO x/Au system with a dual-channel charge transfer path for enhanced tetracycline degradation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of two cocatalysts CoOx and Au constructs dual carrier transfer channels, which improves the photogenerated electron–hole pairs separation efficiency and photocatalytic performance.
Collapse
Affiliation(s)
- Tongyu Han
- School of Science, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214002, P. R. China
| | - Haifeng Shi
- School of Science, Jiangnan University, Wuxi, 214122, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|