1
|
Abu Elella MH, Abdallah HM, Ali EA, Makhado E, Abd El-Ghany NA. Recent developments in conductive polysaccharide adsorbent formulations for environmental remediation: A review. Int J Biol Macromol 2025; 304:140915. [PMID: 39947533 DOI: 10.1016/j.ijbiomac.2025.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Environmental remediation is crucial for human life and ecosystems, involving the cleanup of contaminated water to protect health and restore ecological balance. However, rapid industrialization and population growth have worsened pollution, particularly in water bodies, making effective wastewater treatment a key challenge in ensuring clean drinking water, and the adsorption of toxic gases for air treatment are the main strategies for environmental remediation. Among the various treatment methods, adsorption stands out for its high selectivity, low energy and chemical use, ease of operation, and cost-effectiveness. To date, innovative, highly efficient, non-toxic, engineered adsorbent materials have received potential interest from scientific and governmental communities. Conducting polymer-modified polysaccharide formulations are crucial in wastewater treatment due to their high surface area, adsorption efficiency, excellent stability, and eco-friendly, biodegradable properties. This review offers an extensive overview of recent progress in synthesizing conducting polymer-modified polysaccharide formulations (hydrogels, aerogels, nanofibers, and nanocomposites) for capturing toxic heavy metal ions, organic dyes, pharmaceuticals, phenols as well as adsorbing different toxic gases using various adsorption mechanisms. It also emphasizes the integration of different nanofillers, including carbon-based materials, Mxenes, nanoclay, metal/metal oxides, and hybrid nanomaterials, into conductive polysaccharide chains to improve their physicochemical properties and adsorption efficiency. The reported data showed that these engineered adsorbent materials based on conductive polysaccharide formulations have immense potential for wastewater treatment applications, offering more effective and sustainable solutions.
Collapse
Affiliation(s)
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Eman AboBakr Ali
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, Polokwane 0727, South Africa
| | | |
Collapse
|
2
|
Yimin R, Abla R, Dawut G, Abdukayum A, Xiong B. Preparation and Adsorption Performance of Walnut Waste-Based Magnetic Activated Carbon with High Specific Surface Area. ACS OMEGA 2025; 10:498-508. [PMID: 39829565 PMCID: PMC11740147 DOI: 10.1021/acsomega.4c05032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Magnetic activated carbon (MAC) derived from agricultural waste shows significant potential for the removal of norfloxacin (NOR) from wastewater. However, understanding the removal mechanisms, efficiency, and recyclability of MAC produced from walnut green husk and ferrocene for NOR remains a challenge. In this study, walnut green husk-based MAC (HQP-MC) was synthesized, and changes in surface functionality, mechanisms for NOR removal, and major influencing factors were investigated. The results indicated that HQP-MC predominantly features a mesoporous structure with a diverse array of surface functional groups, including -OH, NH2, C=O, and C-O. Additionally, HQP-MC demonstrates a remarkable adsorption capacity for NOR, achieving 226.8 mg·g-1 at 298 K and pH 7.0 under various substrates and experimental conditions. This high capacity can be attributed to a significantly enhanced specific surface area and pore volume, which increased by factors of 2.40 and 2.46, respectively, compared with pristine activated carbon. Moreover, HQP-MC exhibited an exceptional saturation magnetic strength of 11.5 emu·g-1, along with a reusability rate of 80.5% after ten cycles. The adsorption kinetics were effectively described by the pseudo-second-order model and the Langmuir isotherm model. This study provides valuable insights into the sustainable development of magnetic adsorbent materials derived from agricultural waste and their applications in wastewater decontamination.
Collapse
Affiliation(s)
- Resalat Yimin
- Xinjiang
Key Laboratory of Novel Functional Materials Chemistry, Kashi University, Kashi, 844000, PR China
| | - Reyangul Abla
- Laboratory
of Xinjiang Native Medicinal and Edible Plant Resources Chemistry,
College of Chemistry and environmental Science, Kashi University, Kashi, 844000, PR China
| | - Gulbagar Dawut
- Xinjiang
Key Laboratory of Novel Functional Materials Chemistry, Kashi University, Kashi, 844000, PR China
| | - Abdukader Abdukayum
- Xinjiang
Key Laboratory of Novel Functional Materials Chemistry, Kashi University, Kashi, 844000, PR China
| | - Bin Xiong
- Xinjiang
Key Laboratory of Novel Functional Materials Chemistry, Kashi University, Kashi, 844000, PR China
| |
Collapse
|
3
|
Gomes M, Ralph TJ, Humphries MS, Graves BP, Kobayashi T, Gore DB. Waterborne contaminants in high intensity agriculture and plant production: A review of on-site and downstream impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178084. [PMID: 39674148 DOI: 10.1016/j.scitotenv.2024.178084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Waterborne contaminants pose a significant risk to water quality and plant health in agricultural systems. This is particularly the case for relatively small-scale but intensive agricultural operations such as plant production nurseries that often rely on recycled irrigation water. The increasing global demand for plants requires improved water quality and more certainty around water availability, which may be difficult to predict and deliver due to variable and changing climate regimes. Production nurseries are moving to adopt best management practices that recycle water; however, the risks associated with waterborne contaminants of various types, including nutrients, pesticides, plant pathogens, micro-plastics, and toxic metals, are not well understood. We review and synthesise the physical and biogeochemical factors that contribute to waterborne contaminant risk, and the main types of contaminants that are likely to require management, at plant production nurseries. Catchment characteristics (i.e., topography, land use), hydroclimatic factors (i.e., storms, floods, droughts), and landscape hydrological and sediment connectivity influence surface runoff, sediment transport, and associated contaminant transfer and storage. High hydrological connectivity can increase the risk of contaminant transport from the surrounding landscape to nurseries, with potential negative impacts to water quality in reservoirs and in turn plant health. High connectivity may also increase the risk of contaminants (e.g., sediment, pesticides, and phytopathogens) being transferred from nursery farms into downstream waterways, with consequences for aquatic ecosystems. Like all intensive agricultural operations, nurseries need to consider sources of irrigation water, water treatment and management strategies, and catchment and hydroclimatic factors, to mitigate the spread of contaminants and reduce their impacts on both plant production and the surrounding environment. Further research is needed to quantify contaminant loads and transfer pathways in these agricultural systems, and to better understand the threshold levels of contaminants that adversely affect plant health and which may result in devastating economic losses.
Collapse
Affiliation(s)
- Megan Gomes
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa; School of Natural Sciences, Macquarie University, NSW, Australia.
| | - Timothy J Ralph
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Marc S Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Bradley P Graves
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Tsuyoshi Kobayashi
- Science and Insights Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| | - Damian B Gore
- School of Natural Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
4
|
Arabmofrad S, Lazzara G, Miller R, Jafari SM. Surface modification of bentonite and montmorillonite as novel nano-adsorbents for the removal of phenols, heavy metals and drug residues. Adv Colloid Interface Sci 2024; 334:103334. [PMID: 39489119 DOI: 10.1016/j.cis.2024.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Montmorillonite (Mt) is one of the eco-friendly and low-cost nano-adsorbents for water and wastewater treatment. Interactions of Mt. with various modifiers such as surfactants and polymers make it an ideal adsorbent with good selectivity for the removal of phenols, heavy metals and drug residues from water and wastewater. Surface modification can improve the adsorption potential of Mt. due to increasing the number of adsorption sites and functional groups to remove a wide variety of contaminants. This paper shows a general overview of the structure, adsorptive characteristics, and applications of Mt. and modified Mt. (m-Mt). Also, recent progress made in using of natural and modified bentonite and Mt. for removing phenols, heavy metals and pharmaceuticals from water and wastewater are explained. Furthermore, it discusses the strategies used to increase the adsorption capacity of Mt. by surface modification with cationic surfactants, acids, and polymers. This article delivers an exploration of the current uses of bentonite and Mt. for water and wastewater treatment and encouraging results obtained in this review could aid in the application Mt. and m-Mt for the recovery of high added value compounds and removal of contaminants from aquatic systems.
Collapse
Affiliation(s)
- Sara Arabmofrad
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Giuseppe Lazzara
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Álvarez-Torrellas S, Garrido-Zoido JM, López-Maldonado EA, Hernández-Abreu AB, Águeda VI, Delgado JA, Gil MV, García J. Highlighting the adsorption mechanism of a fluoroquinolone antibiotic from wastewater on carbon xerogel by experiments, characterization, modelling and DFT simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61795-61818. [PMID: 39441511 DOI: 10.1007/s11356-024-35391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The application of a synthesized carbon xerogel (RFX) for the adsorptive removal from water of ciprofloxacin (CPX), a widely used fluoroquinolones-group antibiotic for humans and animals, has been reported in this work. The carbon xerogel was characterized by N2 adsorption-desorption isotherms, FTIR, Raman spectroscopy, TPD studies, elemental analysis, determination of isoelectric point (pHIEP) and scanning electron microscopy (SEM). CPX adsorption experiments were conducted in batch mode, using results obtained with F400 commercial activated carbon for comparison purposes. CPX adsorption kinetics were well-described by the pseudo-second-order model for both adsorbents and by the Elovich model in the case of F400 activated carbon. Therefore, CPX equilibrium adsorption capacity values were of 457 and 72 mg g-1 for RFX xerogel and F400 activated carbon, respectively. This significant difference can be attributed to the higher specific surface area and micropores volume values of F400 carbon; in this sense, this material led to a slower CPX kinetic adsorption. Also, the Dual-site Langmuir model best-described the experimental CPX adsorption isotherms in both cases. By the adsorption studies at different solution pH, it could be concluded that several mechanisms, e.g., hydrophobic and π-π interactions, and electrostatic forces highly influenced CPX adsorption capacity. Furthermore, adsorption tests using several environmentally relevant aqueous matrices have been accomplished. In this case, a competitive effect between the natural organic matter (NOM) and the target pollutant occurred in all the tested real matrices, decreasing CPX adsorption capacity, especially remarkable for F400 activated carbon. Finally, Density Functional Theory (DFT) has been used to elucidate the interactions between CPX and adsorbents, finding a high relevance of the π-π electron donor-acceptor interactions in which CPX acts as an acceptor.
Collapse
Affiliation(s)
- Silvia Álvarez-Torrellas
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/N, 28040, Madrid, Spain
| | - Juan Manuel Garrido-Zoido
- IACYS-Green Chemistry and Sustainable Development Unit, Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico
| | - Ana Belén Hernández-Abreu
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/N, 28040, Madrid, Spain
| | - Vicente Ismael Águeda
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/N, 28040, Madrid, Spain
| | - José Antonio Delgado
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/N, 28040, Madrid, Spain
| | - Maria Victoria Gil
- IACYS-Green Chemistry and Sustainable Development Unit, Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - Juan García
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/N, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Zayyat RM, Yahfoufi R, Al-Hindi M, Kordahi MA, Ayoub GM, Ahmad MN. Elucidating the dynamics of carbamazepine uptake using date pit-derived activated carbon: A comprehensive kinetic and thermodynamic analysis. Heliyon 2024; 10:e39068. [PMID: 39640803 PMCID: PMC11620136 DOI: 10.1016/j.heliyon.2024.e39068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Water contamination with pharmaceuticals such as Carbamazepine (CBZ) presents a significant environmental challenge. This study investigates the use of activated carbon derived from waste date pits (DPAC) for the removal of CBZ from water. The impact of several parameters such as pH, temperature, CBZ concentration, and flow rate on the adsorption were assessed. The generated DPAC demonstrated a specific surface area of 309 m2/g, a pore volume of 0.264 cm³/g, and the pores are mainly distributed at 1.86, 2.73, and 3.43 nm. The Langmuir, Freundlich, Sips, and Toth isotherms were used to fit the experimental data, and the results indicate the occurrence of monolayer adsorption and heterogeneous surface conditions. The Linear Driving Force model was used for kinetic analysis, showing improved fit at higher concentrations. Thermodynamic analyses revealed the process to be endothermic, spontaneous, and entropically driven. The DPAC achieved an adsorption capacity of 14.89 mg/g and maintained 94 % effectiveness after the first regeneration cycle and 70 % after four cycles. This study highlights the potential of DPAC as a sustainable adsorbent for advanced water purification.
Collapse
Affiliation(s)
- Ramez M. Zayyat
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Rim Yahfoufi
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Mahmoud Al-Hindi
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Michel A. Kordahi
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - George M. Ayoub
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Mohammad N. Ahmad
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| |
Collapse
|
7
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
8
|
Earl K, Sleight H, Ashfield N, Boxall ABA. Are pharmaceutical residues in crops a threat to human health? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:773-791. [PMID: 38959023 DOI: 10.1080/15287394.2024.2371418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The application of biosolids, manure, and slurry onto agricultural soils and the growing use of treated wastewater in agriculture result in the introduction of human and veterinary pharmaceuticals to the environment. Once in the soil environment, pharmaceuticals may be taken up by crops, resulting in consequent human exposure to pharmaceutical residues. The potential side effects of pharmaceuticals administered in human medicine are widely documented; however, far less is known regarding the risks that arise from incidental dietary exposure. The aim of this study was to evaluate human exposure to pharmaceutical residues in crops and assess the associated risk to health for a range of pharmaceuticals frequently detected in soils. Estimated concentrations of carbamazepine, oxytetracycline, sulfamethoxazole, trimethoprim, and tetracycline in soil were used in conjunction with plant uptake and crop consumption data to estimate daily exposures to each compound. Exposure concentrations were compared to Acceptable Daily Intakes (ADIs) to determine the level of risk. Generally, exposure concentrations were lower than ADIs. The exceptions were carbamazepine, and trimethoprim and sulfamethoxazole under conservative, worst-case scenarios, where a potential risk to human health was predicted. Future research therefore needs to prioritize investigation into the health effects following exposure to these compounds from consumption of contaminated crops.
Collapse
Affiliation(s)
- Kirsten Earl
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Nahum Ashfield
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Alistair B A Boxall
- Department of Environment and Geography, University of York, York, Heslington, UK
| |
Collapse
|
9
|
Hamdi S, Míguez-González A, Cela-Dablanca R, Barreiro A, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E. Natural and modified clays as low-cost and ecofriendly materials to remove salinomycin from environmental compartments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122158. [PMID: 39151338 DOI: 10.1016/j.jenvman.2024.122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Antibiotics in the environment represent a substantial pollution threat. Among these emerging pollutants, ionophore anticoccidials are of special concern due to their potential ecological impact, persistence in the environment, and role in promoting antimicrobial resistance. To investigate the adsorption/desorption of the ionophore antibiotic salinomycin (SAL) on/from raw and modified clay adsorbents, batch-type experiments were performed using 0.5 g of clay adsorbent mixed with 10 mL of increasing doses of SAL solutions for each sample, at room temperature, with a contact time of 24 h. All measurements were conducted in triplicate employing HPLC-UV equipment. Three different natural (raw) and modified clay samples were investigated, which were denominated as follows: AM (with 51% calcite), HJ1 (with 32% kaolinite), and HJ2 (with 32% microcline). The experiments were carried out using three pH ranges: between 3.33 and 4.49 for acid-activated clays, 8.39-9.08 for natural clays, and 9.99-10.18 for base-activated clays. The results indicated that, when low concentrations of the antibiotic were added (from 5 to 20 μmol L-1), more than 98% of SAL was strongly adsorbed by almost all clays, irrespective of the physicochemical and mineralogical composition of the clays or their pH values. When higher SAL concentrations were added (40 and 100 μmol L-1), the adsorption of the antibiotic showed pH-dependent ligand adsorption mechanisms: (i) highly decreased as the pH raised (for the raw and base-activated AM and HJ1 clays), while (ii) slightly decreased as the pH decreased (on the acid-activated clays). Among the adsorption equations tested (Freundlich, Langmuir, and Linear), the Freundlich model was identified as the most suitable for fitting the data corresponding to SAL adsorption onto the studied clays. SAL desorption from clays was consistently below 10% for all the clay samples, especially for the acid-activated clays, due to cation bridging adsorption mechanisms, when the lowest concentration of the antibiotic was added. Additionally, it should be stressed that the desorption values can increase with rising SAL concentrations, but they always remain below 20%. Overall, the clays here investigated (both raw and modified) provide a cost-effective and efficient alternative for the removal of the veterinary anticoccidial antibiotic SAL, with potential positive and practical implications in environmental remediation and antibiotic pollution management, particularly by serving as amendments for contaminated soils to enhance their adsorption capacities against SAL. Additionally, using these clays in water treatment processes could improve the efficiency of mitigating antibiotic contamination in aquatic systems.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne 5019, Monastir, Tunisia
| | - Ainoa Míguez-González
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
10
|
Sayed K, Wan-Mohtar WHM, Mohd Hanafiah Z, Bithi AS, Md Isa N, Abd Manan TSB. Occurrence of pharmaceuticals in rice (Oryza sativa L.) plant through wastewater irrigation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104475. [PMID: 38777114 DOI: 10.1016/j.etap.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The present investigation focuses on the identification of popular PhACs in roots, leaves and rice grains, which are cultivated in soil irrigated with waters and wastewater. The present study reveals the presence of PhACs in rice grains from different brands which are available in the current market, which has thus motivated these experiments. The rice plants were cultivated in garden containers and irrigated with three different water sources. All PhAC compounds were recovered within an 89-111 % range using the extraction technique, reproducibility, and sensitivity (LOQ <25 µg/g). Further, PhAC compounds were identified using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS). Interestingly, several PhAC compounds were detected in rice grains, aligning with hypotheses and findings from published literature. A total of ten (10) PhACs were found in the root, leaf, and rice grain of the 20 popular PhACs that were targeted. The annual exposure and medical dose equivalent for individual PhACs was negligible. According to our knowledge, this study is the first to show the accumulation of several categories (cocktail) of PhACs in rice grains and show the approximate human health risk assessment by its consumption. The study's results provide valuable insights for researchers, policymakers, and agricultural practitioners working on sustainable agriculture and public health.
Collapse
Affiliation(s)
- Khalid Sayed
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia.
| | - Wan Hanna Melini Wan-Mohtar
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia; Environmental Management Centre, Institute of Climate Change, National University of Malaysia (Universiti Kebangsaan Malaysia), Selangor Darul Ehsan, Malaysia.
| | - Zarimah Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aziza Sultana Bithi
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia
| | - Nurulhikma Md Isa
- Faculty of Science & Technology, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman 21030, Malaysia
| |
Collapse
|
11
|
Muñoz-Vega E, Horovitz M, Dönges L, Schiedek T, Schulz S, Schüth C. Competitive sorption experiments reveal new regression models to predict PhACs sorption on carbonaceous materials. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134239. [PMID: 38640667 DOI: 10.1016/j.jhazmat.2024.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Sorption of hydrophobic organic contaminants onto thermally altered carbonaceous materials (TACM) constitutes a widely used technology for remediation of polluted waters. This process is typically described by sorption isotherms, with one of the most used models, the Polanyi-Dubinin-Manes (PDM) equation, including water solubility (Sw) as a normalizing factor. In case of pharmaceutical active compounds (PhACs), Sw depends on the pH of the environment due to the ionic/ionizable behavior of these chemicals, a fact frequently ignored in sorption studies of PhACs. In this work, we set the theoretical framework to include the variation of Sw with pH in the definition of the PDM model, and we applied this approach to describe the effect of ambient pH in the competitive sorption of three commonly detected PhACs (carbamazepine, ibuprofen, and sulfamethoxazole) onto three carbonaceous sorbents (biochar, powder activated carbon, and colloidal activated carbon). Changes in the ambient pH and hence in the hydrophobicity of the compounds could explain the strong variations observed in single-solute sorption and also in competitive sorption. Furthermore, Sw was used as a parameter for the linear regression model of sorption coefficients of our experiments, suggesting the incorporation of this variable as an improvement to existing approaches for prediction of PhACs sorption onto TACM.
Collapse
Affiliation(s)
- Edinsson Muñoz-Vega
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany.
| | - Marcel Horovitz
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany; Laboratório Nacional de Engenharia Civil, Avenida do Brasil 101, Lisbon 1700-066, Portugal
| | - Lisa Dönges
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany
| | - Thomas Schiedek
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany
| | - Stephan Schulz
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany
| | - Christoph Schüth
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany; Water Resources Management Division, IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-45476, Germany
| |
Collapse
|
12
|
Salahshoori I, Vaziri A, Jahanmardi R, Mohseni MM, Khonakdar HA. Molecular Simulation Studies of Pharmaceutical Pollutant Removal (Rosuvastatin and Simvastatin) Using Novel Modified-MOF Nanostructures (UIO-66, UIO-66/Chitosan, and UIO-66/Oxidized Chitosan). ACS APPLIED MATERIALS & INTERFACES 2024; 16:26685-26712. [PMID: 38722359 DOI: 10.1021/acsami.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Ali Vaziri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Reza Jahanmardi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Mehdi Moayed Mohseni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran 14977-13115, Iran
| |
Collapse
|
13
|
Karimi S, Namazi H. Efficient adsorptive removal of used drugs during the COVID-19 pandemic from contaminated water by magnetic graphene oxide/MIL-88 metal-organic framework/alginate hydrogel beads. CHEMOSPHERE 2024; 352:141397. [PMID: 38325613 DOI: 10.1016/j.chemosphere.2024.141397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Currently, the presence of drugs used in the COVID-19 pandemic in water bodies is worrisome due to their high toxicity, which necessitates their critical removal by developing highly efficient adsorbents. Hence, in this study, alginate hydrogel beads of magnetic graphene oxide@MIL-88 metal-organic framework (GO@Fe3O4@MIL-88@Alg) were prepared for the first time and then utilized as a new absorption system for the removal of COVID-19 drugs such as doxycycline (DOX), hydroxychloroquine (HCQ), naproxen (NAP), and dipyrone (DIP) from aqueous solutions by batch adsorption manner. The effects of different experimental factors, such as adsorbent dosage, contact time, pH, drug concentration, temperature, ionic strength, presence of an external magnetic field (EMF), and magnet distance from the adsorption flask were optimized for the removal of COVID-19 drugs. The adsorption equilibrium isotherm proved that the adsorption process of DOX, HCQ, NAP, and DIP drugs on GO@Fe3O4@MIL-88@Alg hydrogel beads conformed to the Langmuir model and followed the pseudo-second-order adsorption kinetics. The maximum adsorption capacities of DOX, HCQ, NAP, and DIP drugs obtained for GO@Fe3O4@MIL-88@Alg hydrogel beads with the Langmuir model were 131.57, 79.92, 55.55, and 49.26 mg/g at 298 K, respectively. The thermodynamic study suggested a spontaneous endothermic adsorption process. Also, the conclusion from this study confirmed the validity of GO@Fe3O4@MIL-88@Alg hydrogel beads for excellent removal of COVID-19 drugs from water samples. It was also found that the GO@Fe3O4@MIL-88@Alg hydrogel beads could be reused with satisfactory removal efficiency in six cycles. Based on the study, the GO@Fe3O4@MIL-88@Alg hydrogel beads could be considered a sustainable, simple, economical, environmentally friendly absorption system for the removal of pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Soheyla Karimi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
14
|
Vinayagam V, Kishor Kumar NK, Palani KN, Ganesh S, Kushwaha OS, Pugazhendhi A. Recent breakthroughs on the development of electrodeionization systems for toxic pollutants removal from water environment. ENVIRONMENTAL RESEARCH 2024; 241:117549. [PMID: 37931737 DOI: 10.1016/j.envres.2023.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Since ecosystems are becoming inherently polluted, long-term contaminant removal methods are required. Electrodeionization, in particular, has recently been demonstrated as an effective approach for eliminating ionic compounds from contaminated water sources. Being a more environmentally friendly technology is most likely the main reason for its eminence. It uses electricity to replace toxic contaminants that are conventionally used to regenerate and hence reducing the toxins associated with resin regeneration. In wastewater treatment, continuous electrodeionization system overcomes several limitations of ion exchange resins, notably ion dumping. This prospective assessment delves into the mechanism, principle, and theory of electrodeionization system. It also focused on the design and applications, particularly in the removal of toxic compounds, as well as current advances in the electrodeionization system. Recent breakthroughs in electrodeionization were comprehensively discussed. Further developments in electrodeionization systems are also projected, with improved efficiency at the time of functioning at lower costs because of reduced energy use, proving them desirable for commercial usage with a broad array of applications across the globe.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Nitish Kumar Kishor Kumar
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | | | - Sudha Ganesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Chennai, 60036, India
| | - A Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
15
|
Kaviani S, Khajavian M, Piyanzina I, Nedopekin OV, Tayurskii DA. Theoretical design of transition metal-doped oxo-triarylmethyl as a disposable platform for adsorption of ibuprofen. J Mol Graph Model 2024; 126:108647. [PMID: 37832342 DOI: 10.1016/j.jmgm.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Emerging environmental contaminants have become a crucial environmental issue because of the highly toxic effluents emitted by factories. Ibuprofen (IBP), as a typical anti-inflammatory drug, is frequently detected in water sources. Therefore, its removal using various adsorbents has drawn great interest. Herein, the structural, electronic, energetic, and optical properties of pristine oxo-triarylmethyl (oxTAM) and transition metal-doped oxo-triarylmethyl (TM@oxTAM, TM = Sc, Ti, V, Cr, and Mn) for adsorption of the IBU drug were investigated using density functional theory (DFT) calculations implemented in Gaussian and VASP codes. Frontier molecular orbital (FMO), density of states (DOS), and electronic band structure results demonstrated that transition metal-doped oxTAM causes a significant reduction in the energy band gap (Eg) value of pristine oxTAM, with the highest decrease (30.14 %) in the case of Mn@oxTAM. It was found that transition metal doping onto oxTAM leads to an increase in the adsorption energies (1.20-2.64 eV) and charge density between transition metal and IBU. Natural bond orbital (NBO) analysis revealed that charge was effectively transferred from the IBU towards the transition metal, which was further analyzed by charge decomposition analysis (CDA). Furthermore, quantum theory of atoms in molecules (QTAIM), interaction region indicator (IRI), electron localization function (ELF), and radial distribution function (RDF) analyses revealed that the IBU is adsorbed on the Sc@oxTAM surface via covalent interactions, while electrostatic with partially covalent interactions are dominated in other IBU/TM@oxTAM complexes. The results suggest that TM doping on the oxTAM provides a new insight for developing photocatalyst-based covalent organic frameworks (COFs) to remove emerging pollutants in wastewater.
Collapse
Affiliation(s)
- Sadegh Kaviani
- Institute of Physics, Kazan Federal University, 420008, Kazan, Russia
| | | | - Irina Piyanzina
- Institute of Physics, Kazan Federal University, 420008, Kazan, Russia.
| | - Oleg V Nedopekin
- Institute of Physics, Kazan Federal University, 420008, Kazan, Russia
| | | |
Collapse
|
16
|
Alhoshan M, Shukla AK, Alam J, Hamid AA. Graphene Oxide-Polyphenylsulfone Nanocomposite Beads for Paracetamol Removal from Aqueous Solution. MEMBRANES 2023; 14:9. [PMID: 38248699 PMCID: PMC10818697 DOI: 10.3390/membranes14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
This study introduces a promising and practical method for the removal of paracetamol from aqueous environments, employing graphene oxide-polymer nanocomposite beads. The approach involves the utilization of a straightforward and facile phase inversion method, offering a convenient and efficient one-step process for the creation of adsorbent beads by integrating polymers and graphene oxide (GO). The synthesized nanocomposite beads are tailored for the removal of paracetamol from simulated wastewater in batch systems. Extensive characterization techniques including XPS, FTIR, SEM, TGA, and zeta potential analysis are employed to scrutinize the chemical properties and structural attributes of the prepared beads. The investigation explores the impact of critical parameters such as adsorbent dosage, adsorption duration, initial paracetamol concentration, and solution pH on the adsorption process. These nanocomposite beads exhibit an exceptional paracetamol removal efficiency, achieving up to 99% removal. This research not only contributes to the advancement of efficient and sustainable adsorbent materials for pollutant removal but also underscores their potential for environmentally friendly and cost-effective solutions in the domain of wastewater treatment.
Collapse
Affiliation(s)
- Mansour Alhoshan
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.)
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Awadh Hamid
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.)
| |
Collapse
|
17
|
Bozyiğit GD, Zaman BT, Özdemir OK, Kılınç Y, Chormey DS, Bakırdere S, Engin GO. Removal of two antidepressant active pharmaceutical ingredients from hospital wastewater by polystyrene-coated magnetite nanoparticles-assisted batch adsorption process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:77. [PMID: 38135867 DOI: 10.1007/s10661-023-12231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
This study employed simple polystyrene-coated magnetite nanoparticles (PS@MNPs)-assisted batch adsorption process for the removal of two antidepressant active ingredients (amitriptyline HCl and sertraline HCl) from hospital wastewater. Dominant parameters of the adsorption process including pH, adsorbent amount, and contact period were optimized through the univariate approach to enhance the adsorption efficiency. Upon reaching optimum adsorption conditions, equilibrium experiments were performed by spiking the adsorbates in hospital wastewater in the concentration range of 100-2000 μg/L. The concentrations of the adsorbates in the effluent were calculated using the matrix-matching calibration strategy to enhance the accuracy of quantification. A validated switchable solvent-based liquid phase microextraction (SS-LPME) method was employed to enrich the two active pharmaceutical ingredients (APIs) prior to sensitive determination with GC-MS (gas chromatography-mass spectrometry). The equilibrium data were mathematically modeled employing the Langmuir and Freundlich adsorption isotherm models. The isotherm constants were calculated, and the results showed that both the isotherm models fitted well with the experimental data. The efficient and simple batch adsorption strategy reported in this study was successfully employed to remove amitriptyline HCl and sertraline HCl from hospital wastewater at low concentrations.
Collapse
Affiliation(s)
- Gamze Dalgıç Bozyiğit
- Department of Environmental Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye.
| | - Buse Tuğba Zaman
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
| | - Oğuz Kaan Özdemir
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye
| | - Yağmur Kılınç
- Department of Environmental Engineering, Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - Dotse Selali Chormey
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
- Yildiz Technical University, Neutec Pharmaceutical, Technopark, 34220, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, Ankara, Türkiye
| | - Guleda Onkal Engin
- Department of Environmental Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye
| |
Collapse
|
18
|
Ahmad W, Kaur N, Parashar A. Algal organic matter induced photodegradation of tinidazole. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:607-618. [PMID: 38039281 DOI: 10.1080/15257770.2023.2289466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Antibiotic pollution has become one of the most emerging problems of the modern era. Tinidazole (TDZ) is one the most important nitroimidazole derivative drugs whose use has tremendously increased in the last few years. The proposed research work provides a good alternative cost-effective method for wastewater treatment. In the present investigation, algae were used as a photosensitizer in the treatment of the wastewater that was contaminated with antibiotic residue. The proposed research also provides the probable mechanism involved in the photodegradation of tinidazole. The different factors like concentration and pH of the test solution which play a key role in the photodegradation of drug molecules are also discussed in the present investigation. The result of this study established that the maximum degradation of drug molecules was observed at the algal concentration of 1.6 × 108 Cell/L and approximately 58% of drug molecules were degraded. This study also established that in an acidic medium ie at pH 5 the degradation occurs more efficiently. Results of the current study indicated that the use of algae-induced photodegradation of drug residue became one of the most promising routes for wastewater treatment. The results of the present study provide a new way to treat wastewater contaminated with antibiotics residue.
Collapse
Affiliation(s)
- Waseem Ahmad
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Nikky Kaur
- Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Amit Parashar
- Department of Chemistry, GL Bajaj Group of Institutions, Mathura, Uttar Pradesh, India
| |
Collapse
|
19
|
Bibi A, Khan H, Hussain S, Arshad M, Wahab F, Usama M, Khan K, Akbal F. Sustainable wastewater purification with crab shell-derived biochar: Advanced machine learning modeling & experimental analysis. BIORESOURCE TECHNOLOGY 2023; 390:129900. [PMID: 37866771 DOI: 10.1016/j.biortech.2023.129900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Detoxifying ecologically persistent dyes is vital for environmental and human well-being. Herein, crabshell waste is transformed into porous carbon (CB900) through pyrolysis, achieving a remarkable removal rate of 90.5% (CR-RR) and adsorption capacity (∼256.36 mg g-1, qCR). Employing XGBoost modeling, with a robust R2 ∼0.996, proved its superiority over others in predicting CR adsorption. PSO-XGB optimization led to an optimal configuration: 0.051 g adsorbent, 460.56 mg L-1 CR concentration, pH 3.16, and a 94.01 min contact time, resulting in 68.39% CR-RR and 822.15 mg g-1 qCR, simultaneously; sensitivity analysis unveiled the pivotal role of pH and adsorbent dose. CB900 exhibited physical, spontaneous, endothermic following both Langmuir and Freundlich isotherms. Remarkably, CB900 effectively eliminated various contaminants, including chromium and sulfasalazine antibiotic. Pilot-scale CB900 production cost via pyrolysis was $8.5/kg, a fraction of commercial powdered activated carbon, underscoring its economic viability and potential as a sustainable solution for the elimination of toxic contaminants from aqueous environments.
Collapse
Affiliation(s)
- Amina Bibi
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan.
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Fazal Wahab
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Usama
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Khurram Khan
- Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Feryal Akbal
- Department of Environmental Engineering, Ondokuz Mayıs Üniversitesi, Samsun, Turkey
| |
Collapse
|
20
|
Nguyen MK, Lin C, Nguyen HL, Hung NTQ, La DD, Nguyen XH, Chang SW, Chung WJ, Nguyen DD. Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165323. [PMID: 37422238 DOI: 10.1016/j.scitotenv.2023.165323] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
21
|
Oliveira MG, Spaolonzi MP, Duarte EDV, Costa HPS, da Silva MGC, Vieira MGA. Adsorption kinetics of ciprofloxacin and ofloxacin by green-modified carbon nanotubes. ENVIRONMENTAL RESEARCH 2023; 233:116503. [PMID: 37356533 DOI: 10.1016/j.envres.2023.116503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
This paper investigated the uptake of CIP and OFL in single and multicomponent adsorptive systems using modified carbon nanotubes (CNTs) as adsorbent material. The characterization analyses of the pre- and post-process material by XPS, TG/DTG, FT-IR, SEM/EDS, and XRD helped in the elucidation of the mechanisms, indicating greater involvement of n-n and π -π interactions. In the kinetic studies, the simple systems with CIP and OFL were similar, both showed equilibrium time around 20/30 min and increased adsorptive capacity with increasing initial drug concentration. In the multicomponent system, different fractions of CIP and OFL were tested and the time to reach equilibrium also varied between 20 and 30 min. In general, the adsorption capacity of CIP is slightly lower than that of OFL under the conditions tested. The selectivity analysis of the system showed that the selectivity's of the two drugs are identical in equimolar fractions. The mathematical modeling of the kinetic data indicated that in monocomponent systems, the model of pseudo-second order (PSO) adequately described both CIP and OFL kinetics. Furthermore, with the implementation of Artificial Neural Networks (ANN), it was possible to obtain a more assertive prediction of the behavior of single and binary systems.
Collapse
Affiliation(s)
- Mariana G Oliveira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Marcela P Spaolonzi
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Emanuele D V Duarte
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Heloisa P S Costa
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Meuris G C da Silva
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Melissa G A Vieira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Zhai M, Fu B, Zhai Y, Wang W, Maroney A, Keller AA, Wang H, Chovelon JM. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. WATER RESEARCH 2023; 236:119924. [PMID: 37030197 DOI: 10.1016/j.watres.2023.119924] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.
Collapse
Affiliation(s)
- Mudi Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yuhui Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Weijie Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Amy Maroney
- College of Engineering and Science, Louisiana Tech University, 201 Mayfield Ave. Ruston, LA 71272, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| | - Jean-Marc Chovelon
- IRCELYON, CNRS UMR 5256, Université Claude Bernard Lyon 1, 2 Avenue Albert-Einstein, Villeurbanne F-69626, France
| |
Collapse
|
23
|
Lam WS, Lam WH, Lee PF. The Studies on Chitosan for Sustainable Development: A Bibliometric Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2857. [PMID: 37049151 PMCID: PMC10096242 DOI: 10.3390/ma16072857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Chitosan is a biocompatible polymer with vast applications in pharmacology, medicine, paper making, agriculture, and the food industry due to its low toxicity. Chitosan also plays an important role in the sustainable environment since chitosan is able to absorb greenhouse gases, harmful organic matter, and heavy ions. Therefore, this paper conducts a bibliometric analysis of chitosan for sustainable development using the Scopus database from 1976 to 2023. A performance analysis on the 8002 documents was performed with Harzing's Publish or Perish. Science mapping was conducted using VOSviewer. The annual publication on chitosan for sustainable development showed an upward trend in recent years as the annual publication peaked in 2022 with 1178 documents with most of the documents being articles and published in journals. Material science, chemistry, and engineering are tightly related subject areas. China had the highest publication of 1560 total documents while the United States had the most impactful publication with 55,019 total citations, 68.77 citations per document, 77.6 citations per cited document, h-index 110, and g-index of 211. India had the largest international collaboration with 572 total link strength. "International Journal of Biological Macromolecules", "Carbohydrate Polymers", and "Polymers" have been identified as the top three source titles that publish the most documents on chitosan for sustainable development. The emerging trends in chitosan on sustainable development focus on the application of chitosan as an antibacterial agent and biosorbent for contaminants, especially in water treatment.
Collapse
Affiliation(s)
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia; (W.S.L.); (P.F.L.)
| | | |
Collapse
|
24
|
Ahmed MA, Ahmed MA, Mohamed AA. Facile adsorptive removal of dyes and heavy metals from wastewaters using magnetic nanocomposite of zinc ferrite@reduced graphene oxide. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Investigation into Biosorption of Pharmaceuticals from Aqueous Solutions by Biocomposite Material Based on Microbial Biomass and Natural Polymer: Process Variables Optimization and Kinetic Studies. Polymers (Basel) 2022; 14:polym14163388. [PMID: 36015645 PMCID: PMC9412267 DOI: 10.3390/polym14163388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
Biosorbtive removal of the antibacterial drug, ethacridine lactate (EL), from aqueous solutions was investigated using as biosorbent Saccharomyces pastorianus residual biomass immobilized in calcium alginate. The aim of this work was to optimize the biosorption process and to evaluate the biosorption capacity in the batch system. Response surface methodology, based on a Box–Behnken design, was used to optimize the EL biosorption parameters. Two response functions (removal efficiency and biosorption capacity) were maximized dependent on three factors: initial concentration of EL solution, contact time, and agitation speed. The highest values for the studied functions (89.49%, 26.04 mg/g) were obtained in the following operational conditions: EL initial concentration: 59.73 mg/L; contact time: 94.26 min; agitation speed: 297.57 rpm. A number of nonlinear kinetic models, including pseudo-first-order, pseudo-second-order, Elovich, and Avrami, were utilized to validate the biosorption kinetic behavior of EL in the optimized conditions. The kinetic data fitted the pseudo-first-order and Avrami models. The experimental results demonstrated that the optimized parameters (especially the agitation speed) significantly affect biosorption and should be considered important in such studies.
Collapse
|