1
|
Zhu Y, Yan J, Sui F, Wang H, Quan G, Cui L. Interaction mechanism of biochar dissolved organic matter (BDOM) and tetracycline for environmental remediation. ENVIRONMENTAL RESEARCH 2025; 275:121405. [PMID: 40096960 DOI: 10.1016/j.envres.2025.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
The persistent organic pollutant of water by residual antibiotics, particularly tetracycline, posed serious environmental and health risks. Biochar dissolved organic matter (BDOM) sorbed pollutants and mitigated migration and transformation. This study investigates the binding interaction mechanisms between BDOM and tetracycline under varying pyrolysis temperatures biochars and pH, with fluorescence quenching techniques. The influence of biochar pyrolysis temperature on tetracycline adsorption behavior by BDOM-tetracycline was also researched. The key results revealed that higher pyrolysis temperatures and lower solution pH enhanced the binding affinity of BDOM for tetracycline, which was mainly attributed to increased aromaticity and reduced oxygen-containing functional groups. The hydrophobic forces of biochar dominated the interaction, with positive enthalpy (ΔH) and entropy (ΔS) values confirming an endothermic, entropy-driven process. The BDOM modified the mobility and bioavailability of tetracycline in the process of environmental pollution remediation, which not only enhances plant growth, but also mitigates ecological risks.
Collapse
Affiliation(s)
- Yun Zhu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng 224051, China.
| | - Fengfeng Sui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng 224051, China.
| |
Collapse
|
2
|
Shi K, Zhao Y, Wu C, Geng Y, Zhou S, Chai B. Revealing the distribution characteristics and key driving factors of dissolved organic matter in Baiyangdian Lake inflow rivers from different seasons and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175768. [PMID: 39191325 DOI: 10.1016/j.scitotenv.2024.175768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The river course is a transitional area connecting the source and receiving water bodies. The dissolved organic matter (DOM) in the river course is an important factor affecting the aquatic environment and ecological health. However, there are shortcomings in studying the differences and quantitative contributions of river DOM in different seasons and sources. In this study, ultraviolet-visible (UV-vis) and three-dimensional fluorescence spectra were used to characterize the optical properties, analyze the spatiotemporal changes, and establish the quantitative relationship between environmental factors and DOM in the inflow rivers of Baiyangdian Lake. The results showed that the relative DOM concentrations in summer and autumn were significantly higher than those in the other seasons (P < 0.001) and that the DOM source (SR < 1) was mainly exogenous. The fluorescence abundance of protein-like substances (C1 + C2 + C3) was the highest in spring, whereas that of humus C4 was the highest in autumn. Moreover, the inflow rivers exhibited strong autogenetic characteristics (BIX > 1) throughout the year. Self-organizing maps (SOM) indicated that the main driving factors of water quality were NO3--N in spring, autumn, and winter and DO, pH, and chemical oxygen demand (COD) in summer. Random forest analysis showed that the fluorescent components (C1-C4) were closely related to the migration and transformation of nitrogen, and pH and nitrogen were the main predictors of each component. The Mantel test and structural equation model (SEM) showed that temperature and NO3--N significantly influenced the DOM concentration, components, and molecular properties in different seasons. Moreover, the river source also affected the distribution mechanism of DOM in the water body. Our study comprehensively analyzed the response of DOM in inflow rivers in different seasons and water sources, providing a basis for further understanding the driving mechanisms of water quality.
Collapse
Affiliation(s)
- Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chenbin Wu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
3
|
Zhou Y, Zeng F, Cui K, Lan L, Wang H, Liang W. Insight into the dynamic transformation properties of microplastic-derived dissolved organic matter and its contribution to the formation of chlorination disinfection by-products. RSC Adv 2024; 14:34338-34347. [PMID: 39469004 PMCID: PMC11514132 DOI: 10.1039/d4ra05857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
Microplastics (MPs) can cause adverse effects and pose potential threats to humans and the environment. In addition, dissolved organic matter leached from MPs (MP-DOM) is also a critical issue due to its ecotoxicity and potential to form disinfection by-products (DBPs) during the disinfection process of water treatment plants. However, limited information is available on the dynamic transformation of MP-DOM during UV irradiation and subsequent disinfection, which may further influence the formation of DBPs in MP-DOM. Herein, PSMPs-DOM were leached in aqueous solutions under UV irradiation and the samples were then chlorinated. PSMPs-DOM before and after chlorination were characterized by multiple spectral technologies and methods. With prolonged irradiation time, the aromaticity, molecular weight, humic-like substances and oxygen-containing functional groups of PSMPs-DOM increased, suggesting the continuous transformation of PSMPs-DOM. After chlorination, the aromaticity, molecular weight and humic-like substances of PSMPs-DOM decreased, among which the changes of C2 and oxygen-containing functional groups were more significant. Besides, the PSMPs-DOM formed under prolonged irradiation exhibited higher chlorine reactivity, owing to the more aromatic structures and unsaturated bonds. TCM, DCBM, DBCM and TBM were detected in all chlorinated PSMPs-DOM samples, while the PSMPs-DOM formed at the later stage of irradiation exhibited lower THMs formation potential. The correlation results showed that the conversion of humic-like substances in PSMPs-DOM affected the THMs formation potential, with photo-induced humic-like substance being a more dominant factor. This study provided more information on the relationship between the compositional transformation of MP-DOM and their potential to form DBPs, which may facilitate the assessment of potential toxicity associated with MPs-containing water, as well as the development of more effective water treatment methods.
Collapse
Affiliation(s)
- Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Kunyan Cui
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| |
Collapse
|
4
|
Cheng Y, Zhang H, Wei R, Ni J, Fan Y, Chen W. Binding characters of biomass burning smoke-derived dissolved organic matter with Cu(II) in aqueous environment: Roles of functional groups and organic components. CHEMOSPHERE 2024; 364:143290. [PMID: 39245216 DOI: 10.1016/j.chemosphere.2024.143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The environmental effect of biomass burning smoke-derived dissolved organic matter (BBS-DOM) has attracted growing attention due to the increasing wildfire globally. BBS-DOM eventually deposits on the water and soil environments, thus altering the environmental behaviors of pollutants (e.g., heavy metals) in the surface environments of the wildfire region. However, presently, the binding characters between heavy metals and BBS-DOM remains unknown. In this study, alfalfa, pinewood, and corn straw were burned at 300 °C and 600 °C to produce BBS-DOMs and their binding characters with Cu(II) were investigated using fluorescence excitation-emission matrix spectra coupled with parallel factor (EEM-PARAFAC), synchronous fluorescence spectra combined with two-dimensional correlation spectroscopy (2D-SFS-COS) and FTIR combined with two-dimensional correlation spectroscopy (2D-FTIR-COS). The fluorescence quenching/enhancing results after Cu(II) addition suggested that the binding capacities with Cu(II) of various organic components in BBS-DOMs followed an order of polyphenols-like matters (Ex/Em: 220 nm/310 nm) > aromatic protein-like matters (Ex/Em: 275 nm/310 nm) ≈ small humic-like matters (Ex/Em: 300 nm/380 nm) > large humic-like matters (Ex/Em: 330 nm/410 nm). Interestingly, the quenching effect of Cu(II) addition on the fluorescence intensities of polyphenols-like matters and humic-like matters decreased with their increasing abundances, which possibly depended on the proportion of organic ligands of these components. Furthermore, 2D-FTIR-COS demonstrated that the binding sequence of different functional groups followed deprotonated -COOH→deprotonated phenol-OH→-C]O of aldehydes, ketones, and lactones/aromatic rings/-NH→C-O-C/C-OH of ethers and alcohols. Another novelty was that Cu(II) binding could increase the molecular size and humification of BBS-DOMs, due to the bridge effect of Cu(II). This work provides an importantly theoretical basis for deeply understanding the mechanism of BBS-DOM binding with Cu(II) at the molecular level, which is a key for reasonably predicting the multimedia-crossing effects of BBS-DOM and the environmental behavior of heavy metals in the wildfire region.
Collapse
Affiliation(s)
- Yue Cheng
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Huiying Zhang
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jinzhi Ni
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yuexin Fan
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
5
|
Promi SI, Gardner CM, Hohner AK. Biodegradability of unheated and laboratory heated dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1429-1439. [PMID: 39011602 DOI: 10.1039/d3em00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Following wildfires, partially combusted biomass remains on the forest floor and erosion from the landscape can release dissolved pyrogenic organic matter (dPyOM) to surface waters. Therefore, post-fire alterations to dissolved organic matter (DOM) in aquatic systems may play a vital role in DOM stability and biogeochemical cycles. Dissolved PyOM biodegradation remains poorly understood and is expected to vary with combustion temperature and fuel source. In this study laboratory heating and leaching of forest floor materials (soil and litter) were used to compare the biodegradability of unheated, low (250 °C), and moderate (450 °C) temperature leachates. Inoculation experiments were performed with river microbes. Dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen, and DOM optical properties were monitored for 38 days. Inoculation experiments showed significantly greater DOC biodegradation of low and moderate temperature samples (64% and 71%, respectively) compared to unheated samples (32%). The greater DOC biodegradation may be explained by lower molecular weight DOM composition of heated leachates which was supported by higher initial E2/E3 ratios (absorbance at 250 nm/365 nm). Further, the observed decrease in the E2/E3 ratio after incubation suggests biodegradation of smaller compounds. This trend was greater for heated samples than unheated DOM. Specific ultraviolet absorbance increased after incubation, suggesting biodegradation of aliphatic compounds. Inoculated moderate temperature samples showed the greatest DON degradation (74%), followed by low temperature (58%) and unheated (51%) samples. Overall, results suggest that low and moderate temperature dPyOM was more biodegradable than unheated DOM, which may have implications for aquatic biogeochemical cycling, ecosystem function, and water quality in fire-impacted watersheds.
Collapse
Affiliation(s)
- Saraf Islam Promi
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, USA
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, USA
| | - Amanda K Hohner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Department of Civil Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
6
|
Zhong Y, Cheng Y, Zhang H, Wei R, Ni J, Chen W, Jia H. Fractionation of biomass-burning smoke-derived dissolved organic matters on the surface of clay minerals: Variations of molecular properties and components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172971. [PMID: 38705292 DOI: 10.1016/j.scitotenv.2024.172971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Biomass burning (e.g., wildfire) frequently occurs globally, inevitably produces abundant biomass-burning smoke-derived dissolved organic matters (BBS-DOMs) which eventually deposits on the surface environment. The adsorption and fractionation of BBS-DOMs on clays inevitably alter their biogeochemical process and environmental behaviors in the surface environment. It is therefore important to clarify the adsorption and fractionation of BBS-DOM on clay surfaces. This study found that the fractionation of BBS-DOMs on clays (montmorillonite and kaolinite) were controlled by their functional groups, aromaticity, molecular size and organic components. The spectral indexes (SUVA254 and S275-295) of BBS-DOMs in solution after clays adsorption suggested that with the increasing DOC concentration, the primary interaction between BBS-DOMs and clays changed from hydrogen bond to hydrophobic/pore filling effects, and the adsorption ratio of the large molecules increased, which were very different from natural fulvic acid. Furthermore, various BBS-DOMs and fulvic acid had different component fractionation behaviors during clay adsorption, because they had different abundances of protein-like matters (hydrogen bond donors), pyridine-N/pyrimidine-N (positive charge doners of electrostatic interaction), and fulvic-like matters (hydrophobic interaction and pore filling effect). Additionally, the increasing pH weakened the adsorption of bulk BBS-DOMs and enhanced the adsorption ratio of aromatic matters and smaller BBS-DOM molecules. Meanwhile, at a higher pH, the adsorption ratio of protein-like matters increased, while the adsorption ratio of humic- and fulvic-like matters decreased. The result was ascribed to the enhanced hydrogen bond between protein-like matters and clays as well as the enhanced electrostatic repulsion between humic-/fulvic-like matters and clays. This study is helpful for deeply understanding the multimedia-crossing environmental behavior of BBS-DOMs in the surface environment.
Collapse
Affiliation(s)
- Yinhua Zhong
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yue Cheng
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Hui Jia
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Park Y, Noda I, Jung YM. Novel Developments and Progress in Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241255393. [PMID: 38872353 DOI: 10.1177/00037028241255393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This first of the two-part series of the comprehensive survey review on the progress of the two-dimensional correlation spectroscopy (2D-COS) field during the period 2021-2022, covers books, reviews, tutorials, novel concepts and theories, and patent applications that appeared in the last two years, as well as some inappropriate use or citations of 2D-COS. The overall trend clearly shows that 2D-COS is continually growing and evolving with notable new developments. The technique is well recognized as a powerful analytical tool that provides deep insights into systems in many science fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
8
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
9
|
Hu S, Song G, Gao J, Wang Y, Yang Q, Qiu R, Li S, Zhao Z. Characteristics of DOM and bacterial community in rural black and odorous water bodies under different dimensions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172005. [PMID: 38554969 DOI: 10.1016/j.scitotenv.2024.172005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Analysis of dissolved organic matter (DOM) composition and microbial characteristics is crucial for tracing the sources of rural black and odorous water bodies (BOWB). The aim of this study was to explore the DOM and microbial diversity and identify the primary environmental factors in BOWB from various pollution sources during different periods using EEMs-PARAFAC and Illumina sequencing. It was found that the physicochemical properties vary widely across different pollution types of BOWB, with higher overall content during the high-water period compared to the normal-water period. The types of dissolved organic matter in BOWB are Tyrosine proteins, Fulvic acid, Dissolved microbial metabolites, and Humic acid. During the normal-water period, DOM originates primarily from terrestrial sources in various water bodies. However, DOM affected by livestock and poultry waste and industrial effluents is influenced by both internal and external sources during periods of high water levels. In industrial waste-type BOWB, the biological sources of water are weak. Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes were the dominant bacterial phyla. According to the redundancy analysis, pH (p = 0.047), Total nitrogen (TN) (p = 0.045), Organic carbon (OC) (p = 0.044), and Nickel (Ni) (p = 0.047) are the primary environmental factors influencing the composition of bacterial communities.
Collapse
Affiliation(s)
- Siyu Hu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; Shaanxi University of Technology, Hanzhong 723001,China; Innovation Institute of Carbon Peaking and Carbon Neutrality, TCARE & Jiashan, Jiaxing 314100, China
| | - Guangqing Song
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; Innovation Institute of Carbon Peaking and Carbon Neutrality, TCARE & Jiashan, Jiaxing 314100, China
| | - Jie Gao
- Shaanxi University of Technology, Hanzhong 723001,China
| | - Yuanyuan Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; Innovation Institute of Carbon Peaking and Carbon Neutrality, TCARE & Jiashan, Jiaxing 314100, China
| | - Qinyu Yang
- Shaanxi University of Technology, Hanzhong 723001,China
| | - Ruoqi Qiu
- Shaanxi University of Technology, Hanzhong 723001,China
| | - Song Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; Innovation Institute of Carbon Peaking and Carbon Neutrality, TCARE & Jiashan, Jiaxing 314100, China.
| | - Zuoping Zhao
- Shaanxi University of Technology, Hanzhong 723001,China.
| |
Collapse
|
10
|
Huang S, Chen M, Lu H, Eitssayeam S, Min Y, Shi P. Effect of pyrolysis temperature on the binding characteristics of DOM derived from livestock manure biochar with Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24250-24262. [PMID: 38436847 DOI: 10.1007/s11356-024-32646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM) has the potential to influence the environmental application of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from livestock manure biochar at different pyrolysis temperatures with Cu(II) were investigated based on a multi-analytical approach. The results showed that the DOC concentration, aromatics, and humification degree of BDOM were higher in the process of low pyrolysis of biochar. The pyrolysis temperature changed the composition of BDOM functional groups, which affected the binding mechanism of BDOM-Cu(II). Briefly, humic-like and protein-like substances dominated BDOM-Cu(II) binding at low and high pyrolysis temperatures, respectively. The higher binding capacity for Cu(II) was exhibited by BDOM derived from the lower pyrolysis temperature, due to the carboxyl as the main binding site in humic acid had high content and binding ability at low-temperature. The amide in proteins only participated in the BDOM-Cu(II) binding at high pyrolysis temperature, and polysaccharides also played an important role in the binding process. Moreover, the biochar underwent the secondary reaction at certain high temperatures, which led to condensation reaction of the aromatic structure and the conversion of large molecules into small molecules, affecting the BDOM-Cu(II) binding sites.
Collapse
Affiliation(s)
- Shujun Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Hongxiu Lu
- Department of Biomedicine and Health, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, People's Republic of China
| | - Sukum Eitssayeam
- Physics and Materials Science Department, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, People's Republic of China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
11
|
Zhang H, Chen W, Qi Z, Qian W, Yang L, Wei R, Ni J. Biochar improved the solubility of triclocarban in aqueous environment: Insight into the role of biochar-derived dissolved organic carbon. CHEMOSPHERE 2024; 351:141172. [PMID: 38211797 DOI: 10.1016/j.chemosphere.2024.141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Biochar as an effective adsorbent can be used for the removal of triclocarban from wastewater. Biochar-derived dissolved organic carbon (BC-DOC) is an important carbonaceous component of biochar, nonetheless, its role in the interaction between biochar and triclocarban remains little known. Hence, in this study, sixteen biochars derived from pine sawdust and corn straw with different physico-chemical properties were produced in nitrogen-flow and air-limited atmospheres at 300-750 °C, and investigated the effect of BC-DOC on the interaction between biochar and triclocarban. Biochar of 600∼750 °C with low polarity, high aromaticity, and high porosity presented an adsorption effect on triclocarban owing to less BC-DOC release as well as the strong π-π, hydrophobic, and pore filling interactions between biochar and triclocarban. In contrast and intriguingly, biochar of 300∼450 °C with low aromaticity and high polarity exhibited a significant solubilization effect rather than adsorption effect on triclocarban in aqueous solution. The maximum solubilization content of triclocarban in biochar-added solution reached approximately 3 times its solubility in biochar-free solution. This is mainly because the solubilization effect of BC-DOC surpassed the adsorption effect of biochar though the BC-DOC only accounted for 0.01-1.5 % of bulk biochar mass. Furthermore, the high solubilization content of triclocarban induced by biochar was dependent on the properties of BC-DOC as well as the increasing BC-DOC content. BC-DOC with higher aromaticity, larger molecular size, higher polarity, and more humic-like matters had a greater promoting effect on the water-solubility of triclocarban. This study highlights that biochar may promote the solubility of some organic pollutants (e.g., triclocarban) in aqueous environment and enhance their potential risk.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Liumin Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
12
|
Lu J, Wang R, Wang B, Xia X, Ogino K, Huang J, Si H. Nutrient-rich hydrothermal carbon production by exogenous nutrients combined with seaweed internal water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119774. [PMID: 38071917 DOI: 10.1016/j.jenvman.2023.119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
As a product of hydrothermal carbonization (HTC) technology, hydrothermal carbon has shown excellent application potential in soil improvement, greenhouse gas reduction and pollution remediation. Since a large amount of water and biomass are directly used as reaction media, hydrothermal carbon produced by traditional HTC possesses poor nutrient properties and accompanied by the generation of toxic and hazardous wastewater. Here, a versatile and easily scalable strategy has been demonstrated for the one-step production of industrial nutrient-rich hydrothermal carbon (NRHC) by combining the exogenous nutrients with seaweed internal water. During the reaction process, exogenous nutrients (NH4H2PO3, KNO3, CO(NH2)2) participated in the HTC reaction and were uniformly distributed on the surface of hydrothermal carbon through surface complexation precipitation, ion exchange, and electrostatic interactions. Simulations based on density functional theory revealed that NRHC produced in presence of exogenous nutrients possessed more active sites and surface charges. Moreover, the adsorbent and adsorbate were simultaneously affected by intermolecular forces, electrostatic forces, and internal energy of the system, and the thermodynamics of adsorption process was more stable. Compared with no exogenous nutrient involvement, NRHC produced by exogenous nutrients showed 2.12, 18.56, and 25.69 times increase in the N, P, and K content. The length of the seed germination root system increased by 4.3-5.9 times, which met the standards set for agricultural fertilizer. Due to increased yield per unit volume and reduced wastewater generation, the cost of NRHC production reduced by 47.83-58.23 per cent and profit enhanced by 1.56-1.68 times, as compared to traditional HTC. This low-cost streamlined process provides a new strategy for large-scale production and direct application of hydrothermal carbon.
Collapse
Affiliation(s)
- Jikai Lu
- College of Engineering, Ocean University of China, 1299 San-sha Road, Qingdao, 266000, Shandong, China; Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan, 250014, Shandong, China
| | - Rui Wang
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan, 250014, Shandong, China
| | - Bing Wang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan; School of Environment and Resources, Taiyuan University of Science and Technology, 66 Wa-liu Road, Taiyuan, 030024, Shanxi, China.
| | - Xu Xia
- College of Engineering, Ocean University of China, 1299 San-sha Road, Qingdao, 266000, Shandong, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Junlin Huang
- College of Engineering, Ocean University of China, 1299 San-sha Road, Qingdao, 266000, Shandong, China
| | - Hongyu Si
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
13
|
Hung CM, Chen CW, Huang CP, Dong CD. Pretreatment of marine sediment for the removal of di-(2-ethylhexyl) phthalate by sulfite in the presence of sorghum distillery residue-derived biochar and its effect on microbiota response. CHEMOSPHERE 2024; 346:140571. [PMID: 38303388 DOI: 10.1016/j.chemosphere.2023.140571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
This study investigates the mechanism behind the oxidation di-(2-ethylhexyl) phthalate (DEHP) in marine sediment by coupling sulfite using biochar prepared from sorghum distillery residue (SDRBC). The rationale for this investigation stems from the need to seek effective methods for DEHP-laden marine sediment remediation. The aim is to assess the feasibility of sulfite-based advanced oxidation processes for treating hazardous materials such as DEHP containing sediment. To this end, the sediment in question was treated with 2.5 × 10-5 M of sulfite and 1.7 g L-1 of SDRBC700 at acidic pH. Additionally, the study demonstrated that the combination of SDRBC/sulfite with a bacterial system enhances DEHP removal. Thermostilla bacteria were enriched, highlighting their role in sediment treatment. This study concludes that sulfite-associated sulfate radicals-driven carbon advanced oxidation process (SR-CAOP) offers sustainable sediment pretreatment through the SDRBC/sulfite-mediated microbial consortium, in which the SO3•- and 1O2 were responsible for DEHP degradation. SDRBC/sulfite offers an effective and environmentally friendly method for removing DEHP. Further, these results can be targeted at addressing industry problems related to sediment treatment.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
14
|
Luo X, Du H, Du J, Zhang X, Xiao W, Qin L. The influence of biomass type on hydrothermal carbonization: Role of calcium oxalate in enhancing carbon sequestration of hydrochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119586. [PMID: 37984272 DOI: 10.1016/j.jenvman.2023.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Addressing climate change through effective carbon sequestration strategies is critical. This study presents an investigation into the hydrothermal carbonization (HTC) and co-hydrothermal carbonization (Co-HTC) of invasive plants (IPs) to produce hydrochars to unveil the significant impact of biomass type and unique mineral on the stability of hydrochars. Nine hydrochars were produced from six IPs, utilizing both single and mixed biomass. A key finding is the observable that calcium oxalate forms as a surface mineral during HTC through different characterization techniques, the presence of which notably influenced the stability of hydrochars, resulting in enhanced thermal (highest R50 = 0.81) and chemical (lowest carbon loss rate = 4.02%) stability of hydrochars, possibly acting as a protective layer. Besides, a positive correlation was established between the yield of hydrochars and the lignin content of the original biomass. It is also observed that Co-HTC of plant materials rich in Ca2+ can enhance the formation of calcium oxalate minerals. This is likely due to their synergistic role in the HTC process, promoting the release of more C2O42- and Ca2+. Our results signify the crucial role of biomass composition in the HTC process and spotlight the potential of calcium oxalate in augmenting hydrochar stability. This study offers valuable insights that bolster the theoretical framework for employing hydrochar derived from IPs as a potent material for carbon sequestration.
Collapse
Affiliation(s)
- Xin Luo
- Key Laboratory of Coordinated Control and Joint Remediation of Water and Soil Pollution for National Environmental Protection, College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Haiying Du
- Key Laboratory of Coordinated Control and Joint Remediation of Water and Soil Pollution for National Environmental Protection, College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jie Du
- Jiuzhaigou Administration, Aba, 623400, China
| | - Xiaochao Zhang
- Key Laboratory of Coordinated Control and Joint Remediation of Water and Soil Pollution for National Environmental Protection, College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China; State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China.
| | | | - Liang Qin
- Sichuan Huadi Construction Engineering Co., Ltd, Chengdu, 610036, China
| |
Collapse
|
15
|
Tu X, Xu P, Zhu Y, Mi W, Bi Y. Molecular complexation properties of Cd 2+ by algal organic matter from Scenedesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115378. [PMID: 37598544 DOI: 10.1016/j.ecoenv.2023.115378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
A detailed understanding the metals binding with algal organic matter (AOM) is essential to gain a deeper insight into the toxicity and migration of metals in algae cell. However, the molecular complexation mechanism of the metals binding with AOM remains unclear. In this study, cadmium ion (Cd2+) binding properties of AOMs from Scenedesmus obliquus, which included extracellular organic matter (EOM) and intracellular organic matter (IOM), were screened. When Cd2+ < 0.5 mg/L, the accumulation of Cd2+ could reach 40%, while Cd2+ > 0.5 mg/L, the accumulation of Cd2+ was only about 10%. EOM decreased gradually (from 8.51 to 3.98 mg/L), while IOM increased gradually (from 9.62 to 21.00 mg/L). The spectral characteristics revealed that IOM was richer in peptides/proteins and had more hydrophilic than EOM. Both EOM and IOM contained three protein-like components (containing tryptophan and tyrosine) and one humic-like component, and their contents in IOM were higher than that in EOM. The tryptophan protein-like substances changed greatly during Cd2+ binding, and that the tryptophan protein-like substances complexed to Cd2+ before tyrosine protein-like substances in IOM was identified. Moreover, the functional groups of N-H, O-H, and CO in AOM played an important role, and the N-H group was priority to interacts with Cd2+ in the complexing process. More functional groups (such as C-O and C-N) were involved in the metals complexing in EOM than in IOM. It could be concluded that Cd2+ stress promoted the secretion of AOM in Scenedesmus obliquus, and proteins in AOM could complex Cd2+ and alleviate its toxicity to algal cell. These findings provided deep insights into the interaction mechanism of AOM with Cd2+ in aquatic environments.
Collapse
Affiliation(s)
- Xiaojie Tu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
16
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
17
|
Sun T, Sun Y, Huang Q, Xu Y, Jia H. Sustainable exploitation and safe utilization of biochar: Multiphase characterization and potential hazard analysis. BIORESOURCE TECHNOLOGY 2023:129241. [PMID: 37247790 DOI: 10.1016/j.biortech.2023.129241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Pyrolysis temperature determines the multiphase (solid and dissolved) structure of biochar (BC). In this study, the temperature-dependent evolution of characteristics and potential hazards of three crop (cotton, alfalfa, and wheat) residue BC were systematically investigated. The results showed that pyrolysis temperature significantly affected the elemental composition and morphology of BC. A higher pyrolysis temperature led to a higher aromatization and graphitization degree of BC. A numerical relationship between pyrolysis temperature and BC surface properties (functional groups, carbonization degree) was established. Pyrolysis temperature controlled the content, composition, and functional group evolution of BC-derived dissolved organic matter. Although the amount of potentially toxic elements (PTEs) in BC was concentrated after pyrolysis, the potentially risk of PTEs significantly decreased. The spin concentration of persistent free radicals in BC prepared at 500 °C was the highest. These findings will hopefully offer comprehensive guidance for sustainable utilization of crop straw and fit-for-purpose exploitation of BC.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Qingqing Huang
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Jia
- College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
18
|
Hameed R, Li G, Son Y, Fang H, Kim T, Zhu C, Feng Y, Zhang L, Abbas A, Zhao X, Wang J, Li J, Dai Z, Du D. Structural characteristics of dissolved black carbon and its interactions with organic and inorganic contaminants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162210. [PMID: 36791863 DOI: 10.1016/j.scitotenv.2023.162210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Biochar (BC) is a sustainable and renewable carbonaceous material, and its soluble component, dissolved black carbon (DBC), is the key to understanding BC's geological and environmental processes. Although the relationship between the changes in DBC structure and its properties, functions, and associated environmental risks has been explored, a gap remains in our understanding of DBC's fate and behavior in the natural environment. Thus, in this review, we have highlighted the molecular and chemical compositions and the structural evolution of DBC during pyrolysis, the influence of DBC's physicochemical properties on its fate and transport, DBC's interaction with soil and its contaminants, and DBC stability in soil and water environments along with potential risks. Based on our in-depth assessment of DBC and its biogeochemical roles, we believe that future studies should focus on the following: (1) using advanced techniques to understand the chemical and molecular structure of DBC deeply and concisely and, thus, determine its fundamental role in the natural environment; (2) investigating the multi-functional properties of DBC and its interaction mechanisms; and (3) evaluating the environmental behaviors of and risks associated with DBC after BC application. In future, it is necessary to gain a deeper insight into the fate and transport of DBC with contaminants and study its associated risks under BC application in the environment.
Collapse
Affiliation(s)
- Rashida Hameed
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yowhan Son
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Taewan Kim
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Adeel Abbas
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiaqian Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Sun Y, Pan Y, Zhang Z, Chen Z, Wang J, Wang B, Cheng Z, Ma W. Study on the role of AlOOH in fluorescence correction and depth purification of Cyclops water. CHEMOSPHERE 2023; 322:138190. [PMID: 36812996 DOI: 10.1016/j.chemosphere.2023.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Protein-like substances produced by biochemical reactions after disinfection of Zooplankton like Cyclops and humic substances in natural water are the main components of NOM (Natural organic matter). To eliminate early warning interference in the fluorescence detection of organic matter in natural water, a clustered flower-like AlOOH (aluminum oxide hydroxide) sorbent was prepared. HA (humic acid) and amino acids were selected as mimics of humic substances and protein-like substances in natural water. The results demonstrate that the adsorbent can selectively adsorb HA from the simulated mixed solution and restore the fluorescence properties of tryptophan and tyrosine. Based on these results, a stepwise fluorescence detection strategy was developed and used in natural water rich in zooplanktonic Cyclops. The results show that the established stepwise fluorescence strategy can well overcome the interference caused by fluorescence quenching. The sorbent was also used for water quality control to enhance coagulation treatment. Finally, trial runs of the water plant demonstrated its effectiveness and suggested a potential control method for early warning and monitoring of water quality.
Collapse
Affiliation(s)
- Yawen Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhe Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Chen
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Jiali Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Wei Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
20
|
Shan A, Huang L, Chen D, Lin Q, Liu R, Wang M, Kang KJ, Pan M, Wang G, He Z, Yang X. Trade-offs between fertilizer-N availability and Cd pollution potential under crop straw incorporation by 15 N stable isotopes in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51075-51088. [PMID: 36807262 DOI: 10.1007/s11356-022-25085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 04/16/2023]
Abstract
Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S40), N fertilization with 60% straw (S60), and N fertilization with 100% straw (S100) to improve N use efficiency as well as reduced Cd distribution in rice. The crop yields were largely enhanced by fertilization ranging from 13 to 52% over the straw addition treatments. Compared with ck, N fertilizer input significantly decreased soil pH, while DOC contents were raised in response to straw amendment, reaching the highest in S60 and S100 treatments, respectively. Moreover, straw addition substantially impacted the Cd accumulation and altered the bacterial community structure. The soil NH4+-N concentration under S0 performed the maximum in yellow soil, while the minimum in black soil compared to straw-incorporated pots. In addition, the soil NO3--N concentration in straw-incorporated plots tended to be higher than that in straw-removed plots in both soils, indicating that crop straw triggering the N mineralization was associated with native soil N condition. Furthermore, the NUE increased with 15 N uptake in the plant, and the residual 15 N in soil was increased by 26.8% with straw addition across four straw application rates. Overall, our study highlights the trade-offs between straw incorporation with N fertilizer in eliminating potential Cd toxicity, increasing fertilizer-N use efficiencies and help to provide a feasible agricultural management.
Collapse
Affiliation(s)
- Anqi Shan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Lukuan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Qiang Lin
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Rongjie Liu
- Technical Extension Station of Soil Fertilizer and Rural Energy, Ninghai, Ningbo, People's Republic of China
| | - Mei Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Kyong Ju Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Gang Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
21
|
Lu J, Luo Y, Huang J, Hou B, Wang B, Ogino K, Zhao J, Si H. The effect of biochar on the migration theory of nutrient ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157262. [PMID: 35820527 DOI: 10.1016/j.scitotenv.2022.157262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
As the acidification of arable soils increases, the utilization of nutrient ions such as N, P, and K decreases substantially. It causes environmental pollution and reduces crop yields. Through previous studies, acidified soil amendments have problems such as easy-retrograde and unclear mechanism. Therefore, in this study, biochar prepared by pyrolysis using peanut shells was used as a green amendment for acidified soil. Biochar with 0, 5 and 10 % biochar ratios were applied to the acidified soil, and the improvement and mechanism were investigated via experiments and software simulations. Analysis of the software simulation results revealed that biochar had the highest unit adsorption of K+ through physical adsorption at 820.38 mg/g. This was followed by PO43-, NO3-, and NH4+ as 270.51, 235.65 and 130.93 mg/g, respectively. These ions were controlled by both electrostatic and ion-exchange adsorption processes. During the improvement, the 10 % biochar ratio group performed the best with a 65.32 % reduction in the outlet volume, and the accumulated levels of nutrient ions in the leachate dropped by 48.40-68.28 % and increased by 437.80-913.87 % in the surface soil. Nutrient ion levels decreased gradually with the increase of soil depth, which agreed with the software simulation results. This study found that applying biochar to acidified soils can provide a solution to low nutrient utilization efficiency and unclear improvement mechanism of acidified soils, and provide a partial theoretical basis for the large-scale application of biochar. Future research on biochar for soil carbon sink and microbial expansion can be strengthened to contribute to environmental protection and multi-level utilization of energy.
Collapse
Affiliation(s)
- Jikai Lu
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China; Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China
| | - Yina Luo
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Junlin Huang
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Bingyan Hou
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Bing Wang
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Jian Zhao
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China.
| | - Hongyu Si
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China.
| |
Collapse
|