1
|
Khan J, Rezo V, Vincze T, Weis M, Momin SA, El-Atab N, Jaafar M. Flexible and highly selective NO 2 gas sensor based on direct-ink-writing of eco-friendly graphene oxide for smart wearable application. CHEMOSPHERE 2024; 367:143618. [PMID: 39490758 DOI: 10.1016/j.chemosphere.2024.143618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Nitrogen dioxide (NO2) is a major cause of respiratory disorders in outdoor and indoor environments. Real-time NO2 monitoring using nonintrusive wearable devices can save lives and provide valuable health data. This study reports a room-temperature, wearable, and flexible smart NO2 gas sensor fabricated via cost-effective printing technology on a polyimide substrate. The sensor uses alkali lignin with edge-oxidised graphene oxide (EGO-AL) ink, demonstrating a sensitivity of 1.70% ppm⁻1 and a detection limit of 12.70 ppb, with excellent selectivity towards NO2. The high sensing properties are attributed to labile oxygen functional groups from GO and alkali lignin, offering abundant interacting sites for NO2 adsorption and electron transfer. The sensor fully recovers to the baseline after heat treatment at 150 °C, indicating its reusability. Integration into lab coats showcased its wearable application, utilising a flexible printed circuit board to wirelessly alert the wearer via cell phone to harmful NO2 levels (>3 ppm) in the environment. This smart sensing application underscores the potential for practical, real-time air quality monitoring, personal safety enhancement, and health management.
Collapse
Affiliation(s)
- Junaid Khan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia; MIND-IN2UB, Department of Electronics and Biomedical Engineering, University of Barcelona, Spain; Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Vratislav Rezo
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Tomáš Vincze
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Martin Weis
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Syed Abdul Momin
- Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| | - Nazek El-Atab
- Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia.
| |
Collapse
|
2
|
Kim YH, Lee SY, Ji Y, Lee JH, Kim DW, Lee B, Jin C, Lee KH. Stepwise emergence of CO gas sensing response and selectivity on SnO 2 using C supports and PtO x decoration. Front Chem 2024; 12:1469520. [PMID: 39421607 PMCID: PMC11484019 DOI: 10.3389/fchem.2024.1469520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Room temperature gas sensing is crucial for practical devices used in indoor environments. Among various materials, metal oxides are commonly used for gas sensing, but their strong insulating properties limit their effectiveness at room temperature. To address this issue, many studies have explored diverse methods such as nanoparticle decoration or conductive support, etc. Here, we report the emergence of gas-sensing functionality at room temperature with improved CO gas selectivity on SnO2 nanoparticles through sequential steps by using amorphous carbon (a-C) support and PtOx decoration. The SnO2 decorated on amorphous carbon shows enhanced gas adsorption compared to inactive gas sensing on SnO2 decorated carbon support. The higher Vo site of SnO2 on a-C induces gas adsorption sites, which are related to the higher sp2 bonding caused by the large density of C defects. The ambiguous gas selectivity of SnO2/a-C is tailored by PtOx decoration, which exhibits six values of sensing responses (Rg/Ra or Ra/Rg) under CO gas at room temperature with higher selectivity. Compared to PtOx/a-C, which shows no response, the enhanced CO gas sensing functionality is attributed to the CO adsorption site on PtOx-decorated SnO2 particles. This report not only demonstrates the applicability of CO gas sensing at room temperature but also suggests a strategy for using SnO2 and carbon compositions in gas sensing devices.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seung Yong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yunseong Ji
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jeong Ho Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Byeongdeok Lee
- Materials Science and Chemical Engineering Center, Institute for Advanced Engineering, Yongin-si, Republic of Korea
| | - Changhyun Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul, Republic of Korea
| |
Collapse
|
3
|
Pawar KK, Kumar A, Mirzaei A, Kumar M, Kim HW, Kim SS. 2D nanomaterials for realization of flexible and wearable gas sensors: A review. CHEMOSPHERE 2024; 352:141234. [PMID: 38278446 DOI: 10.1016/j.chemosphere.2024.141234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Gas sensors are extensively employed for monitoring and detection of hazardous gases and vapors. Many of them are produced on rigid substrates, but flexible and wearable gas sensors are needed for intriguing usage including the internet of things (IoT) and medical devices. The materials with the greatest potential for the fabrication of flexible and wearable gas sensing devices are two-dimensional (2D) semiconducting nanomaterials, which consist of graphene and its substitutes, transition metal dichalcogenides, and MXenes. These types of materials have good mechanical flexibility, high charge carrier mobility, a large area of surface, an abundance of defects and dangling bonds, and, in certain instances adequate transparency and ease of synthesis. In this review, we have addressed the different 2D nonmaterial properties for gas sensing in the context of fabrication of flexible/wearable gas sensors. We have discussed the sensing performance of flexible/wearable gas sensors in various forms such as pristine, composite and noble metal decorated. We believe that content of this review paper is greatly useful for the researchers working in the research area of fabrication of flexible/wearable gas sensors.
Collapse
Affiliation(s)
- Krishna Kiran Pawar
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea; The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, South Korea; School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, India
| | - Ashok Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, 715557-13876, Iran
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, 342030, India; Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
4
|
Mirzaei A, Lee MH, Safaeian H, Kim TU, Kim JY, Kim HW, Kim SS. Room Temperature Chemiresistive Gas Sensors Based on 2D MXenes. SENSORS (BASEL, SWITZERLAND) 2023; 23:8829. [PMID: 37960529 PMCID: PMC10650214 DOI: 10.3390/s23218829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Owing to their large surface area, two-dimensional (2D) semiconducting nanomaterials have been extensively studied for gas-sensing applications in recent years. In particular, the possibility of operating at room temperature (RT) is desirable for 2D gas sensors because it significantly reduces the power consumption of the sensing device. Furthermore, RT gas sensors are among the first choices for the development of flexible and wearable devices. In this review, we focus on the 2D MXenes used for the realization of RT gas sensors. Hence, pristine, doped, decorated, and composites of MXenes with other semiconductors for gas sensing are discussed. Two-dimensional MXene nanomaterials are discussed, with greater emphasis on the sensing mechanism. MXenes with the ability to work at RT have great potential for practical applications such as flexible and/or wearable gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; (A.M.); (H.S.)
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; (M.H.L.); (T.-U.K.)
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; (A.M.); (H.S.)
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; (M.H.L.); (T.-U.K.)
| | - Jin-Young Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea;
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea;
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; (M.H.L.); (T.-U.K.)
| |
Collapse
|
5
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
6
|
Janica I, Montes-García V, Urban F, Hashemi P, Nia AS, Feng X, Samorì P, Ciesielski A. Covalently Functionalized MXenes for Highly Sensitive Humidity Sensors. SMALL METHODS 2023; 7:e2201651. [PMID: 36808898 DOI: 10.1002/smtd.202201651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Transition metal carbides and nitrides (MXenes) are an emerging class of 2D materials, which are attracting ever-growing attention due to their remarkable physicochemical properties. The presence of various surface functional groups on MXenes' surface, e.g., F, O, OH, Cl, opens the possibility to tune their properties through chemical functionalization approaches. However, only a few methods have been explored for the covalent functionalization of MXenes and include diazonium salt grafting and silylation reactions. Here, an unprecedented two-step functionalization of Ti3 C2 Tx MXenes is reported, where (3-aminopropyl)triethoxysilane is covalently tethered to Ti3 C2 Tx and serves as an anchoring unit for subsequent attachment of various organic bromides via the formation of CN bonds. Thin films of Ti3 C2 Tx functionalized with linear chains possessing increased hydrophilicity are employed for the fabrication of chemiresistive humidity sensors. The devices exhibit a broad operation range (0-100% relative humidity), high sensitivity (0.777 or 3.035), a fast response/recovery time (0.24/0.40 s ΔH-1 , respectively), and high selectivity to water in the presence of saturated vapors of organic compounds. Importantly, our Ti3 C2 Tx -based sensors display the largest operating range and a sensitivity beyond the state of the art of MXenes-based humidity sensors. Such outstanding performance makes the sensors suitable for real-time monitoring applications.
Collapse
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Francesca Urban
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Payam Hashemi
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Artur Ciesielski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
7
|
Deng Z, Tan X, Guo D, Zhang J, Xu D, Hou X, Wang S, Zhang J, Wei F, Zhang D. MXene-sensitized electrochemiluminescence sensor for thrombin activity detection and inhibitor screening. Mikrochim Acta 2023; 190:328. [PMID: 37495854 DOI: 10.1007/s00604-023-05906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Thrombin, a crucial enzyme involved in blood coagulation and associated diseases, requires accurate detection of its activity and screening of inhibitors for clinical diagnosis and drug discovery. To address this, an electrochemiluminescence (ECL) method was developed to detect thrombin activity based on the sensitization of Ti3C2Tx MXene, which could sensitize the Ru(bpy)32+ ECL system greatly. The thrombin-cleavable substrate bio-S-G-R-P-V-L-G-C was used as recognizer to evaluate the activity of thrombin. Under the optimal conditions, the limit of detection for thrombin in serum was 83 pU/mL (S/N = 3) with a linear range from 0.1 nU/mL to 1 µU/mL. Moreover, the developed ECL biosensor was employed to screen for thrombin inhibitors from Artemisiae argyi Folium. Four potential thrombin inhibitors (isoquercitrin, nepetin, L-camphor, L-borneol) were screened out with inhibition rates beyond 50%, among which isoquercitrin had the best inhibition rate of 90.26%. Isoquercitrin and nepetin were found to be competitive inhibitors of thrombin, with [Formula: see text] values of 0.91 μM and 2.18 μM, respectively. Molecular docking results showed that these compounds could interact with the active sites of thrombin through hydrogen bonds including ASP189, SER195, GLY216, and GLY219. The electrochemical biosensor constructed provides a new idea for the detection of thrombin activity and screening of its inhibitors.
Collapse
Affiliation(s)
- Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Xueping Tan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Jing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dan Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China.
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China.
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China.
| | - Junbo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Fen Wei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| |
Collapse
|
8
|
Simonenko EP, Nagornov IA, Mokrushin AS, Kashevsky SV, Gorban YM, Simonenko TL, Simonenko NP, Kuznetsov NT. Low Temperature Chemoresistive Oxygen Sensors Based on Titanium-Containing Ti 2CT x and Ti 3C 2T x MXenes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4506. [PMID: 37444820 DOI: 10.3390/ma16134506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The chemoresistive properties of multilayer titanium-containing Ti2CTx and Ti3C2Tx MXenes, synthesized by etching the corresponding MAX phases with NaF solution in hydrochloric acid, and the composites based on them, obtained by partial oxidation directly in a sensor cell in an air flow at 150 °C, were studied. Significant differences were observed for the initial MXenes, both in microstructure and in the composition of surface functional groups, as well as in gas sensitivity. For single Ti2CTx and Ti3C2Tx MXenes, significant responses to oxygen and ammonia were observed. For their partial oxidation at a moderate temperature of 150 °C, a high humidity sensitivity (T, RH = 55%) is observed for Ti2CTx and a high and selective response to oxygen for Ti3C2Tx at 125 °C (RH = 0%). Overall, these titanium-containing MXenes and composites based on them are considered promising as receptor materials for low temperature oxygen sensors.
Collapse
Affiliation(s)
- Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Ilya A Nagornov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Artem S Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Sergey V Kashevsky
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Yulia M Gorban
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| |
Collapse
|
9
|
Simonenko EP, Nagornov IA, Mokrushin AS, Averin AA, Gorban YM, Simonenko TL, Simonenko NP, Kuznetsov NT. Gas-Sensitive Properties of ZnO/Ti 2CT x Nanocomposites. MICROMACHINES 2023; 14:725. [PMID: 37420958 DOI: 10.3390/mi14040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 07/09/2023]
Abstract
At present, a new class of 2D nanomaterials, MXenes, is of great scientific and applied interest, and their application prospects are very broad, including as effective doping components for receptor materials of MOS sensors. In this work we have studied the influence on the gas-sensitive properties of nanocrystalline zinc oxide synthesized by atmospheric pressure solvothermal synthesis, with the addition of 1-5% of multilayer two-dimensional titanium carbide Ti2CTx, obtained by etching Ti2AlC with NaF solution in hydrochloric acid. It was found that all the obtained materials have high sensitivity and selectivity with respect to 4-20 ppm NO2 at a detection temperature of 200 °C. It is shown that the selectivity towards this compound is best for the sample containing the highest amount of Ti2CTx dopant. It has been found that as the MXene content increases, there is an increase in nitrogen dioxide (4 ppm) from 1.6 (ZnO) to 20.5 (ZnO-5 mol% Ti2CTx). reactions which the responses to nitrogen dioxide increase. This may be due to the increase in the specific surface area of the receptor layers, the presence of MXene surface functional groups, as well as the formation of the Schottky barrier at the interface between the phases of the components.
Collapse
Affiliation(s)
- Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilya A Nagornov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Artem S Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Aleksey A Averin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 199071, Russia
| | - Yulia M Gorban
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
10
|
Simonenko EP, Simonenko NP, Mokrushin AS, Simonenko TL, Gorobtsov PY, Nagornov IA, Korotcenkov G, Sysoev VV, Kuznetsov NT. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:850. [PMID: 36903729 PMCID: PMC10004978 DOI: 10.3390/nano13050850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.
Collapse
Affiliation(s)
- Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Philipp Yu. Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ilya A. Nagornov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
11
|
Gnanasekaran L, Suresh R, Rajendran S, Chen WH, Soto-Moscoso M. Progressive yield of nickel cobaltite nanocubes for visible light utilization and degrading activities of methyl orange dye pollutant. ENVIRONMENTAL RESEARCH 2023; 219:115053. [PMID: 36521542 DOI: 10.1016/j.envres.2022.115053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In this study, pure cobalt oxide (Co3O4) as well as nickel cobaltite (NiCo2O4) were investigated with their capacity of degradation efficiency for textile dyes like methyl orange (MO) employing visible light irradiation. Two variable concentrations of nickel cobaltite (NiCo2O4) with 75:25 and 50:50 wt ratios along with the pure metal oxides were synthesized by thermal decomposition method and analyzed by various sophisticated instruments. Initially, the structural characteristics described the fine crystalline nature of NiCo2O4 and also exhibits reduced size than the pure component material (Co3O4). Besides, NiCo2O4 catalysts represented nano cubic shaped particles, and also their coordinating functional groups were evaluated. Further, the absorption wavelength confirms the two band positions of NiCo2O4 which leads to promote visible light absorption, and degrading efficiency of about 47.5% for NiCo2O4 (75:25) sample compared with NiCo2O4 (50:50) which produced only 26.3% degradation. This higher efficiency of the former was due to high crystallinity and interfacial charge transfer of combined Ni2+, Ni3+, Co2+ and Co3+ redox couples. This consecutively produces effective OH radicals that brought the degradation effectively under visible light. The recycling capacity up to 5 repeated cycles has been studied with the NiCo2O4 (75:25) and therefore the catalyst can further be used in other dye degradation.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | | |
Collapse
|
12
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|
13
|
Filipovic L, Selberherr S. Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203651. [PMID: 36296844 PMCID: PMC9611560 DOI: 10.3390/nano12203651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
During the last few decades, the microelectronics industry has actively been investigating the potential for the functional integration of semiconductor-based devices beyond digital logic and memory, which includes RF and analog circuits, biochips, and sensors, on the same chip. In the case of gas sensor integration, it is necessary that future devices can be manufactured using a fabrication technology which is also compatible with the processes applied to digital logic transistors. This will likely involve adopting the mature complementary metal oxide semiconductor (CMOS) fabrication technique or a technique which is compatible with CMOS due to the inherent low costs, scalability, and potential for mass production that this technology provides. While chemiresistive semiconductor metal oxide (SMO) gas sensors have been the principal semiconductor-based gas sensor technology investigated in the past, resulting in their eventual commercialization, they need high-temperature operation to provide sufficient energies for the surface chemical reactions essential for the molecular detection of gases in the ambient. Therefore, the integration of a microheater in a MEMS structure is a requirement, which can be quite complex. This is, therefore, undesirable and room temperature, or at least near-room temperature, solutions are readily being investigated and sought after. Room-temperature SMO operation has been achieved using UV illumination, but this further complicates CMOS integration. Recent studies suggest that two-dimensional (2D) materials may offer a solution to this problem since they have a high likelihood for integration with sophisticated CMOS fabrication while also providing a high sensitivity towards a plethora of gases of interest, even at room temperature. This review discusses many types of promising 2D materials which show high potential for integration as channel materials for digital logic field effect transistors (FETs) as well as chemiresistive and FET-based sensing films, due to the presence of a sufficiently wide band gap. This excludes graphene from this review, while recent achievements in gas sensing with graphene oxide, reduced graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, and MXenes are examined.
Collapse
|
14
|
Engineering ZnO nanocrystals anchored on mesoporous TiO2 for simultaneous detection of vitamins. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|