1
|
Kim JG, Ehsan MF, Alshawabkeh AN, Baek K. Simultaneous removal of Cr(VI), As(III), and sulfanilamide via an e-barrier electrochemical system: A pilot study. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137735. [PMID: 40024117 PMCID: PMC11999765 DOI: 10.1016/j.jhazmat.2025.137735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In-situ electrochemical remediation has emerged as a promising groundwater remediation technology. However, its application has been limited to short-term decontamination. Here, we propose an electrochemical system that combines an e-barrier with pyrite, a sulfide mineral capable of completely removing As(III), Cr(VI), and sulfanilamide continuously for one year. We evaluated the sandbox comprising an e-barrier and pyrite as a flow-through electrochemical reactor on two different scales: (1) a lab-scale small sandbox with sulfanilamide as a model contaminant to assess decontamination performance, and (2) a pilot-scale large sandbox designed for the simultaneous removal of As(III), Cr(VI), and sulfanilamide. The small sandbox achieved 100 % removal of sulfanilamide, demonstrating the effectiveness of the combined system. The large sandbox demonstrated 100 % removal efficiency against contaminants mixture for up to one year, with effluent maintaining a neutral pH even without an external neutralizing process. This remarkable performance was attributed to the activation of pyrite by anodic oxygen (O₂), producing dissolved iron that leads to the formation of iron hydroxide (e.g., green rust), which serves both as an adsorbent and precipitant for contaminants. Our findings indicated that the combination of electrochemical reactions and pyrite is an effective approach for the simultaneous removal of organic and inorganic contaminants.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Environment and Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Kitae Baek
- Department of Environment and Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
2
|
Kim JG, Kim HB, Ehsan MF, Alshawabkeh AN, Baek K. Assessing the electrode configuration in a sandbox system for the removal of sulfanilamide: A pilot study. CHEMOSPHERE 2024; 366:143392. [PMID: 39343320 PMCID: PMC11542678 DOI: 10.1016/j.chemosphere.2024.143392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Electrochemical oxidation has emerged as an effective and straightforward technology for groundwater remediation. While recent studies have investigated parameters such as current, electrolyte composition, and electrode materials, most have been conducted using small-scale batch or flow reactors, limiting their applicability to real-world conditions. In this study, a pilot-scale sandbox reactor was employed to simulate realistic groundwater conditions and assess the removal of sulfanilamide, a model organic contaminant. Various electrode configurations were systematically evaluated to identify the key operational parameters influencing pollutant removal efficiency, providing insights for practical applications in groundwater treatment. This study proposes three configurations, including a single well with the anode and cathode, a double well with the separated anode and cathode, and an e-barrier with electrodes separately mounted inside a permeable barrier. Single well had the lowest removal efficiency (60%) because cathodic reaction inhibited the anodic oxidation. A double well with a separate anode and cathode can achieve 80% removal efficiency. However, effluent pH can reach up to 13.2, which can adversely impact groundwater. Meanwhile, the e-barrier not only achieved complete removal, but also maintained a neutral pH of 7.0 over 30 days. The e-barriers proved to be the most effective configuration based on their removal efficiency (100%) while yielding an effluent with neutral pH. The energy consumption of the e-barrier was most effective at 1.54 kWh/m3, while the other configurations were 5.40 and 22.18 kWh/m3. E-barriers are deemed a very reasonable configuration, both in terms of removal efficiency and practical application in groundwater.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA; Department of Environment and Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Hye-Bin Kim
- Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju, 55365, Republic of Korea
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Kitae Baek
- Department of Environment and Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
3
|
Kim JG, Sarrouf S, Ehsan MF, Alshawabkeh AN, Baek K. In-situ groundwater remediation of contaminant mixture of As(III), Cr(VI), and sulfanilamide via electrochemical degradation/transformation using pyrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134648. [PMID: 38781853 PMCID: PMC11166511 DOI: 10.1016/j.jhazmat.2024.134648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are effective in removing persistent contaminants from groundwater. However, their practical applicability depends significantly on various site-specific characteristics. Therefore, the primary objective of this investigation was to study the feasibility of EAOPs and pyrite, which is a sulfide mineral, to effectively remove the mixture of arsenic (As (III)), chromium (Cr (VI)), and sulfanilamide in groundwater. We conducted a comparison of three systems: (1) EAOP alone, (2) pyrite alone, and (3) a combined EAOP and pyrite system. In EAOP alone, sulfanilamide was effectively oxidized (80%), while the electrochemical transformation of As(III)/Cr(VI) into As(V)/Cr(III) was limited. In just the pyrite system, As(III), Cr(VI), and sulfanilamide were adsorbed onto the surface of pyrite (60%, 20%, and 18%). Neither the EAOP nor the pyrite system alone could effectively treat the contaminants mixture. Nonetheless, the combined system completely removed As(III), Cr(VI), and sulfanilamide by the synergistic reaction. This could be attributed to the formation of green rust, a natural adsorbent mineral produced as a reaction of dissolved iron, generated via electrochemical pyrite oxidation, with the groundwater electrolyte (e.g., CO3 or SO4). This system harmonized the combined approach of EAOP and pyrite to effectively eliminate both organic and inorganic contaminants. ENVIRONMENTAL IMPLICATION: A paper proposed electrochemical oxidation (EO) with pyrite to remove both organic and inorganic contaminants from groundwater. The removal performance of the combined system was evaluated, and the synergistic mechanism was revealed. The combination of EO and pyrite with synergistic removal effectively removed the mixture of both contaminants. This could be attributed by the formation of green-rust by electrochemical activation for pyrite. Compared to the single system of EO and pyrite alone, the combined system with EO and pyrite improved removal performance. Results suggested that the combined system could be used for green groundwater remediation.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, MA, USA; Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea
| | - Stephanie Sarrouf
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, MA, USA
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, MA, USA
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, MA, USA
| | - Kitae Baek
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea.
| |
Collapse
|
4
|
Cao S, Duan M, Zhang X, Yang Z, Zhuo R. Bacterial community structure analysis of sludge from Taozi lake and isolation of an efficient 17β-Estradiol (E2) degrading strain Sphingobacterium sp. GEMB-CSS-01. CHEMOSPHERE 2024; 355:141806. [PMID: 38548087 DOI: 10.1016/j.chemosphere.2024.141806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/28/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Environmental challenges arising from organic pollutants pose a significant problem for modern societies. Efficient microbial resources for the degradation of these pollutants are highly valuable. In this study, the bacterial community structure of sludge samples from Taozi Lake (polluted by urban sewage) was studied using 16S rRNA sequencing. The bacterial phyla Proteobacteria, Bacteroidetes, and Chloroflexi, which are potentially important in organic matter degradation by previous studies, were identified as the predominant phyla in our samples, with relative abundances of 48.5%, 8.3%, and 6.6%, respectively. Additionally, the FAPROTAX and co-occurrence network analysis suggested that the core microbial populations in the samples may be closely associated with organic matter metabolism. Subsequently, sludge samples from Taozi Lake were subjected to enrichment cultivation to isolate organic pollutant-degrading microorganisms. The strain Sphingobacterium sp. GEMB-CSS-01, tolerant to sulfanilamide, was successfully isolated. Subsequent investigations demonstrated that Sphingobacterium sp. GEMB-CSS-01 efficiently degraded the endocrine-disrupting compound 17β-Estradiol (E2). It achieved degradation efficiencies of 80.0% and 53.5% for E2 concentrations of 10 mg/L and 20 mg/L, respectively, within 10 days. Notably, despite a reduction in degradation efficiency, Sphingobacterium sp. GEMB-CSS-01 retained its ability to degrade E2 even in the presence of sulfanilamide concentrations ranging from 50 to 200 mg/L. The findings of this research identify potential microbial resources for environmental bioremediation, and concurrently provide valuable information about the microbial community structure and patterns within Taozi Lake.
Collapse
Affiliation(s)
- Shanshan Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang, 422000, PR China
| | - Mifang Duan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, PR China
| | - Zhilong Yang
- Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang, 422000, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang, 422000, PR China.
| |
Collapse
|
5
|
Kim JG, Kim HB, Jeong WG, Lee KH, Baek K. Electrochemical oxidation and mechanism of sulfanilamide from groundwater in a flow-through system using carbon fiber (CF) anode. CHEMOSPHERE 2024; 349:140817. [PMID: 38040260 DOI: 10.1016/j.chemosphere.2023.140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Metal-based anodes have been used for a long time in the electrochemical oxidation processes to remediate groundwater. However, the high cost of this technique as well as the release of potentially toxic metals (ex, lead), are major barriers being fully implemented. As an alternative of metal-based anodes, in recent years, carbon-based anodes have been paid attention due to their eco-friendliness and cost-effectiveness. This study evaluated the oxidation performance of carbon fiber (CF) anode in a flow-through system. The CF anode degraded 45-87% of the target pollutant (sulfanilamide), depending on the current intensity applied. However, no further degradation of sulfanilamide was observed after the cathode, indicating that sulfanilamide degradation occurred mainly at the anode. This study also determined the effect of electrolytes on electrochemical oxidation using chloride (Cl-), sulfate (SO42-), bicarbonate (CO3-), and synthetic groundwater. Cl- and SO42- electrolytes were converted electrochemically into active species, thereby enhancing sulfanilamide degradation, while the bicarbonate and groundwater electrolytes inhibited oxidation performance by scavenging hydroxyl radicals. A series of scavenger tests and characterization showed that the direct oxidation and hydroxyl radicals involved the sulfanilamide degradation. Especially, the production of hydroxyl radicals is more favorable in high currents than in low currents. That is, CF anode contributed to the degradation by direct oxidation of carbon-based electrodes and generation of hydroxyl radicals. In summary, this study highlights how a CF anode is capable of effectively degrading organic pollutants via anodic oxidation.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA; Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Hye-Bin Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Won-Gune Jeong
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Keun-Heon Lee
- Humas Co. Ltd., 26-77 Gajeongbuk-ro, Jang-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
6
|
Wu L, Garg S, Waite TD. Electrochemical treatment of wastewaters containing metal-organic complexes: A one-step approach for efficient metal complex decomposition and selective metal recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133526. [PMID: 38278072 DOI: 10.1016/j.jhazmat.2024.133526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Metal-organic complexes, especially those of ethylenediaminetetraacetic acid (EDTA) with metals such as copper (Cu) and nickel (Ni) (denoted here as Cu-EDTA and Ni-EDTA), are common contaminants in wastewaters from chemical and plating industries. In this study, a multi-electrode (ME) system using a two-chamber reactor and two pairs of electrodes is proposed for simultaneous electrochemical oxidation of a wastewater containing both Cu-EDTA and Ni-EDTA complexes as well as separation and selective recovery of Cu and Ni onto two different cathodes via electrodeposition. Our results demonstrate that the ME system successfully achieved 90% EDTA removal, 99% solid Cu recovery at the Cu recovery cathode and 56% Ni recovery (33.3% on the Ni recovery cathode and 22.6% in the solution) after a four-hour operation. The system further achieved 85.5% Ni recovery after consecutive five cycles of operation for 20 h. While Cu removal was mainly driven by the direct reduction of EDTA-complexed Cu(II) at the cathode, oxidation of EDTA within the Ni-EDTA complex at the anode was a prerequisite for Ni removal. The oxidation of metal-bound EDTA and free EDTA was driven by •OH and direct electron transfer on the PbO2 anode surface and graphite anode, respectively. We further show that ME system performs well for all pH conditions, treatment of real wastewaters as well as wastewaters containing other metals ions (Cr and Zn) along with Cu/Ni. The separation efficiency of Cu and Ni is dependent on applied electrode potential as well as nature and concentration of binding ligand present with comparatively lower separation efficiency achieved in the presence of weaker binding capacity and/or at lower ligand concentration and lower applied electrode potential. As such, some optimization of electrode potential is required depending on the nature/concentration of ligands in the wastewaters. Overall, this study provides new insights into the design and operation of EAOP technology for effective organic abatement and metal recovery from wastewaters containing mixtures of various metal-organic complexes.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Lee SM, Kim JG, Jeong WG, Alessi DS, Baek K. Adsorption of antibiotics onto low-grade charcoal in the presence of organic matter: Batch and column tests. CHEMOSPHERE 2024; 346:140564. [PMID: 38303384 DOI: 10.1016/j.chemosphere.2023.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Antibiotics contaminate diverse ecosystems and threaten human health. In ecosystems including water, sediment, and soil, the amount of antibiotics present is tiny compared to the amount of natural organic matter. However, most studies have ignored the co-presence of natural organic matter in the adsorption of target antibiotics. In this study, we quantitatively evaluated the effect of co-presenting natural organic matter on the adsorption of sulfamethazine (SMZ) through batch and column experiments using low-grade charcoal, an industrial by-product. SMZ was used as a model antibiotic compound and humic acid (HA) was used to represent natural organic matter. The co-presence of 2000 mg/L HA (400 times the concentration of SMZ) lowered the adsorption rate of SMZ from 0.023 g/mg·min to 0.007 g/mg·min, and the maximum adsorption capacity from 39.8 mg/g to 15.6 mg/g. HA blocked the charcoal's pores and covered its surface adsorption sites, which dramatically lowered its capacity to adsorb SMZ. Similar results were obtained in the flow-through column experiments, where the co-presence of natural organic matter shortened the lifetime of the charcoal. As a result, the co-presence of a relatively high concentration of natural organic matter can inhibit the adsorption of SMZ and likely other antibiotic compounds, and thus the presence of natural organic matter should be accounted for in the design of adsorption processes to treat antibiotics in water.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Won-Gune Jeong
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
8
|
Hakizimana I, Zhao X, Wang C, Zhang C. Efficient multi-stage electrochemical flow-through system for refractory organic pollutant treatment: Kinetics, mass transfer, and thermodynamic analysis. CHEMOSPHERE 2023; 344:140405. [PMID: 37827465 DOI: 10.1016/j.chemosphere.2023.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Improving the kinetics rate and mass transfer is essential for expanding the potential of electrochemical technologies in wastewater treatment. The electrochemical flow-through configuration promises a high oxidation efficiency and low energy consumption. We aimed to provide a thorough understanding of the enhanced kinetics, mass transfer, and thermodynamic parameters during the degradation of amoxicillin (AMX) in a multi-stage flow-through (MSFT) system using porous Ti-ENTA/SnO2-Sb anodes. All operating conditions strongly influenced the kinetics of AMX degradation and followed pseudo-first-order rate kinetic model (R2 > 0.85), with the highest kobs of 0.228 min-1 at high temperature (318 K). In comparison to the flow-by mode, the AMX removal rate in the three-stage flow-through mode was greatly enhanced by 70%, exhibiting the superior capacity of a porous anode. This system exhibited outstanding performance regarding the high kinetics rate and mass transfer rate (km), which increased by factors of 3.46 and 10.74, respectively, obtained in the flow-by mode. It also revealed that •OH generation was 5.64 times higher, and the EE/O was 19.89-fold lower than those in flow-by mode. Temperature plays a vital role in the reaction process, and thermodynamic features found the positive enthalpy (ΔHo) of +27.06 kJ mol-1, signifying the process was endothermic. A Hatta number (Ha) of >0.02 at all temperatures proved this finding, confirming an undeniable role in mass transfer. Finally, these findings reveal the system's performance and offer the possibility of establishing a multi-stage flow-through for wastewater treatment.
Collapse
Affiliation(s)
- Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
9
|
Zhang Q, Yang YL, Guo D, Hong JM. Cu 3(hexaamino triphenylhexane) 2/reduced graphene oxide composites with boosting electron-transfer properties for acetaminophen electrocatalytic degradation. CHEMOSPHERE 2023; 338:139444. [PMID: 37442382 DOI: 10.1016/j.chemosphere.2023.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Electron-transfer properties, as great contributors for electrocatalytic oxidation on the anode, are crucial to pollution degradation. The strong relationship between electron-transfer properties and active species (such as radicals) generation of anode catalysts suggests a new strategy for pollution-degradation efficiency improvement. In this study, a novel composite of Cu3(hexaamino triphenylhexane)2 [Cu3(HITP)2] and reduced graphene oxide (RGO) was synthesized to construct electron-transfer pathways between the two layers. Benefiting from the connection formed through RGO-O-N-Cu, the electron transfer from RGO to Cu3(HITP)2 was accelerated. The resettled charge distribution led the C atoms in the RGO layer, and the Cu and C atoms in Cu3(HITP)2 layer acted as the main surface active sites. O2•-, 1O2, and reactive chlorine were then triggered to boost the degradation of acetaminophen. The source of O2•- and 1O2 was more likely from surface oxygen groups rather than dissolved O2. Overall, this research provided a perspective proof of conductive Cu3(HITP)2/RGO composite construction with 2D/2D structure for electrocatalytic-oxidation improvement.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Yan Ling Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Die Guo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
10
|
Kim JG, Sarrouf S, Ehsan MF, Baek K, Alshawabkeh AN. In-situ hydrogen peroxide formation and persulfate activation over banana peel-derived biochar cathode for electrochemical water treatment in a flow reactor. CHEMOSPHERE 2023; 331:138849. [PMID: 37146770 PMCID: PMC10291676 DOI: 10.1016/j.chemosphere.2023.138849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are effective for the removal of organic contaminants from groundwater. The choice of an affordable cathode material that can generate reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) will increase practicality and cost effectiveness of EAOPs. Carbon enriched biochar (BC), which is derived from pyrolysis of biomass, has emerged as an inexpensive and environmentally-friendly electrocatalyst for removing contaminants from groundwater. In this study, a banana peel-derived biochar (BP-BC) cathode packed in a stainless steel (SS) mesh was used in a continuous flow reactor to degrade the ibuprofen (IBP), as a model contaminant. The BP-BC cathodes generate H2O2 via a 2-electron oxygen reduction reaction, initiate the H2O2 decomposition to generate •OH, adsorb IBP from contaminated water, and oxidize IBP by formed •OH. Various reaction parameters such as pyrolysis temperature and time, BP mass, current, and flow rate, were optimized to maximize IBP removal. Initial experiments showed that H2O2 generation was limited (∼3.4 mg mL-1), resulting in only ∼ 40% IBP degradation, due to insufficient surface functionalities on the BP-BC surface. The addition of persulfate (PS) into the continuous flow system significantly improves the IBP removal efficiency via PS activation. The in-situ H2O2 formation and PS activation over BP-BC cathode results in concurrent generation of •OH and sulfate anion radicals (SO4•-, a reactive oxidant), respectively, which collectively achieve ∼ 100% IBP degradation. Further experiments with methanol and tertiary butanol as potential scavengers for •OH and SO4•- confirm their combined role in complete IBP degradation.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Stephanie Sarrouf
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA.
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea; Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA.
| |
Collapse
|