1
|
Vinceti M, Mazzoli R, Wise LA, Veneri F, Filippini T. Calling for a comprehensive risk assessment of selenium in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178700. [PMID: 39923476 DOI: 10.1016/j.scitotenv.2025.178700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
In the last two decades, research has elucidated that selenium, a trace element, has both nutritional and toxicological effects on human health, depending on its dose and chemical form. Recent animal, laboratory, and human studies have shown harmful effects of certain selenium species at specific exposure levels, prompting the need to reassess overall exposure to this element, including that occurring through drinking water, a primary source of inorganic selenium. Drinking water selenium standards worldwide are scarce and existing standards are inconsistent, likely because they have been informed by an incomplete and outdated assessment of the scientific evidence. Incorporating all the available human and laboratory evidence into a precautionary regulatory framework indicates that a drinking water limit of around 5 μg/L of selenium is needed to protect human health, i.e. with an uncertainty factor of 2 versus the lowest adverse effect level observed in human studies, and that higher values may pose unacceptable risks to humans. Despite the rarity of such high levels of selenium in underground and potable waters, coal mining and other sources of environmental pollution as well as geological factors may raise drinking water selenium content above a safe threshold, triggering the need to protect consumers, and to face challenging technological issues for selenium removal, currently under active investigation.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America.
| | - Riccardo Mazzoli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Federica Veneri
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Unit of Dentistry and Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
2
|
Fol MF, Abdel-Ghaffar FA, Hassan HAM, Ibrahim AM. Oxidative stress, histopathological and genotoxicity of copper oxide nanoparticles in Biomphalaria alexandrina snail. Sci Rep 2024; 14:25187. [PMID: 39448690 PMCID: PMC11502862 DOI: 10.1038/s41598-024-74439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Higher usage of copper oxide nanomaterials in industrial and biomedical fields may cause an increase of these nanoparticles in aquatic environments, which could have a detrimental ecological effect. Thus, the objective of this study was to evaluate the acute toxicity of copper oxide nanoparticles on the freshwater gastropod, Biomphalaria alexandrina. Transmission electron microscopy, x-ray diffraction analysis and UV-VIS spectrophotometer of CuO NPs revealed a typical TEM image and a single crystal structure with average crystallite size of approximately 40 nm also, a sharp absorption band was appeared. Following exposure to sub-lethal concentrations of CuO NPs (LC10, 15.6 mg/l and LC25, 27.2 mg/l), treated snails revealed a significant decrease (p < 0.05) in total antioxidant capacity, reduced glutathione contents as well as catalase, and sodium dismutase activities were significantly declined (p < 0.05) in comparison to the control group. Also, histopathological alterations were observed in the digestive gland, including ruptured and vacuolated digestive cells, and a marked increase in the number of secretory cells and the severity of the damage increased with rising concentrations. Furthermore, changes in RAPD profiles were detected in the treated snails. In conclusion, our research highlights the potential ecological impact of CuO NPs release in aquatic ecosystems and advocates for improved monitoring and regulation of CuO NPs industrial usage and disposal.
Collapse
Affiliation(s)
- Mona Fathi Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | | | - Amina Mohamed Ibrahim
- Environmental Research & Medical Malacology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| |
Collapse
|
3
|
Wang T, Liu W. Metabolic equilibrium and reproductive resilience: Freshwater gastropods under nanoplastics exposure. CHEMOSPHERE 2024; 350:141017. [PMID: 38159739 DOI: 10.1016/j.chemosphere.2023.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nanoplastics (NPs) have gained increasing attention due to their widespread presence in aquatic environments and potential adverse effects on organisms. The interaction between NPs and freshwater gastropods can lead to a range of physiological and reproductive disturbances. In this study, we investigated the adverse effects of NPs (two size: 20 nm and 100 nm; three concentrations: 0.5, 50 and 100 ppm) on energy metabolism and reproductive fitness in freshwater gastropods Lymnean stagnalis after 21 days exposure. Briefly, the condition index negatively correlated with increasing NPs concentrations for both sizes. Bioaccumulation revealed a concentration-dependent trend in the 100 nm group, and the highest accumulation appeared in the 100 ppm group, compared to all the rest groups. This phenomenon could be attributed to the larger surface area which facilitates stronger attachment to tissues, while smaller particles could be cleared more readily from body. Carbohydrate and protein reserves remained largely unaffected at all concentrations. However, 100 nm NPs triggered stress responses, increasing lipid production, and 20 nm NPs potentially interfered with mitochondrial function, affecting electron transport system activity. Despite the variations observed in lipid levels and energy cost, the ratio of available energy to energy cost remained stable across for both NPs sizes, and this resilience suggests that cellular energy allocation endured undisturbed, hinting at mechanisms that enable gastropods to maintain their metabolic equilibrium. Reproductively, NPL-exposed groups had fewer clutches, with clutches per collection time decreasing over time for both sizes. In terms of egg development, shell growth and hatching rates remained unaffected, suggesting resilience in aquatic ecosystems.In conclusion, this study underscores the substantial impact of NPs on freshwater gastropods, raising ecological and reproductive concerns. The intricate interplay between nanoparticle size, concentration, and physiological responses highlights the complexity of NPs interactions in aquatic ecosystems, necessitating further research and regulatory measures.
Collapse
Affiliation(s)
- Ting Wang
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, CH-1211, Geneva, Switzerland
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, CH-1211, Geneva, Switzerland.
| |
Collapse
|
4
|
Ibrahim AM, Ghazy M, El-Sayed H, Abd El-Hameed RM, Khalil RG, Korany SM, Aloufi AS, Hammam OA, Morad MY. Histopathological, Immunohistochemical, Biochemical, and In Silico Molecular Docking Study of Fungal-Mediated Selenium Oxide Nanoparticles on Biomphalaria alexandrina (Ehrenberg, 1831) Snails. Microorganisms 2023; 11:microorganisms11030811. [PMID: 36985384 PMCID: PMC10053037 DOI: 10.3390/microorganisms11030811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Daphnia magna and freshwater snails are used as delicate bioindicators of contaminated aquatic habitats. Due to their distinctive characteristics, selenium oxide nanoparticles (SeONPs) have received interest regarding their possible implications on aquatic environments. The current study attempted to investigate the probable mechanisms of fungal-mediated selenium nanoparticles' ecotoxicological effects on freshwater Biomphalaria alexandrina snails and Daphnia magna. SeONPs revealed a toxicological impact on D. magna, with a half-lethal concentration (LC50) of 1.62 mg/L after 24 h and 1.08 mg/L after 48 h. Survival, fecundity, and reproductive rate were decreased in B. alexandrina snails exposed to SeONPs. Furthermore, the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were markedly elevated, while albumin and total protein levels decreased. Histopathological damage in the hermaphrodite and digestive glands was detected by light, electron microscopy, and immunohistochemistry studies. The molecular docking study revealed interactions of selenium oxide with the ALT and AST. In conclusion, B. alexandrina snails and D. magna could be employed as bioindicators of selenium nanomaterial pollution in aquatic ecosystems. This study emphasizes the possible ecological effects of releasing SeONPs into aquatic habitats, which could serve as motivation for regulatory organizations to monitor and control the use and disposal of SeONPs in industry.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahassen Ghazy
- Water Pollution Research Department, National Research Centre, El Tahrir Street, Dokki, Giza 12622, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rehab M Abd El-Hameed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Shereen M Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Olfat A Hammam
- Pathology Departments, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mostafa Y Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
5
|
Wang T, Liu W. Chronic and transgenerational effects of silver nanoparticles in freshwater gastropod Lymnaea stagnalis. CHEMOSPHERE 2023; 313:137386. [PMID: 36436584 DOI: 10.1016/j.chemosphere.2022.137386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Traditional ecotoxicological studies prove to be focused mainly on single-generation, multigenerational research in ecotoxicological testing is needed to improve the predictive approaches in ecological risk assessment. Silver nanoparticles (AgNPs) have been increasingly detected in aquatic environments due to their extensive use in consumer products. We investigated the transgenerational effects of AgNPs on the life traits of freshwater model gastropods Lymnaea stagnalis for two generations. The reversibility of the effects of using recovery experiments was also performed. Results showed that AgNPs induced high Ag bioaccumulation in the whole soft tissues of parental L. stagnalis after 21 days of exposure. The increased ROS production and reduced condition index and fecundity were found after exposure to AgNPs at 500 μg/L. These results highlight that under AgNPs exposure, adult gastropods might allocate more resources to resist oxidative stress rather than to growth or reproduction. Furthermore, the Ag accumulation and ROS production of egg clutches were significantly related to parental exposure duration and concentrations. On the other hand, isolated eggs exposure demonstrated biological effects were persistent in terms of the next generation. For example, after transfer to a clean medium, similar Ag bioaccumulation and ROS production were observed from eggs which parents were pre-exposed to 50 and 500 μg/L AgNPs. Current explicit consideration of offspring performance adds value to existing toxicity testing protocols. Parental exposure duration has important implications for offspring effects, and parental exposure can cause transgenerational changes in resistance that have significant implications for toxicity testing and adaptive responses. These effects across generations point out the need for multigenerational tests to assess the environmental risk of MNPs in aquatic organisms.
Collapse
Affiliation(s)
- Ting Wang
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland.
| |
Collapse
|