1
|
Zepeda-Navarro A, Segoviano-Garfias JJN, Bivián-Castro EY. The Multi-Challenges of the Multi-Ion-Imprinted Polymer Synthesis. Polymers (Basel) 2024; 16:2804. [PMID: 39408513 PMCID: PMC11478749 DOI: 10.3390/polym16192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Multi-ion-imprinted polymers (MIIPs) are materials with a wide range of applications mainly focused on environmental recovery, mining, technology, sensors, etc. MIIPs can incorporate ions such as heavy metals, transition metals, rare earth elements, radionuclides, and other types of ions. The chemical structures of MIIPs can be designed for different purposes and with certain morphologies, such as gels, crystals, or powders, and the surface area and porosity are also considered. All these properties provide the material with several desirable characteristics, like high selectivity, high specificity, adequate efficiency, good stability, the possibility of reusability, and strategy technology adaptation. In this review, we show the multitude of challenges of multi-ion imprinted polymer chemical synthesis based on the different and interesting methods reported previously.
Collapse
Affiliation(s)
- Abraham Zepeda-Navarro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico;
| | - José J. N. Segoviano-Garfias
- División de Ciencias de la Vida, Carr. Irapuato-Silao Km. 12.5, Ex-Hacienda El Copal, Irapuato 36821, Guanajuato, Mexico;
| | - Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico;
| |
Collapse
|
2
|
Kerdoun MA, Alouk L, Rahmani FM, Henni HA, Dali H, Kelai E, Belkhalfa H. Mercury in four common fishes sold in Algeria and associated humans risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:223-229. [PMID: 38747356 DOI: 10.1080/19393210.2024.2353709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to analyse the concentrations of mercury in fish samples available in the Algerian market and evaluate the potential health risks associated with their consumption. A total of 135 fish samples, representing the species Sardina pilchardus, Merluccius merluccius, Sparus aurata and Auxis rochie, were collected and analysed. Mercury levels were determined using thermal decomposition amalgamation Atomic Absorption Spectrophotometry. Health risks were evaluated by calculating hazard quotients. The overall mean concentration was 0.19 ± 0.11 mg/kg across all species. Individual species concentrations were recorded as 0.17 ± 0.08 mg/kg for Sardina pilchardus, 0.26 ± 0.19 mg/kg for Merluccius merluccius, 0.27 ± 0.18 mg/kg for Sparus aurata and 0.23 ± 0.13 mg/kg for Auxis rochei. Hazard quotients were below 1, indicating low health risk for fish consumers. Nevertheless, it is recommended to conduct periodic monitoring of heavy metal levels in fish, coupled with ongoing risk assessments, to ensure continued consumer protection.
Collapse
Affiliation(s)
- Mohamed Amine Kerdoun
- Department of Pharmacy, Faculty of medical sciences, Kasdi Merbah University, Ouargla, Algeria
- Toxicology Unit, Mohamed Boudiaf Public Hospital, Ouargla, Algeria
| | - Lyna Alouk
- Faculty of Biological sciences, Kasdi Merbah University, Ouargla, Algeria
| | | | | | - Halima Dali
- Ouargla Technical platform of the Center for Scientific and Technical Research in Physico-Chemical Analysis (PT-CRAPC), Ouargla, Algeria
| | - Elyes Kelai
- Ouargla Technical platform of the Center for Scientific and Technical Research in Physico-Chemical Analysis (PT-CRAPC), Ouargla, Algeria
| | - Hakim Belkhalfa
- Ouargla Technical platform of the Center for Scientific and Technical Research in Physico-Chemical Analysis (PT-CRAPC), Ouargla, Algeria
| |
Collapse
|
3
|
Radhakrishnan K, Suriyaprakash R, Balamurugan S, Kumar JV, Albeshr MF, Mythili R, Srinivasan P, Nunna GP, Ko TJ. Fluorometric detection of copper and imidacloprid using nitrogen-doped graphitic carbon dots: A promising method for environmental monitoring. LUMINESCENCE 2024; 39:e4849. [PMID: 39099225 DOI: 10.1002/bio.4849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Pesticides in environmental samples pose significant risks to ecosystems and human health since they require precise and efficient detection methods. Imidacloprid (IMI), a widely used neonicotinoid insecticide, exemplifies these hazards due to its potential toxicity. This study addresses the urgent need for improved monitoring of such contaminants by introducing a novel fluorometric method for detecting IMI using nitrogen-doped graphite carbon dots (N-GCDs). The sensor operates by quenching fluorescence through the interaction of Cu2+ ions with N-GCDs. Subsequently, IMI binds to the imidazole group, chelates with Cu2+, and restores the fluorescence of N-GCDs. This alternating fluorescence behavior allows for the accurate identification of both Cu2+ and IMI. The sensor exhibits linear detection ranges of 20-100 nM for Cu2+ and 10-140 μg/L for IMI, with detection limits of 18 nM and 1.2 μg/L, respectively. The high sensitivity of this sensor enables the detection of real-world samples, which underscores its potential for practical use in environmental monitoring and agricultural safety.
Collapse
Affiliation(s)
- Kothalam Radhakrishnan
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Rajadesingu Suriyaprakash
- Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, India
| | - S Balamurugan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jothi Vinoth Kumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Srinivasan
- Department of Biotechnology, PGP College of Arts and Science, Namakkal, India
| | - Guru Prakash Nunna
- School of General Education, Yeungnam University, 280 Daehak-ro, Gyeongbuk, Gyeongsan, Republic of Korea
| | - Tae Jo Ko
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongbuk, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
Indira Priyadharsini C, Marimuthu G, Ravichandran R, Albeshr MF, Suganthi S, Mythili R, Kandasamy B, Lee J, Palanisamy G. Exploring the diverse performance of nickel and cobalt spinel ferrite nanoparticles in hazardous pollutant removal and gas sensing performance. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:261. [PMID: 38916678 DOI: 10.1007/s10653-024-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 06/26/2024]
Abstract
A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.
Collapse
Affiliation(s)
- C Indira Priyadharsini
- Department of Physics, Muthayammal College of Arts and Science (Autonomous), Rasipuram, Namakkal, Tamil Nadu, 637408, India
| | - G Marimuthu
- Department of Physics, Mahendra College of Engineering, Salem, Tamil Nadu, 636106, India.
| | - R Ravichandran
- Department of Physics, Chennai Institute of Technology (Autonomous), Chennai, Tamil Nadu, 600069, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Sanjeevamuthu Suganthi
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, Tamil Nadu, 636011, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Bhuvaneswari Kandasamy
- Department of Physics, Faculty of Science and Humanities, SRM University Delhi-NCR, Sonipat, Haryana, 131029, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Lopez E, Gómez M, Becar I, Zapata P, Pizarro J, Navlani-García M, Cazorla-Amorós D, Presser V, Gómez T, Cárdenas C. Removal of Mo(VI), Pb(II), and Cu(II) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers. Int J Biol Macromol 2024; 269:132160. [PMID: 38718995 DOI: 10.1016/j.ijbiomac.2024.132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.
Collapse
Affiliation(s)
- Esmeralda Lopez
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Mauricio Gómez
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Ian Becar
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Paula Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Jaime Pizarro
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Miriam Navlani-García
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Diego Cazorla-Amorós
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Department of Material Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany; Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Tatiana Gómez
- Theoretical and Computational Chemistry Center, Institute of Applied Sciences, Faculty of Engineering, Universidad Autonoma de Chile, Santiago, Chile
| | - Carlos Cárdenas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Av. Las Palmeras 3425, Ñuñoa, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Av. Ecuador 3493, Santiago 9170124, Chile
| |
Collapse
|
6
|
Kanagaraj T, Manikandan V, Ganesan S, Albeshr MF, Mythili R, Song KS, Lo HM. Employing Piper longum extract for eco-friendly fabrication of PtPd alloy nanoclusters: advancing electrolytic performance of formic acid and methanol oxidation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:172. [PMID: 38592578 DOI: 10.1007/s10653-024-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Advancement in bioinspired alloy nanomaterials has a crucial impact on fuel cell applications. Here, we report the synthesis of PtPd alloy nanoclusters via the hydrothermal method using Piper longum extract, representing a novel and environmentally friendly approach. Physicochemical characteristics of the synthesized nanoclusters were investigated using various instrumentation techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, and High-Resolution Transmission electron microscopy. The electrocatalytic activity of the biogenic PtPd nanoclusters towards the oxidation of formic acid and methanol was evaluated chronoamperometry and cyclic voltammetry studies. The surface area of the electrocatalyst was determined to be 36.6 m2g-1 by Electrochemical Surface Area (ECSA) analysis. The biologically inspired PtPd alloy nanoclusters exhibited significantly higher electrocatalytic activity compared to commercial Pt/C, with specific current responses of 0.24 mA cm - 2 and 0.17 mA cm - 2 at synthesis temperatures of 180 °C and 200 °C, respectively, representing approximately four times higher oxidation current after 120 min. This innovative synthesis approach offers a promising pathway for the development of PtPd alloy nanoclusters with enhanced electrocatalytic activity, thereby advancing fuel cell technology towards a sustainable energy solution.
Collapse
Affiliation(s)
- Thamaraiselvi Kanagaraj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
| | - Velu Manikandan
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai, 600077, India
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea.
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan.
| |
Collapse
|
7
|
Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, Chen J, H.M. Siddique K, Li B. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Mater Today Bio 2023; 22:100759. [PMID: 37600356 PMCID: PMC10433128 DOI: 10.1016/j.mtbio.2023.100759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A sustainable and resilient crop production system is essential to meet the global food demands. Traditional chemical-based farming practices have become ineffective due to increased population pressures and extreme climate variations. Recently, nanobiotechnology is considered to be a promising approach for sustainable crop production by improving the targeted nutrient delivery, pest management efficacy, genome editing efficiency, and smart plant sensor implications. This review provides deeper mechanistic insights into the potential applications of engineered nanomaterials for improved crop stress resilience and productivity. We also have discussed the technology readiness level of nano-based strategies to provide a clear picture of our current perspectives of the field. Current challenges and implications in the way of upscaling nanobiotechnology in the crop production are discussed along with the regulatory requirements to mitigate associated risks and facilitate public acceptability in order to develop research objectives that facilitate a sustainable nano-enabled Agri-tech revolution. Conclusively, this review not only highlights the importance of nano-enabled approaches in improving crop health, but also demonstrated their roles to counter global food security concerns.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
8
|
Rehman MU, Taj MB, Carabineiro SAC. Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. CHEMOSPHERE 2023; 338:139477. [PMID: 37442388 DOI: 10.1016/j.chemosphere.2023.139477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
This comprehensive review explores the potential and versatility of biogenic materials as sustainable and environmentally benign alternatives to conventional adsorbents for the removal of drugs and dyes. Biogenic adsorbents derived from plants, animals, microorganisms, algae and biopolymers have bioactive compounds that interact with functional groups of pollutants, resulting in their binding with the sorbent. These materials can be modified mechanically, thermally and chemically to enhance their adsorption properties. Biogenic hybrid composites, which integrate the characteristics of more than one material, have also been fabricated. Additionally, microorganisms and algae are analyzed for their ability to uptake pollutants. Various influential factors that contribute to the adsorption process are also discussed. The challenge, limitations and future prospects for research are reviewed and bridging gap between large scale application and laboratory scale. This comprehensive review, involves a combination of various biogenic adsorbents, going beyond the existing literature where typically only specific adsorbents are reported. The review also covers the isotherms, kinetics, and desorption studies of biogenic adsorbents, providing an improved framework for their effective use in removing pharmaceuticals and dyes from wastewater.
Collapse
Affiliation(s)
- Mobeen Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
9
|
Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Qasem AA, Abdo Yahya M. Fabrication of hierarchical flower-like WO 3 nanoparticles for effective metal ions sensing and catalytic degradation of organic dyes. ENVIRONMENTAL RESEARCH 2023; 233:116468. [PMID: 37343748 DOI: 10.1016/j.envres.2023.116468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
In this work, we report on the synthesis of flower-like tungsten oxide nanoparticles (WO3 NPs) using a simple precipitation method. This paper reports a simple method for synthesizing flower-like WO3 NPs, which can be used for environmentally treating hazardous organic pollutants. The photocatalytic degradation of model artificial Orange II and Congo red was assessed under natural sunlight irradiation. The surface morphologies, crystallinity, and binding energy of the synthesized WO3 NPs were determined. The synthesized WO3 NPs exhibited good photodegradation percentages of approximately Orange II (97.6%) and Congo red dye (98.2%) after 120 min of irradiation. Furthermore, the WO3 NPs maintained their degradation ability for up to three cycles. In addition, WO3 NPs were examined in different metal ions sensing (Hg2+, Fe2+, Cu2+, Ni2+, and Cd2+) in an aqueous solution. The results showed that the WO3 NPs exhibited excellent Cd2+ ion sensing. Based on the investigations, WO3 NPs proved to be an efficient photocatalyst and hold promise as the best material for future applications in preventing water pollution.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohammed S Al-Ayed
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Akram A Qasem
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
You J, Li J, Wang Z, Devanesan S, Farhat K, Kim W, Sivarasan G, Zhang H. Improving the efficiency of metal ions doped Fe 2O 3 nanoparticles: Photocatalyst for removal of organic dye from aqueous media. CHEMOSPHERE 2023:139229. [PMID: 37354953 DOI: 10.1016/j.chemosphere.2023.139229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The metal ion-based nanocomposite photocatalysts were accepted to exhibit a wide range of photocatalytic and biological applications. In this paper, we synthesize bare Fe2O3, 1 wt% metal (Ag, Co, and Cu) doped Fe2O3 nanoparticles (NPs) using a simple hydrothermal process and wet impregnation method. The as-prepared nanomaterials crystalline structure, shape, optical characteristics, and elemental composition were determined by using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDS) and Transmission electron microscopy (TEM) techniques. Furthermore, the synthesized nanocomposites were utilized as a photosensitizer for the degradation of reactive red (RR120) and orange II (O-II) dyes under sunlight irradiation. The synthesized 1 wt% Ag-Fe2O3 (AgF) NPs samples exhibit a more exceptional catalytic performance of RR120 and O-II dyes (98.32%) within 120 min than the existing Fe2O3, 1 wt% Co-Fe2O3, and Cu-Fe2O3 NPs. The effect of parameters such as exciton formation under solar irradiation, charge recombination rate, and surface charge availability. The metal oxide-doped nanocomposite economic relevance is revealed by their long-term durability and recyclability in photodegradation reactions. The photocatalytic investigations show that the active species O2∙-, HO∙ and h+ play an important role in the dye degradation process. This research might pave the opportunity for the sustainable development of greater photocatalysts for photodegradation and a wide range of environmental applications.
Collapse
Affiliation(s)
- Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Jingjing Li
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhiwei Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| | - Hangzhou Zhang
- Department of Orthopedics; Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
11
|
Sivarasan G, Manikandan V, Periyasamy S, AlSalhi MS, Devanesan S, Murphin Kumar PS, Pasupuleti RR, Liu X, Lo HM. Iron-engineered mesoporous biocarbon composite and its adsorption, activation, and regeneration approach for removal of paracetamol in water. ENVIRONMENTAL RESEARCH 2023; 227:115723. [PMID: 37003548 DOI: 10.1016/j.envres.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Three-dimensional multi-porous Iron Oxide/carbon (Fe2O3/C) composites derived from tamarind shell biomass were synthesized by a single-step co-pyrolysis technique and utilized for Paracetamol (PAC) dismissal in the combined adsorption, and advanced oxidation such as electrochemical regeneration techniques. The Fe2O3/C composites were prepared by different pyrolysis temperatures, and named as TS750 (without Fe2O3at 750 °C), MTS450 BCs (Low-450 °C), MTS600 BCs (Moderate-600 °C) and MTS750 BCs (high-750 °C), respectively. As-prepared Fe2O3/C composite was characterized by FE-SEM, XRD, BET, and XPS analysis. The specific surface area and the spatial interaction between the interlayers of Fe2O3 and C were significantly improved by increasing the pyrolysis temperatures from 450 to 750 °C, which improved the adsorption capacity of Fe2O3/C composites in terms of higher rate constants and chemisorption kinetics. The Pseudo-second-order kinetics model fitted in the adsorption test results of Fe2O3/C composites with the highest correlation co-efficiency. The Langmuir-isotherms model fitted in the adsorption test of the TS750 and MTS450 BCs. The Freundlich isotherms model is more fit with MTS600 and MTS750 BCs. Based on the isotherm results, the MTS750 BCs achieved 46.9 mg/g of maximum PAC adsorption capacity. The optimized MTS750 composites could be completely recovered by using an advanced electrochemical oxidation regeneration approach within 180 min. Also, with the adsorption and recovery process, the TOC removal rate improved to ∼79.4%. After the 6th cycle electrochemical oxidation process, the obtained results of the re-adsorption test showed the stabile adsorption activity of the sorbent material. The data outcomes herein propose that this type of combined adsorption and electrochemical approach will be useful in commercial water treatment plants.
Collapse
Affiliation(s)
- Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul, 01797, Republic of Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, 600 077, India
| | - Selvendiran Periyasamy
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), Jangan-Gu, Suwon, 16419, Republic of Korea; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| |
Collapse
|
12
|
Manikandan V, Palanisamy G, Lee J, F Albeshr M, Fahad Alrefaei A, Pragasan LA, Zhang F, Liu X. Development of silver oxide-loaded reduced graphene oxide nanohybrids for enhanced photocatalytic activity under visible light in aqueous solutions. CHEMOSPHERE 2023:139227. [PMID: 37327825 DOI: 10.1016/j.chemosphere.2023.139227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
We report on the synthesis of silver oxide/reduced graphene oxide nanocomposites (Ag/rGO NCs) using a hydrothermal technique. This paper presents a simple method for synthesizing Ag/rGO hybrid nanocomposites, which can be used for environmentally treating hazardous organic pollutants. The photocatalytic degradation of model artificial Rhodamine B dye and bisphenol A was assessed under visible light illumination. The crystallinity, binding energy, and surface morphologies of the synthesized samples were determined. The silver oxide loading sample resulted in a decrease in the rGO crystallite size. SEM and TEM images demonstrate strong adhesion of the Ag NPs to the rGO sheets. XPS analysis validated the binding energy and elemental composition of the Ag/rGO hybrid nanocomposites. The objective of the experiment was to enhance the photocatalytic efficiency of rGO in the visible region using Ag nanoparticles. The synthesized nanocomposites in the visible region exhibited good photodegradation percentages of approximately 97.5% and 98.6% after 120 min of irradiation for pure rGO, Ag NPs, and Ag/rGO nanohybrid, respectively. Furthermore, the Ag/rGO nanohybrid maintained their degradation ability for up to three cycles. The synthesized Ag/rGO nanohybrid demonstrated enhanced photocatalytic activity, expanding their potential for environmental remediation. Based on the investigations, Ag/rGO nanohybrid proved to be an effective photocatalyst and holds promise as an ideal material for future applications in preventing water pollution.
Collapse
Affiliation(s)
- Velu Manikandan
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, 600 077, India
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - L Arul Pragasan
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
13
|
Ahmad Wadaan M. Zinc oxide doped on reduced graphene oxide nanosheets activated by solar radiation for degradation of organic pollutants and bacterial inactivation. CHEMOSPHERE 2023:139105. [PMID: 37327823 DOI: 10.1016/j.chemosphere.2023.139105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Metal ion-based nanocomposite materials were recognized to exhibit a wide range of photocatalytic and biological applications. This study aims to synthesize zinc oxide doped reduced graphene oxide (ZnO/RGO) nanocomposite in sufficient quantities through the sol-gel method. The physical characters of the synthesized ZnO/RGO nanocomposite were determined by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDS) and Transmission electron microscopy (TEM) techniques. The TEM image results revealed rod-like morphology of the ZnO/RGO nanocomposite. The X-ray photoelectron spectral data revealed the formation of ZnO nanostructures representing the banding energy gap value of 1044.6 and 1021.5 eV positions. Moreover, ZnO/RGO nanocomposites displayed excellent photocatalytic degradation with a degradation efficiency of 98.6%. This research not only demonstrates the photocatalytic efficiency of zinc oxide-doped RGO nanosheets but also illustrates the antibacterial efficacy against two different bacterial pathogens including Gram-positive E. coli and Gram-negative S. aureus. Furthermore, this research highlights an eco-friendly and inexpensive preparation of nanocomposite material for a wide range of environmental applications.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Department of Zoology, College of Sciences, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
14
|
Malathy A, Manikandan V, Devanesan S, Farhat K, Priyadharsan A, Ragavendran C, Ragupathy S, Ranjith R, Sivakumar S. Development of biohybrid Ag 2CrO 4/rGO based nanocomposites with stable flotation properties as enhanced Photocatalyst for sewage treatment and antibiotic-conjugated for antibacterial evaluation. Int J Biol Macromol 2023:125303. [PMID: 37311516 DOI: 10.1016/j.ijbiomac.2023.125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
The proposed research outlines a facile method to synthesize Silver Chromate/reduced graphene oxide nanocomposites (Ag2CrO4/rGO NCs) with a narrow dissemination size for the ecological treatment of hazardous organic dyes. The photodegradation performance toward the decontamination of model artificial methylene blue dye was assessed under solar light irradiation. The crystallinity, particle size, recombination of photogenerated charge carriers, energy gap and surface morphologies of synthesized nanocomposites were determined. The experiment objective is to use rGO nanocomposites to increase Ag2CrO4 photocatalytic efficiency in the solar spectrum. Tauc plots of ultraviolet-visible (UV-vis) spectrum were used to calculate the optical bandgap energy of the produced nanocomposites ~1.52 eV, which resulted in a good photodegradation percentage of ~92 % after 60 min irradiation of Solar light. At the same time, pure Ag2CrO4 and rGO nanomaterials showed ~46 % and ~ 30 %, respectively. The ideal circumstances were discovered by investigating the effects of several parameters, including catalyst loading and different pH levels, on the degradation of dyes. However, the final composites maintain their ability to degrade for up to five cycles. According to the investigations, Ag2CrO4/rGO NCs are an effective photocatalyst and can be used as the ideal material to prevent water pollution. Furthermore, antibacterial efficacy for the hydrothermally synthesized nanocomposite was tested against gram-positive (+ve) bacteria viz. Staphylococcus aureus and gram-negative (-ve) bacteria viz. Escherichia coli. The maximum zone of inhibition for S. aureus and E. coli were 18.5 and 17 mm, respectively.
Collapse
Affiliation(s)
- A Malathy
- Department of Chemistry, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - A Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu 600 077, India.
| | - C Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu 600 077, India
| | - S Ragupathy
- Department of Physics, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India
| | - R Ranjith
- Department of Physics, KSR College of Engineering, Thiruchengode 637 215, Tamilnadu, India
| | - S Sivakumar
- Department of Chemistry, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India.
| |
Collapse
|
15
|
A P, Palanisamy G, L AP, F Albeshr M, Fahad Alrefaei A, Lee J, Liu X. Photocatalytic degradation of organic pollutants and inactivation of pathogens under visible light via SnO 2/rGO composites. CHEMOSPHERE 2023:139102. [PMID: 37290513 DOI: 10.1016/j.chemosphere.2023.139102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The domains of environmental cleanup and pathogen inactivation are particularly interesting in nanocomposites (NCs) due to their exceptional physicochemical properties. Tin oxide/reduced graphene oxide nanocomposites (SnO2/rGO NCs) have potential uses in the biological and environmental fields, but little is known about them. This study aimed to investigate the photocatalytic activity and antibacterial efficiency of the nanocomposites. The co-precipitation technique was used to prepare all the samples. XRD, SEM, EDS, TEM, and XPS analyses were employed to characterize the physicochemical properties of SnO2/rGO NCs for structural analysis. The rGO loading sample resulted in a decrease in the crystallite size of SnO2 nanoparticles. TEM and SEM images demonstrate the firm adherence of SnO2 nanoparticles to the rGO sheets. The chemical state and elemental composition of the nanocomposites were validated by the XPS and EDS data. Additionally, the visible-light active photocatalytic and antibacterial capabilities of the synthesized nanocomposites were assessed for the degradation of Orange II and methylene blue, as well as the suppression of the growth of S. aureus and E. coli. As a result, the synthesized SnO2/rGO NCs are improved photocatalysts and antibacterial agents, expanding their potential in the fields of environmental remediation and water disinfection.
Collapse
Affiliation(s)
- Priyadharsan A
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Arul Pragasan L
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
16
|
Karuppaiyan J, Jeyalakshmi R, Kiruthika S, Wadaan MA, Khan MF, Kim W. A study on the role of surface functional groups of metakaolin in the removal of methylene blue: Characterization, kinetics, modeling and RSM optimization. ENVIRONMENTAL RESEARCH 2023; 226:115604. [PMID: 36934864 DOI: 10.1016/j.envres.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this study, thermally activated kaolinite clay is explored as a suitable material for dye removal applications, which gave rise to highly reactive silica species in a broad range of aluminosilicate clusters. Multinuclear NMR studies described it as a short-range network in which Al sites in IV, V, and VI are coordinated, and Si is present mainly as Si(Q4(1Al)). Critical parameters for methylene blue (MB) were determined by the Placket Burman Design (PBD) as initial dye concentration, contact time, adsorbent dosage, pH and size. The % of MB removal studied after optimizing the parameters by central composite design (CCD), based on Response Surface Methodology, was found to be 90%. The adsorption kinetics and thermodynamics were systematically studied and reported by fitting them into different models. The maximum removal of the dye reached 97.8 mg/g according to the Freundlich isotherm, accomplished through chemisorption, following a pseudo-second-order reaction and the process is thermodynamically spontaneous and endothermic. The line spectrum of X-ray photoelectron spectroscopy (XPS) shows the participation of Si, Al, O, Ca and Na of Metakaolin (AK) and nitrogen of MB in the adsorption process. The appropriate stabilization of the N atom of the chromophore on the Si and Al atom in AK resulting from the ionic interaction on the surface is established from an increase in the binding energy of Al and Si. A single bridging oxygen signal at 532.32eVcorresponding to AK after dye adsorption tends to form siloanol/aluminol, and their interaction is lowered to 531.58eV. Regeneration of adsorbent after thermal treatment without loss of efficiency proved.
Collapse
Affiliation(s)
- Janani Karuppaiyan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - R Jeyalakshmi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Kiruthika
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Woog Kim
- Department of Environmental Engineering, Kyungpook National University, South Korea
| |
Collapse
|
17
|
Al-Ansari MM, Al-Humaid L, Aldawsari M, Al-Dahmash ND, Selvankumar T, Mythili R. Synergistic role of metal oxide loading cocatalysts on photocatalytic degradation of organic pollutants and inactive bacteria over template-free ZnFe 2O 4 nanocubes. ENVIRONMENTAL RESEARCH 2023; 223:115459. [PMID: 36764432 DOI: 10.1016/j.envres.2023.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
For wastewater treatment, a highly reliable and ecologically friendly oxidation method is always preferred. This work described the production of a new extremely effective visible light-driven Ag2Ox loaded ZnFe2O4 nanocomposties photocatalyst using a wet impregnation technique. Under visible light irradiation, the produced Ag2Ox loaded ZnFe2O4 nanocomposties were used in the photodegradation of rhodamine B (RhB) and Reactive Red 120 (RR120) dyes. Analysis using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy revealed that Ag2Ox nanoparticles were well dispersed on the surface of ZnFe2O4 NPs and that the Ag2Ox loaded ZnFe2O4 NPs were created. When compared with bare ZnFe2O4 NPs, Ag2Ox-loaded ZnFe2O4 nanocomposites showed better photocatalytic activity for RhB and RR120 degradation under visible light (>420 nm) illumination. The reaction kinetics and degradation methodology, in addition to the photocatalytic degradation functions of Ag2Ox-loaded ZnFe2O4 nanocomposites, were thoroughly investigated. The 3 wt% Ag2Ox loaded ZnFe2O4 nanocomposites have a 99% removal efficiency for RhB and RR120, which is about 2.4 times greater than the ZnFe2O4 NPs and simple combination of 1 wt% and 2 wt% Ag2Ox loaded ZnFe2O4 nanocomposites. Furthermore, the 3 wt% Ag2Ox loaded ZnFe2O4 nanocomposites demonstrated consistent performance without decreasing activity throughout 3 consecutive cycles, indicating a potential approach for the photo-oxidative destruction of organic pollutants as well as outstanding antibacterial capabilities. According to the findings of the experiments, produced new nanoparticles are an environmentally friendly, cost-efficient option for removing dyes, and they were successful in suppressing the development of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - T Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, 637501, Tamil Nadu, India
| | - R Mythili
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Chennai, 600077, India
| |
Collapse
|
18
|
Campoverde J, Guaya D. From Waste to Added-Value Product: Synthesis of Highly Crystalline LTA Zeolite from Ore Mining Tailings. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1295. [PMID: 37110881 PMCID: PMC10142727 DOI: 10.3390/nano13081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The use of wastes is necessary to contribute to environmental sustainability. In this study, ore mining tailings were used as the raw material and precursor for the synthesis of LTA zeolite, a value-added product. Pre-treated mining tailings were submitted to the synthesis stages under specific established operational conditions. The physicochemical characterization of the synthesized products was performed with XRF, XRD, FTIR and SEM, to identify the most cost-effective synthesis condition. The LTA zeolite quantification and its crystallinity were determined as effects of the SiO2/Al2O3, Na2O/SiO2 and H2O/Na2O molar ratios used, as well as the influence of the synthesis conditions: mining tailing calcination temperature, homogenization, aging and hydrothermal treatment times. The zeolites obtained from the mining tailings were characterized by the LTA zeolite phase accompanied by sodalite. The calcination of mining tailings favored the production of LTA zeolite, and the influence of the molar ratios, aging and hydrothermal treatment times were determined. Highly crystalline LTA zeolite was obtained in the synthesized product at optimized conditions. Higher methylene blue adsorption capacity was associated with the highest crystallinity of synthesized LTA zeolite. The synthesized products were characterized by a well-defined cubic morphology of LTA zeolite and lepispheres of sodalite. The incorporation of lithium hydroxide nanoparticles over LTA zeolite synthesized (ZA-Li+) from mining tailings yielded a material with improved features. The adsorption capacity towards cationic dye was higher than for anionic dye, especially for methylene blue. The potential of using ZA-Li+ in environmental applications related to methylene blue deserves detailed study.
Collapse
|
19
|
AlSalhi MS, Devanesan S, Asemi NN, Aldawsari M. Construction of SnO 2/CuO/rGO nanocomposites for photocatalytic degradation of organic pollutants and antibacterial applications. ENVIRONMENTAL RESEARCH 2023; 222:115370. [PMID: 36716804 DOI: 10.1016/j.envres.2023.115370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Water contamination by reactive dyes is a serious concern for human health and the environment. In this study, we prepared high efficient SnO2/CuO/rGO nanocomposites for reactive dye degradation. For structural analysis of SnO2/CuO/rGO nanocomposites, XRD, UV-Vis DRS, SEM, TEM-EDAX, and XPS analysis were used to characterize the physicochemical properties of the material. The characterization results confirmed great crystallinity, purity, and optical characteristics features. For both Rhodamine B (RhB) and Reactive Red 120 (RR120) degradation processes, SnO2/CuO/rGO nanocomposites were tested for their photocatalytic degradation performance. The SnO2/CuO/rGO nanocomposites have expressed the degradation rate exposed to 99.6% of both RhB and RR120 dyes. The main reason behind the photocatalytic degradation was due to the formation of OH radical's generation by the composite materials. Moreover, the antibacterial properties of synthesized SnO2/CuO/rGO nanocomposites were studied against E. coli, S. aureus, B. subtilis and P. aeroginosa and exhibited good antibacterial activity against the tested bacterial strains. Thus, the synthesized SnO2/CuO/rGO nanocomposites are a promising photocatalyst and antibacterial agent. Furthermore, mechanisms behind the antibacterial effects will be ruled out in near future.
Collapse
Affiliation(s)
- Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| | - Nassar N Asemi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, Female Campus, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
AlSalhi MS, Devanesan S, Asemi N, Ahamed A. Concurrent fabrication of ZnO-ZnFe 2O 4 hybrid nanocomposite for enhancing photocatalytic degradation of organic pollutants and its bacterial inactivation. CHEMOSPHERE 2023; 318:137928. [PMID: 36706811 DOI: 10.1016/j.chemosphere.2023.137928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In this research, we looked at how heterostructure fabrication, phase ratio, and crystalline nature affect the photocatalytic activity of ZnO/ZnFe2O4 nanocomposite for the degradation of Rhodamine B (RhB) dye when exposed to sunlight irradiation. Magnetic ZnO/ZnFe2O4 hybrid nanocomposites were made using a co-precipitation technique. The synthesized hybrid nanocomposite were analyzed using a variety of characterization techniques to understand more about their chemical, crystallinity, and photoactive characteristics. Using UV-Visible spectra, the absorption and photocatalytic efficiency of photocatalysts were investigated. By using XPS and FTIR measurements, the surface composition and functionalization of the produced nanocomposite were observed. The synthesized ZnO/ZnFe2O4 nanocomposites exhibit irregular morphologies, and the average crystallite size is about 30 nm, by the findings of the transmission electron microscope. When exposed to solar light for 90 min, the prepared photocatalysts exceed ZnO nanoparticles in terms of photocatalytic performance by more than 45%. Pseudo-first-order kinetics governs the adsorption of RhB onto nanocomposite surfaces. Finally, the ZnO/ZnFe2O4 nanocomposites were employed for antibacterial treatments against the waterborne pathogens Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). The outcomes demonstrated that the optimal disinfection efficiency against E. coli and S. aureus germs were 98.6 and 97.4%, respectively, associated with superior cycling durability. Therefore, this work offers a simple and rapid approach to the development of hybrid nanocomposites that could be used to create various photocatalytic and optical materials.
Collapse
Affiliation(s)
- Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nassar Asemi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Hebbar A, Selvaraj R, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A critical review on the environmental applications of carbon dots. CHEMOSPHERE 2023; 313:137308. [PMID: 36410502 DOI: 10.1016/j.chemosphere.2022.137308] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The discovery of zero-dimensional carbonaceous nanostructures called carbon dots (CDs) and their unique properties associated with fluorescence, quantum confinement and size effects have intrigued researchers. There has been a substantial increase in the amount of research conducted on the lines of synthesis, characterization, modification, and enhancement of properties by doping or design of composite materials, and a diversification of their applications in sensing, catalysis, optoelectronics, photovoltaics, and imaging, among many others. CDs fulfill the need for inexpensive, simple, and continuous environmental monitoring, detection, and remediation of various contaminants such as metals, dyes, pesticides, antibiotics, and other chemicals. The principles of green chemistry have also prompted researchers to rethink novel modes of nanoparticle synthesis by incorporating naturally available carbon precursors or developing micro reactor-based techniques. Photocatalysis using CDs has introduced the possibility of utilizing light to accelerate redox chemical transformations. This comprehensive review aims to provide the reader with a broader perspective of carbon dots by encapsulating the concepts of synthesis, characterization, applications in contaminant detection and photocatalysis, demerits and research gaps, and potential areas of improvement.
Collapse
Affiliation(s)
- Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
22
|
Elango D, Manikandan V, Packialakshmi JS, Hatamleh AA, Alnafisi BK, Liu X, Zhang F, Jayanthi P. Synthesizing Ag 2O x(3 wt%)-loaded ZnFe 2O 4 photocatalysts for efficiently saving polluted aquatic ecosystems. CHEMOSPHERE 2023; 311:136983. [PMID: 36306962 DOI: 10.1016/j.chemosphere.2022.136983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report an Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts synthesized by co-precipitation and incipient wet impregnation approach for acetamiprid degradation, antibacterial, antioxidant, and toxicity assay. Initially, bare ZnFe2O4 nanostructures were made through a simple co-precipitation method. In the second step, 3 wt% of various transition metal oxides (CuOx, ZrOx, and Ag2Ox) were embedded on the surface of ZnFe2O4 photocatalysts via a wet impregnation method. Further, the prepared photocatalysts were systematically characterized using XRD, FTIR, FE-SEM, BET, HRTEM, and XPS analysis. The optimum Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts revealed higher degradation efficiencies for acetamiprid under sunlight irradiation. Additionally, the Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts showed more effective antioxidant and antibacterial activity than blank and bare ZnFe2O4 nanomaterials. The enriched catalytic efficiency can be accredited to the 3 wt% of Ag2Ox NPs loaded on ZnFe2O4 nanomaterials, possibly due to the boosted transport properties of the electron-hole pairs. This study will provide a new avenue for the development of simple and effective photocatalysts for efficiently saving polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Duraisamy Elango
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Velu Manikandan
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, 600 077, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bassam Khalid Alnafisi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Palaniyappan Jayanthi
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
23
|
Raj RM, Ganesan S, Suganthi S, Vignesh S, Hatamleh AA, Alnafisi BK, Venkatesan R, Raj V, Lo HM. Facile construction of cost-effective zinc-aluminium polymeric framework for efficient removal of selective both drug and dye from an aqueous medium. CHEMOSPHERE 2023; 311:137105. [PMID: 36347355 DOI: 10.1016/j.chemosphere.2022.137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
A novel aluminium (Al) and its active alloys are extensively been used in nearly all areas owing to their cost-effectiveness. But when it is subjected to an aqueous medium, gets corroded through a chemical response. In this paper, a novel framework was fabricated by copolymer coating over on Al and loaded with zinc via electro polymerization and electrodeposition method ([EDA- OPDA]Al@Zn). The as-fabricated composite has emerged for the sorption of Methylene Blue (MB) aqueous dye and Paracetomal drug (PAR). The as-fabricated composite framework has been categorized via IR spectra, FE-SEM images, and EDX spectra. The sorption progression was optimized for numerous prompting features like pH, contact time and impact of dosage. Based on kinetics data, the growth in QE value by an enhancement in temperature for adsorption and the higher r values shows the adsorption progression is a pseudo-second-order model. The thermodynamic constraints specify that the field of adsorbate is impulsive and typical endothermic process. Instead, the corrosion resistance of a composite in the 3.5% of NaCl. Solution was explored via EIS spectra and potentio-dynamic polarization. Depending on the observed features, it indicates that the [EDA-OPDA]Al@Zn framework provided fantastic corrosion resistance. So it is obvious that the as-synthesized framework is of multitasking, that it could be successfully performed for the exclusion of MB aqueous dye and PAR drug from the aqueous medium and it also withstands effectively in this corrosive medium.
Collapse
Affiliation(s)
- R Mohan Raj
- Department of Chemistry, J.K.K.Nataraja College of Arts and Science, Komarapalayam, Namakkal, Tamil Nadu, India
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - S Suganthi
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011, Tamil Nadu, India
| | - S Vignesh
- SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bassam Khalid Alnafisi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - V Raj
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011, Tamil Nadu, India.
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan.
| |
Collapse
|