1
|
Martínez-Burgos WJ, Porto de Souza Vandenberghe L, Murawski de Mello AF, de Carvalho JC, Valladares-Diestra KK, Manzoki MC, Scapini T, Pozzan R, Liew RK, Thomaz-Soccol V, Soccol CR. Bioremediation strategies against pesticides: An overview of current knowledge and innovations. CHEMOSPHERE 2024; 364:142867. [PMID: 39019183 DOI: 10.1016/j.chemosphere.2024.142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Pesticides pose significant risks to both human health, such as cancer, neurological disorders, and endocrine disruption, and ecosystems, through the destruction of beneficial insects, contamination of soil and water, and impact on non-target species. In the face of escalating pesticide pollution, there is an urgent need for multifaceted approaches to address the issue. Bioremediation emerges as a potent tool in the environmental pollution mitigation arsenal. Ideally aiming for the complete decomposition of pesticides into harmless molecules, bioremediation encompasses diverse approaches - from bioabsorption, bioadsorption, and biotransformation using enzymes and nanoenzymes to comprehensive degradation facilitated by microorganisms such as bacteria, fungi, macro- and microalgae, or phytoremediation. Exploring nature's biodiversity offers a promising avenue to find solutions to this pressing human-induced problem. The acceleration of biodegradation necessitates identifying and developing efficient organisms, achieved through bioprospection and targeted modifications. Specific strategies to enhance process efficiency and throughput include optimizing biomass production, strategic inoculation in diverse environments, and employing bioreactor systems for processing heavily contaminated waters or soils. This comprehensive review presents various bioremediation approaches, emphasizing the importance of microorganisms' exploration and new technologies development, including current innovations and patents to effectively combat pesticide pollution. Furthermore, challenges regarding the effective implementation of these technologies are also addressed.
Collapse
Affiliation(s)
- Walter José Martínez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Ariane Fátima Murawski de Mello
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Júlio César de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Maria Clara Manzoki
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Roberta Pozzan
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Rocky Keey Liew
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vanete Thomaz-Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil.
| |
Collapse
|
2
|
Bomer LK, Leverett BD. Growth Characteristics of a Desmodesmus Species from the San Antonio Springs and Its Short-Term Impact on Soil Microbial Dynamics. Life (Basel) 2024; 14:1053. [PMID: 39337838 PMCID: PMC11433310 DOI: 10.3390/life14091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
A new Desmodesmus species was isolated from the largest of the San Antonio Springs, the Blue Hole, in San Antonio, Texas, and characterized for its potential applications in sustainable agriculture. The xenic isolate (XB) was established by enrichment and subcultured to produce the axenic isolate (AxB), which was identified based on morphological features and DNA profiling, confirming its close phylogenetic relationship with Desmodesmus spp. Growth characteristics, biomass composition, and pigment profiles were assessed for both the xenic and axenic isolates along with their growth in saline conditions and a range of seasonal Texas temperatures. Both Desmodesmus XB and Desmodesmus AxB exhibited optimal growth at 25 °C as well as robust growth at 37 °C and in weakly saline media (5 g/kg NaCl). Biomass analysis revealed levels of carbohydrates, proteins, lipids, chlorophylls, and carotenoids comparable to other desmids and pigment profiles supported the Desmodesmus classification. Soil studies demonstrated the persistence of Desmodesmus XB and influence on microbial activity, indicating the potential of this isolate for agricultural applications such as soil remediation.
Collapse
Affiliation(s)
- Lauren K. Bomer
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA;
| | - Betsy D. Leverett
- Department of Chemistry and Biochemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, USA
| |
Collapse
|
3
|
Ambaye TG, Hassani A, Vaccari M, Franzetti A, Prasad S, Formicola F, Rosatelli A, Rehman MZU, Mohanakrishna G, Ganachari SV, Aminabhavi TM, Rtimi S. Emerging technologies for the removal of pesticides from contaminated soils and their reuse in agriculture. CHEMOSPHERE 2024; 362:142433. [PMID: 38815812 DOI: 10.1016/j.chemosphere.2024.142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Pesticides are becoming more prevalent in agriculture to protect crops and increase crop yields. However, nearly all pesticides used for this purpose reach non-target crops and remain as residues for extended periods. Contamination of soil by widespread pesticide use, as well as its toxicity to humans and other living organisms, is a global concern. This has prompted us to find solutions and develop alternative remediation technologies for sustainable management. This article reviews recent technological developments for remediating pesticides from contaminated soil, focusing on the following major points: (1) The application of various pesticide types and their properties, the sources of pesticides related to soil pollution, their transport and distribution, their fate, the impact on soil and human health, and the extrinsic and intrinsic factors that affect the remediation process are the main points of focus. (2) Sustainable pesticide degradation mechanisms and various emerging nano- and bioelectrochemical soil remediation technologies. (3) The feasible and long-term sustainable research and development approaches that are required for on-site pesticide removal from soils, as well as prospects for applying them directly in agricultural fields. In this critical analysis, we found that bioremediation technology has the potential for up to 90% pesticide removal from the soil. The complete removal of pesticides through a single biological treatment approach is still a challenging task; however, the combination of electrochemical oxidation and bioelectrochemical system approaches can achieve the complete removal of pesticides from soil. Further research is required to remove pesticides directly from soils in agricultural fields on a large-scale.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, Brescia, 25123, Italy; Department of Environment and Resource Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey; Research Center for Science, Technology and Engineering (BILTEM), Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, Brescia, 25123, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Francesca Formicola
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Asia Rosatelli
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Sharanabasava V Ganachari
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1210 Geneva, Switzerland.
| |
Collapse
|
4
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
5
|
Fayaz T, Rana SS, Goyal E, Ratha SK, Renuka N. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120723. [PMID: 38565028 DOI: 10.1016/j.jenvman.2024.120723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Soujanya S Rana
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Esha Goyal
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
6
|
Wu D, Xu Z, Min S, Wang J, Min J. Characteristics of microbial community structure and influencing factors of Yangcheng Lake and rivers entering Yangcheng Lake during the wet season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9565-9581. [PMID: 38191738 DOI: 10.1007/s11356-023-31810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Yangcheng Lake, a typical fishery lake in the middle and lower reaches of the Yangtze River, is threatened by eutrophication. As the main performers of biogeochemical cycles, microorganisms affect the ecological stability of the lake. To study the structural characteristics of the microbial community in Yangcheng Lake and rivers entering Yangcheng Lake and the response relationship with environmental factors, the microbial community was categorized based on the contour of Yangcheng Lake, the major rivers entering Yangcheng Lake, and the pollution sources. The distribution characteristics of seven physicochemical indices were analyzed, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), water temperature (WT), pH, dissolved oxygen (DO), and ratio of total nitrogen to total phosphorus (TN/TP). Characterization of microbial community structure based on 16S rRNA high-flux sequencing technology and ANOSIM analysis were used to explore the differences in the relative abundance of microorganisms at each sampling point in the lake and rivers, and redundancy analysis (RDA) was used to analyze the relationship between the microbial community and physicochemical factors. The results showed that the dominant phyla, genera of microorganisms, and the total number of OTUs in the lake and rivers were similar. The dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia; the dominant genera included the hgcI clade, CL500-29 marine group, Microcystis PCC-7914, Chloroplast_norank, Clade III_norank, and Flavobacterium. ANOSIM analyses revealed that the microbial community of Yangcheng Lake exhibited an association with geographical space, while the microbial community in the rivers that was linked to the type of pollution source. Redundancy analysis (RDA) indicated that dissolved oxygen (DO), total nitrogen (TN), and pH were significantly correlated with the dominant phyla in Yangcheng Lake (p < 0.05), while total nitrogen (TN), water temperature(WT), and the ratio of total nitrogen to total phosphorus (TN/TP) were significantly related with the dominant genera in Yangcheng Lake (p < 0.05). Total nitrogen (TN) was also significantly linked to the dominant phyla and genera of the tributaries (p < 0.05). Despite the structural similarities in microbial communities between Yangcheng Lake and its inflowing rivers, environmental factors demonstrated significant associations with these communities, providing crucial data support for pollution prevention and the ecological restoration of Yangcheng Lake.
Collapse
Affiliation(s)
- Dan Wu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
| | - Zhipeng Xu
- Kunshan Water Conservancy Design Institute Co., Ltd., Suzhou, 215300, People's Republic of China.
| | - Songao Min
- Kunshan Bacheng Construction Bureau, Suzhou, 215300, People's Republic of China
| | - Jinhui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiang Min
- Kunshan United Water Purification Co., Suzhou, 215300, People's Republic of China
| |
Collapse
|
7
|
Fu F, Sun Y, Yang D, Zhao L, Li X, Weng L, Li Y. Combined pollution and soil microbial effect of pesticides and microplastics in greenhouse soil of suburban Tianjin, Northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122898. [PMID: 37944885 DOI: 10.1016/j.envpol.2023.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Current-used pesticides (CUPs) and plastic films are essential materials used in greenhouse cultivation, which can lead to the residual accumulation of CUPs and microplastics (MPs) over time. The impact of CUPs and MPs on soil quality and food safety cannot be overlooked. However, the combined pollution resulting from CUPs and MPs in greenhouse soil remains poorly understood. In this study, we conducted a survey at 30 greenhouse sites in the Wuqing District of Tianjin, China, to investigate the pollution levels and characteristics of CUPs and MPs using QuEChERS combined with LC-MS/MS, and density extraction, 30% H2O2 digestion and micro-fourier transform infrared spectroscopy, respectively. Additionally, we aimed to evaluate the interactions among these two pollutants, soil physicochemical properties, and the bacterial community in the soil. CUPs were frequently detected in the examined soil samples; however, they posed no significant ecological risks due to their low levels. Furthermore, MPs, which predominantly comprised fragmented and fibrous polyethylene (PE) and polypropylene (PP) particles smaller than 1.0 mm, could potentially degrade into nanoplastics, which might subsequently enter the food chain and pose a serious threat to human health. We observed no substantial correlations between CUPs and MPs, except for a negative correlation between dimethomorph and film MPs. The soil pH and total organic carbon (TOC) exhibited interactions with both types of pollutants, whereas soil clay content (CC) only correlated with CUPs, and soil available nitrogen (AN) only correlated with MPs. The variability of soil bacterial communities among the 30 sampling sites was minimal, with the dominant genus being Bacillus. Soil pH, TOC, and CC collectively exerted a strong influence on the microbial community across all samples; however, the effects of CUPs and MPs on the soil microbial structure were marginal. These results contribute to a comprehensive understanding of the environmental stress and ecological risks associated with the combined pollution of CUPs and MPs.
Collapse
Affiliation(s)
- Furong Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Dan Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
8
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
9
|
Zhang H, Shangguan M, Zhou C, Peng Z, An Z. Construction of a mycelium sphere using a Fusarium strain isolate and Chlorella sp. for polyacrylamide biodegradation and inorganic carbon fixation. Front Microbiol 2023; 14:1270658. [PMID: 37869678 PMCID: PMC10585063 DOI: 10.3389/fmicb.2023.1270658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
In the context of global demand for carbon reduction, the formation of inorganic carbon (IC) in the wastewater from oil flooding becomes a potential threat. In this study, Chlorella sp. and Fusarium sp. were used to assemble a fungal-algal pellet to degrade polyacrylamide (PAM) and fix IC in synthetic oil-flooding wastewater. The results showed that the combination of Chlorella sp. and Fusarium sp. was more effective at degrading PAM and removing carbon than a monoculture. With PAM as the sole nitrogen source, the degradation of PAM by the consortium was enhanced up to 35.17 ± 0.86% and 21.63 ± 2.23% compared with the monocultures of fungi or microalgae, respectively. The degradation of the consortium was significantly enhanced by the addition of an external nitrogen source by up to 27.17 ± 2.27% and 22.86 ± 2.4% compared with the monoculture of fungi or microalgae, respectively. This may depend on the effect of synergy between the two species. For the removal of IC from the water, the removal efficiency of the consortium was higher than that of the microalgae by 38.5 ± 0.08%, which may be attributed to the ability of the fungi to aid in the adsorption of nutrients and its assimilation by the microalgae. Therefore, the Fusarium-Chlorella consortium can effectively degrade PAM, while simultaneously fixing carbon, which provides a feasible scheme for the treatment and carbon neutralization of the wastewater that contains PAM.
Collapse
Affiliation(s)
- Huichao Zhang
- School of Civil Engineering, Yantai University, Yantai, China
| | - Mohan Shangguan
- School of Civil Engineering, Yantai University, Yantai, China
| | - Chang Zhou
- School of Civil Engineering, Yantai University, Yantai, China
| | - Zhaoyang Peng
- The Architectural Design and Research Institute of HIT Co., Ltd., Harbin, China
| | - Zhongyi An
- School of Civil Engineering, Yantai University, Yantai, China
| |
Collapse
|
10
|
Morin S, Artigas J. Twenty Years of Research in Ecosystem Functions in Aquatic Microbial Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1867-1888. [PMID: 37401851 DOI: 10.1002/etc.5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
One of the major threats to freshwater biodiversity is water pollution including excessive loads of nutrients, pesticides, industrial chemicals, and/or emerging contaminants. The widespread use of organic pesticides for agricultural and nonagricultural (industry, gardening, etc.) purposes has resulted in the presence of their residues in various environments, including surface waters. However, the contribution of pesticides to the deterioration of freshwater ecosystems (i.e., biodiversity decline and ecosystem functions impairment) remains uncertain. Once in the aquatic environment, pesticides and their metabolites can interact with microbial communities, causing undesirable effects. The existing legislation on ecological quality assessment of water bodies in Europe is based on water chemical quality and biological indicator species (Water Framework Directive, Pesticides Directive), while biological functions are not yet included in monitoring programs. In the present literature review, we analyze 20 years (2000-2020) of research on ecological functions provided by microorganisms in aquatic ecosystems. We describe the set of ecosystem functions investigated in these studies and the range of endpoints used to establish causal relationships between pesticide exposure and microbial responses. We focus on studies addressing the effects of pesticides at environmentally realistic concentrations and at the microbial community level to inform the ecological relevance of the ecotoxicological assessment. Our literature review highlights that most studies were performed using benthic freshwater organisms and that autotrophic and heterotrophic communities are most often studied separately, usually testing the pesticides that target the main microbial component (i.e., herbicides for autotrophs and fungicides for heterotrophs). Overall, most studies demonstrate deleterious impacts on the functions studied, but our review points to the following shortcomings: (1) the nonsystematic analysis of microbial functions supporting aquatic ecosystems functioning, (2) the study of ecosystem functions (i.e., nutrient cycling) via proxies (i.e., potential extracellular enzymatic activity measurements) which are sometimes disconnected from the current ecosystem functions, and (3) the lack of consideration of chronic exposures to assess the impact of, adaptations to, or recovery of aquatic microbial communities from pesticides. Environ Toxicol Chem 2023;42:1867-1888. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Joan Artigas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
11
|
Wang X, Dai Z, Zhao H, Hu L, Dahlgren RA, Xu J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121548. [PMID: 37011779 DOI: 10.1016/j.envpol.2023.121548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. Microbial Diversity and Enzyme Activity as Indicators of Permethrin-Exposed Soil Health. Molecules 2023; 28:4756. [PMID: 37375310 DOI: 10.3390/molecules28124756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), β-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
13
|
Yuan N, Zhang X, Chen T, Xu H, Wang Q. Fabricating Materials of Institute Lavoisier-53(Fe)/zeolite imidazolate framework-8 hybrid materials as high-efficiency and reproducible adsorbents for removing organic pollutants. J Colloid Interface Sci 2023; 646:438-451. [PMID: 37207425 DOI: 10.1016/j.jcis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Environmental pollution by emerging contaminants has become an urgent problem. Herein, novel binary metal-organic framework hybrids were constructed from Materials of Institute Lavoisier-53(Fe) (MIL-53(Fe)) and zeolite imidazolate framework-8 (ZIF-8) for the first time. A battery of characterizations were employed to determine the MIL/ZIF hybrids' properties and morphology. Furthermore, the MIL/ZIF towards toxic antibiotics (tetracycline, ciprofloxacin and ofloxacin) were studied to explore their adsorption abilities. The present work disclosed that the obtained MIL-53(Fe)/ZIF-8 = 2:3 possessed an eminent specific surface area with an admirable removal efficiency of tetracycline (97.4%), ciprofloxacin (97.1%) and ofloxacin (92.4%), respectively. The tetracycline adsorption process conformed to the pseudo-second-order kinetic model and this process was more compatible with the Langmuir isotherm model with the highest adsorption capacity of 215.0 mg g-1. Moreover, the process of removing tetracycline was proved to be spontaneous and exothermic by the thermodynamic results. Furthermore, the MIL-53(Fe)/ZIF-8 = 2:3 towards tetracycline exhibited significant regeneration ability. The effects of pH, dosage, interfering ions and oscillation frequency on tetracycline adsorption capacity and removal efficiency were also investigated. The primary factors contributing to the decent adsorption ability between MIL-53(Fe)/ZIF-8 = 2:3 and tetracycline included electrostatic, π-π stacking, hydrogen bonding and weak coordination interactions. Additionally, we also investigated the adsorption ability in real wastewater. Thus, the proposed binary metal-organic framework hybrid materials can be deemed a promising adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Hao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
14
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
15
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
16
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. The Impact of Permethrin and Cypermethrin on Plants, Soil Enzyme Activity, and Microbial Communities. Int J Mol Sci 2023; 24:ijms24032892. [PMID: 36769219 PMCID: PMC9917378 DOI: 10.3390/ijms24032892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.
Collapse
|
17
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|