1
|
Li R, Sun C, Shi Z, Li C, Li H. Degradation of trichloroethylene by graphene-supported trace amounts of microscale zero-valent iron: The role of electrochemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125951. [PMID: 40024509 DOI: 10.1016/j.envpol.2025.125951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Dechlorination of chlorinated pollutants is an important means to reduce the toxicity, persistence and bioaccumulation of pollutants. Relevant to this matter, the utilization of microscale zero-valent iron (mZVI) shows great potential. However, the passivation of Fe0 presents challenges, resulting in slow dechlorination, dangerous accumulation of incomplete dechlorination intermediates, and susceptibility to corrosion. To solve this problem, we introduced graphene (GO) to modify mZVI. The results showed that mZVI-GO (99% removal rate) could significantly increase the dechlorination capacity of trichloroethylene (TCE) compared to sole mZVI (30% removal rate), with approximately three times the performance of mZVI. The final products are ethylene and ethane with peak concentrations of around 70% and 30%, respectively. Importantly, the final system avoids toxic by-products. At the same time, after four cycles of mZVI-GO experiment, the removal effect of TCE can reach 85%, indicating that it has good recyclability. In corrosion tests, mZVI-GO is more corrosion-resistant than mZVI. The addition of GO during dechlorination diminishes the corrosion potential of mZVI, elevates its electron transfer capacity and reactivity, and enables more direct electron transfer to facilitate TCE degradation. Additionally, the improved electrochemical properties also facilitate the interaction between mZVI and water, leading to the continual generation of H∗, and creates a synergistic effect between GO and mZVI, thereby accelerating the dechlorination of TCE. This study elucidated the pivotal role of electrochemical properties in facilitating the reduction and dechlorination of TCE, thereby providing a novel approach for achieving profound TCE dechlorination.
Collapse
Affiliation(s)
- Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Cheng Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zehan Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Gan S, Wang Z, Zheng C, Lin Z, Zhu AB, Lai B. Enhanced Treatment of Antimony Mine Wastewater by Sulfidated Micro Zerovalent Iron (S-mZVI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21701-21710. [PMID: 39358310 DOI: 10.1021/acs.langmuir.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Commercial micron zerovalent iron (mZVI) and sulfur were used to prepare sulfidated micro zerovalent iron (S-mZVI) through ball milling. The corrosion potentials of mZVI and S-mZVI were -0.01 and -0.37 V, respectively, indicating S-mZVI possessed a stronger electron-donating ability. The practical antimony mine wastewater (C0(Sb(V)) = 3.8296 mg/L, pH = 8.29) was treated. If meeting the national discharge standard of 5 μg/L, 2.0 g/L mZVI and 1.6 g/L S-mZVI were required within 120 min. Passing N2 or reducing wastewater pH enhanced the treatment of Sb(V) by S-mZVI, in which the wastewater acidification was more effective. Once the wastewater pH was adjusted to 3.00, only 0.7 g/L S-mZVI and 40 min long time were needed to achieve the emission below 5 μg/L. Even S-mZVI underwent four cycles, and the final concentration of Sb(V) was as low as 4.67 μg/L. As the pHzpc value was 4.09 and the corrosion potential was -0.56 V at pH 3.0, the electron-donating ability of S-mZVI as well as the electrostatic attraction between the surface of S-mZVI and Sb(V) increased. Sulfidation of mZVI and then application under the acid condition significantly improved the treatment efficiency of Sb(V).
Collapse
Affiliation(s)
- Siyu Gan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ai-Bin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
4
|
Wang X, Zheng Y, Ning P, Lynch I, Guo Z, Zhang P, Wu L. Synergetic effect of green synthesized NZVI@Chitin-modified ZSM-5 for efficient oxidative degradation of tetracycline. ENVIRONMENTAL RESEARCH 2024; 258:119360. [PMID: 38852830 DOI: 10.1016/j.envres.2024.119360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The aggregation and limited activity of nanoscale zero-valent iron (NZVI) in aqueous media hinder its practical application. In this study, a cost-effective, environmentally friendly, robust, and efficient synthesis method for NZVI-based composite was developed. NZVI@Chitin-modified ZSM-5 (NZVI@C-ZSM) composite was facilely and greenly synthesized by loading NZVI into alkali-modified ZSM-5 molecular sieves after modifying with chitin as a surfactant and binder. NZVI@C-ZSM exhibited remarkable efficacy in TC removal, achieving a removal efficiency of 97.72% within 60 min. Compared with pristine NZVI, NZVI@C-ZSM demonstrated twice the removal efficiency, indicating that NZVI@C-ZSM effectively improved the dispersion and stability of NZVI. This enhancement provided more reactive sites for generating reactive oxygen species (ROS), significantly boosting catalytic activity and durability while reducing the potential risk of secondary pollution. An improved two-parameter pseudo-first-order kinetic model was used to effectively characterize the reaction kinetics. The mechanism for TC removal primarily involved an adsorption process and chemical oxidation-reduction reactions induced by hydroxyl radicals (•OH) and superoxide radicals (•O2-). Three potential degradation pathways for TC were suggested. Furthermore, NZVI@C-ZSM exhibited good resistance to interference, suggesting its broad potential for practical applications in complex environmental conditions. This study offers a viable material and method for addressing the issue of antibiotic-contaminated water, with potential applications in water resource management.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yimin Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
6
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Leng W, Luo N, Luo H, Lin A, Yang W, Wei W, Zheng T. Degradation of trichloroethylene by biochar supported nano zero-valent iron (BC-nZVI): The role of specific surface area and electrochemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168341. [PMID: 37939947 DOI: 10.1016/j.scitotenv.2023.168341] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Direct electron transfer and the involvement of atomic hydrogen (H⁎) are considered the main mechanisms for reductive dechlorination promoted by nano zero-valent iron (nZVI) supported on highly conductive carbon. It is still unclear how precisely H⁎, the specific surface area, and the electrochemical characteristics contribute to biochar supported nano zero-valent iron (BC-nZVI) activity in chlorinated hydrocarbon contaminant removal. In this study, a range of BC-nZVIs were prepared by a liquid-phase reduction process, and the contributions of specific surface area and electrochemical performance to H⁎ generation and electron transfer have been assessed. The mechanism of trichloroethylene (TCE) dechlorination by BC-nZVIs has been evaluated in terms of removal efficiency and the ultimate degradation products. The results have demonstrated that BC-nZVIs exhibit a higher specific surface area and TCE degradation efficiency compared with the bare nZVI. Ethane, ethylene, and acetylene were the principal TCE degradation products. The elimination of TCE was not significantly affected by differences in BC-nZVI specific surface area, but electron transfer and sustained generation of H⁎ were dependent on the catalyst electrochemical characteristics. The electrochemical properties of biochar serve to lower the corrosion potential of nZVI, improving electronic transfer capability and reactivity and promoting direct electron transfer for the degradation of TCE. In addition, the enhanced electrochemical properties also facilitate the reaction of nZVI with water and can promote the sustained generation of H⁎. Generation of H⁎ played a key role in reductive dechlorination over BC-nZVIs, which was related to the properties of the biochar support. This study focuses on the role of H⁎ and electrochemical performance in TCE reductive dechlorination, and provides a theoretical foundation and experimental support for the practical application of BC-nZVIs.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of science and technology, Beijing 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of science and technology, Beijing 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of science and technology, Beijing 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing 100012, PR China.
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of science and technology, Beijing 100095, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of science and technology, Beijing 100095, PR China.
| |
Collapse
|
7
|
Xue W, Liu H, Li J, Chen X, Wen S, Guo J, Shi X, Cao S, Gao Y, Wang R, Xu Y. Immobilization of cadmium in river sediments by different modified nanoscale zero-valent iron: performance, mechanisms, and Fe dissolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117892-117908. [PMID: 37874516 DOI: 10.1007/s11356-023-30475-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Modified nanoscale zero-valent iron (NZVI) exhibited great potential for the remediation of heavy metal contaminated river sediments, but its mechanisms and environmental risks are still unclear. This study systematically discussed the performance and the mechanisms of modified NZVI materials, i.e., sodium alginate-coated NZVI (SNZVI), rhamnolipid-coated NZVI (RNZVI), and graphene oxide-loaded NZVI (GNZVI), for the stabilization of Cd in sediment, with the exploration of their stability to Cd at various pH values and Fe dissolution rate. Compared with the control, the toxicity characteristic leaching procedure (TCLP) leachable Cd decreased by 52.66-96.28%, and the physiologically based extraction test (PBET) extractable Cd decreased by 44.68-70.21% after 56 days of incubation with the immobilization efficiency varying according to GNZVI > RNZVI > SNZVI > NZVI. Besides, the adsorption behavior of Cd on materials was fitted with the Freundlich model and classified as an endothermic, spontaneous, and chemical adsorption process. SEM-EDX, XRD, and FTIR results verified that the stabilization mechanisms of Cd were principally based on the adsorption, complexation of Cd2+ with secondary Fe minerals (including Fe2O3, γ-Fe2O3, and γ-FeOOH) and precipitation (Cd(OH)2). From the risk assessment results, it was observed that the materials were favorable for Cd stabilization at a pH range from 7 to 11, meanwhile, the leaching concentration of Fe in the overlying water was detected below the limit value. These findings pave the way to developing an effective strategy to remediate Cd contaminated river sediments.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shan Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng Yang, 421001, People's Republic of China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
8
|
Gan S, Meng Y, Lin Z, Zheng C, Zhu A, Ganjidoust H, Ayati B, Huo A. Efficient Removal of Antimony(V) from Antimony Mine Wastewater by Micrometer Zero-Valent Iron. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14945-14957. [PMID: 37814856 DOI: 10.1021/acs.langmuir.3c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This paper investigates the effectiveness of two commercial micron zero-valent irons (mZVIs) in removing Sb(V) from antimony mine wastewater. The wastewater contains a range of complex components and heavy metal ions, including As(V), which can impact the removal efficiency of mZVI. The study aims to provide insights into actual working conditions and focuses on influencing factors and standard conditions. The results demonstrate that mZVI can reduce Sb(V) concentration in the mine wastewater from 3875.7 μg/L to below the drinking water standard of 5 μg/L within 2 h. Adding a small amount of mZVI every 30 min helps to maintain a high removal rate. The study confirms the existence of a reduction reaction by changing the atmospheric conditions of the reaction, and the addition of 1,10-phenanthroline highlights the important role of active Fe(II) in the adsorption and removal of Sb(V) by mZVI. Additionally, the paper presents an innovative experimental method of acid treatment followed by alkali treatment, which proves the interfacial reaction between mZVI and Sb(V). Overall, the study demonstrates that the removal of Sb(V) by mZVI entails a dual function of reduction and adsorption, highlighting the potential of mZVI in repairing Sb(V) in antimony mine wastewater.
Collapse
Affiliation(s)
- Siyu Gan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yifei Meng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd., Xi'an 710049, P. R. China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hossein Ganjidoust
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-111, Tehran 1411713116, Iran
| | - Bita Ayati
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-111, Tehran 1411713116, Iran
| | - Aidi Huo
- School of Water and Environment, Chang'an University, Xi'an 710054, P. R. China
| |
Collapse
|
9
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Peng L, Wang N, Xiao T, Wang J, Quan H, Fu C, Kong Q, Zhang X. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism. CHEMOSPHERE 2023; 327:138529. [PMID: 36990360 DOI: 10.1016/j.chemosphere.2023.138529] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huabang Quan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chuanbin Fu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingnan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Tian F, Ren Y, Wu W, Liu Y. Electrochemical CNT filter functionalized with metal-organic framework for one-step antimonite decontamination. CHEMOSPHERE 2023:139047. [PMID: 37263511 DOI: 10.1016/j.chemosphere.2023.139047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Currently, there is a lack of advanced nanotechnology designed to efficiently remove antimony (Sb) from contaminated water systems. Sb most commonly appears as antimonite (Sb(III)) or as the anion antimonate (Sb(V)). Sb(III) is approximately ten times more toxic than Sb(V), and Sb(III) is also harder to eliminate because of its motility and charge neutrality. The work presented here developed an electrochemical filtration technology for the direct elimination of Sb(III) from contaminated water. The primary components of the filtration system are an electroactive carbon nanotube (CNT) membrane that are functionalized with the Sb-specific UiO-66(Zr), an organometallic framework. In an electric field, the UiO-66(Zr)/CNT nanohybrid filter enabled in situ transformation of Sb(III) to less harmful Sb(V). The Sb(V) was then effectively adsorbed by the UiO-66(Zr). The removal efficiency (90.5%) and rate constant (k1 = 0.0272 min-1) toward Sb(III) removal was 1.3 and 1.4 times greater than that of CNT filter. The filter's abundance of available adsorption sites, flow-through construction, and electrochemical activity combined to rapidly remove Sb(III) from water. The underlying functioning of the nanohybrid filter was determined with a series of process experiments and structural characterizations. The filter was effective over a broad range of pH values and in a variety of complex aqueous environments. Once loaded with Sb, the UiO-66(Zr)/CNT filter could be washed with a dilute NaOH solution to efficiently refresh its activity. The results of this work offer a direct, efficient strategy that integrates nanotechnology, electrochemistry, and membrane separation to remove antimony and potentially other heavy metals from contaminated water.
Collapse
Affiliation(s)
- Fengguo Tian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wanxiang Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|