1
|
Wen J, Li T, Pu Q, Li Y, Ding X, Wang L, Li X. Co-exposure of TMPs and antibiotics in zebrafish: The influence of additives on the risk of hepatotoxicity. ENVIRONMENTAL RESEARCH 2025; 275:121430. [PMID: 40120740 DOI: 10.1016/j.envres.2025.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Co-exposure of tire microplastics (TMPs) and antibiotics has been confirmed to pose toxic risks to aquatic organisms. However, the contributions of TMP additives to these risks and the underlying mechanisms remain underreported. In this study, factor analysis and molecular docking and molecular dynamics simulations were employed to investigate the differential additive-related hepatotoxicity risks associated with TMP-antibiotic exposure in zebrafish. The differential hepatotoxicity risks of five types of TMPs and six antibiotics were simulated in the presence of additives. Zebrafish exposed to different TMPs showed significant differences in hepatotoxicity risks, with styrene-butadiene rubber (SBR) exhibiting the most pronounced toxic effects. The additive contribution analysis revealed that in the presence of SBR additives, TMPs-antibiotics posed higher toxicity risks to the cytochrome P 17A2 (CYP17A2) isoenzymes CYP2K19, CYP1A, CYP3A65, and CYP2K22 in zebrafish, showing synergistic effects primarily driven by plasticizers. Furthermore, the hepatotoxicity risks of TMPs-antibiotics in zebrafish in the presence of additives were significantly mitigated by the selection of alternative plasticizers. The micromechanisms by which additives affected the TMP-antibiotic hepatotoxicity risks in zebrafish were elucidated through mechanistic analysis. This study aimed to characterize the additive-influenced hepatotoxicity risks of TMPs-antibiotics, providing micro-level insights and theoretical support for ecological risk assessments in aquatic environments.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Tong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Lu Wang
- Jilin Province Ecological Environmental Monitoring Centre, 130011, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
2
|
Chukwuka AV, Adegboyegun AD, Adeogun AO. Algal bloom-mediated microplastic dispersion in coastal areas of West Africa: Integrated insights and risk projections from molecular models and remote-sensed evaluations. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137590. [PMID: 39954431 DOI: 10.1016/j.jhazmat.2025.137590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Algal blooms along the West African coast threaten ecosystems and human health due to nutrient enrichment and rising temperatures. This remote-sensing study examined the relationships between chlorophyll-a concentrations, environmental variables, and the potential for microplastic retention in blooms using molecular docking models for predictive insights. Correlation analyses revealed region-specific associations, with moderate positive correlations between chlorophyll and temperature along the southwest Nigeria-Togo coastline and near Liberia and Sierra Leone (r = 0.2-0.4) and strong correlations with particulate carbon across most regions (r = 0.6-0.8). Chlorophyll fluorescence correlations were generally low (r = 0.2), except for higher correlations in the Senegal-Gabon and Côte d'Ivoire-Ghana stretches, indicating that localized factors influence bloom dynamics. Molecular docking results predict that polycarbonate microplastics have the strongest binding affinities with algal proteins, particularly flagellin (-11.3 kcal/mol), suggesting significant retention potential within bloom matrices. In contrast, ethylene plastics displayed weaker interactions (up to -2.2 kcal/mol) and a high dissociation constant (Kd = 0.079 M), indicating minimal retention potential. The low Kd values for polycarbonateprotein interactions (e.g., 5.15e09 M for flagellin) predict a concerning scenario where microplastics become increasingly integrated into algal biomass, increasing exposure risks for marine life. Warm, nutrient-rich conditions along the West African coast, especially from southwest Nigeria to Togo and Côte d'Ivoire to Sierra Leone, are expected to increase the frequency and severity of algal blooms. This proliferation disrupts biodiversity and water quality while straining local fisheries by altering marine food webs. To mitigate microplastic entrapment from algal blooms and protect vulnerable marine ecosystems, targeted monitoring and intervention strategies are essential.
Collapse
Affiliation(s)
- Azubuike Victor Chukwuka
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria.
| | - Ayotunde Daniel Adegboyegun
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Aina O Adeogun
- Hydrobiology and Fisheries Unit, Department of Zoology, University of Ibadan, Nigeria.
| |
Collapse
|
3
|
Capparelli MV, Gámez-Herrera DJ, Pérez-Ceballos R, Suárez-Mozo NY, Fonseca-Peña SVD, Borges-Ramírez MM, Osten JRV, Zaldívar-Jiménez A, Moulatlet GM. Impact of mangrove restoration on microplastic bioaccumulation in fiddler crabs across degraded, restored, and natural ecosystems. MARINE POLLUTION BULLETIN 2025; 214:117815. [PMID: 40101604 DOI: 10.1016/j.marpolbul.2025.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Understanding the role of mangroves in microplastic (MPs) bioaccumulation is crucial to addressing the pollution in these ecosystems, particularly in restored areas. Here, we 1) evaluate the MPs plastic-biota-sediment accumulation factor (pBSAf) in the fiddler crab Minuca rapax and 2) describe MPs type, colour, and polymeric characteristics in areas with varying restoration and degradation levels in the Southern Gulf of Mexico. We used regression models to evaluate the role of mangrove tree height, basal area, and crab individuals' density in explaining pBSAf. The highest pBSAf values were observed in natural and restored mangrove areas, particularly those with higher crab densities and taller trees. MPs were more diverse in composition in both crabs and sediments from natural areas. Mangrove biota tissue's bioaccumulation may provide insights into ecosystem health and food web impacts and indicate restoration progress.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| | - Dulce J Gámez-Herrera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Rosela Pérez-Ceballos
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico; Consejo Nacional de Humanidades de Ciencias y Tecnologías (CONAHCYT), Mexico
| | - Nancy Yolimar Suárez-Mozo
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Shirley V D Fonseca-Peña
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Merle M Borges-Ramírez
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | | | | | - Gabriel M Moulatlet
- The Arizona Institute for Resilience, University of Arizona, Tucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Zhao L, Sun P, Gao J, Li Y, Pu Q, Lyu C, Zhao W. Improved microbial-plant soil bioremediation of PAHs and heavy metal through in silico methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135524. [PMID: 39181001 DOI: 10.1016/j.jhazmat.2024.135524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and organic cadmium (Cd) in farmland soils, and the field controlling strategy need to be studied urgently. In this study, 5 PAHs, 5 Cd and 11 soil conditioners were selected to explore the co-exposure risk and remediation efficiency. Firstly, a significant combination Fl-alkylalkoxy cadmium was obtained using forward and reverse methods coupling variation coefficient methods (the combined pollution value was 0.173). Secondly, the interaction energy of microbial degradation / plant absorption of Fl under Cd stress, and microbial mineralization / plant absorption of alkylalkoxy cadmium under PAHs stress were characterized using factorial experimental design, molecular docking and molecular dynamics simulation. The combined pollution of alkylalkoxy cadmium and dialkyl cadmium, phenanthrene and Benzo [a] pyrene was significant (synergistic contribution rates were 17.58 % and 19.22 %, respectively). In addition, 6 soil conditioners with significant efficiency were selected to design Taguchi orthogonal experimental schemes, indicating the microbial degradation / mineralization and plant absorption were significantly effective (the maximum increase of remediation efficiency was 93.81 %) under the combinations (i.e., trratone, coumarol, fulvamic acid, potassium fertilizer and others, etc.). Finally, it was found that the soil conditioners affected the hydrophobic groups and forces, and the efficiency was proportional to the highest peak value and minimum distance in the RDF curve. This study identifies the risk characteristics of co-exposure of PAHs and Cd and screens effective soil conditioners, providing theoretical guidance for risk controlling.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Jiaxuan Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yunxiang Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Satheesh S, El-Sherbiny MM. Toxicity assays and in silico approach to assess the impacts of chlorine dioxide on survival, respiration and some biochemical markers of marine zooplankton. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106469. [PMID: 38531260 DOI: 10.1016/j.marenvres.2024.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Chlorination is the common antifouling method in desalination and power plant water intake structures to control microbial and macrofouling growth. In this study, the impacts of chlorine dioxide on toxicity, metabolic activity and biochemical markers like glutathione S-transferase and catalase enzyme activity were tested using four zooplankton species (Centropages sp., Acartia sp., Oncaea sp., and Calanus sp.) collected from the Red Sea. The zooplankton species were treated with different concentrations (0.02, 0.05, 0.1, 0.2, and 0.5 mg L-1) of chlorine dioxide. Further, chlorite, the main decomposition product of chlorine dioxide, was used for molecular docking studies against glutathione S-transferase and catalase enzymes. The results indicated the LC50 range of 0.552-1.643 mg L-1 for the studied zooplankton species. The respiration rate of the zooplankton increased due to the chlorine dioxide treatment with a maximum of 0.562 μg O2 copepod h-1 in Acartia. The glutathione S-transferase and catalase enzyme activities showed elevated values in zooplankton treated with chlorine dioxide. Molecular docking of chlorite with enzymes involved in antioxidant defense activity, such as glutathione S-transferase and catalase enzyme showed weak interactions. Overall, this study yielded significant insights for understanding the effects of chlorine dioxide on the survival, metabolism, and biochemical composition of marine zooplankton.
Collapse
Affiliation(s)
- S Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - M M El-Sherbiny
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Marine Sciences, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
6
|
Seggio M, Arcadio F, Radicchi E, Cennamo N, Zeni L, Bossi AM. Toward Nano- and Microplastic Sensors: Identification of Nano- and Microplastic Particles via Artificial Intelligence Combined with a Plasmonic Probe Functionalized with an Estrogen Receptor. ACS OMEGA 2024; 9:18984-18994. [PMID: 38708270 PMCID: PMC11064004 DOI: 10.1021/acsomega.3c09485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/07/2024]
Abstract
Nano- and microplastic particles are a global and emerging environmental issue that might pose potential threats to human health. The present work exploits artificial intelligence (AI) to identify nano- and microplastics in water by monitoring the interaction of the sample with a sensitive surface. An estrogen receptor (ER) grafted onto a gold surface, realized on a nonexpensive and easy-to-produce plastic optical fiber (POF) platform in order to excite a surface plasmon resonance (SPR) phenomenon, has been developed in order to carry out a "smart" sensitive interface (ER-SPR-POF interface). The ER-SPR-POF interface offers output data useful for exploiting a machine learning-based approach to achieve nano- and microplastic particle sensors. This work developed a proof-of-concept sensor through a training phase carried out by different particles, in terms of materials and size. The experimental results have demonstrated that the proposed "smart" ER-SPR-POF interface combined with AI can be used to identify the kind of particles in terms of the materials (polystyrene; poly(methyl methacrylate)) and size (20 μm; 100 nm) with an accuracy of 90.3%.
Collapse
Affiliation(s)
- Mimimorena Seggio
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesco Arcadio
- Department
of Engineering, University of Campania Luigi
Vanvitelli, via Roma 29, 81031 Aversa, Italy
| | - Eros Radicchi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nunzio Cennamo
- Department
of Engineering, University of Campania Luigi
Vanvitelli, via Roma 29, 81031 Aversa, Italy
| | - Luigi Zeni
- Department
of Engineering, University of Campania Luigi
Vanvitelli, via Roma 29, 81031 Aversa, Italy
| | - Alessandra Maria Bossi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
7
|
Lin W, Qin Y, Ren Y. Flunitrazepam and its metabolites induced brain toxicity: Insights from molecular dynamics simulation and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133113. [PMID: 38043427 DOI: 10.1016/j.jhazmat.2023.133113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Psychoactive drugs frequently contaminate aquatic environments after human consumption, raising concerns about their residues and ecological harm. This study investigates the effects of flunitrazepam (FLZ) and its metabolite 7-aminoflunitrazepam (7-FLZ), benzodiazepine-class psychoactive drugs, on brain accumulation, blood-brain barrier (BBB), and neuroinflammation of the model organism zebrafish. Molecular dynamics simulation and transcriptome sequencing were used to uncover their toxic mechanisms. Results demonstrate that both FLZ and 7-FLZ can accumulate in the brain, increasing Evans blue levels by 3.4 and 0.8 times, respectively. This increase results from abnormal expression of tight junction proteins, particularly ZO-1 and Occludin, leading to elevated BBB permeability. Furthermore, FLZ and 7-FLZ can also induce neuroinflammation, upregulating TNFα by 91% and 39%, respectively, leading to pathological changes and disrupted intracellular ion balance. Molecular dynamics simulation reveals conformational changes in ZO-1 and Occludin proteins, with FLZ exhibiting stronger binding forces and greater toxicity. Weighted gene co-expression network analysis identifies four modules correlated with BBB permeability and neuroinflammation. KEGG enrichment analysis of genes within these modules reveals pathways like protein processing in the endoplasmic reticulum, NOD-like receptor signaling pathway, and arginine and proline metabolism. This study enhances understanding of FLZ and 7-FLZ neurotoxicity and assesses environmental risks of psychoactive substances. ENVIRONMENTAL IMPLICATION: With the increasing prevalence of mental disorders and the discharge of psychoactive drugs into water, even low drug concentrations (ng/L-μg/L) can pose neurological risks. This study, utilizing molecular dynamic (MD) simulations and transcriptome sequencing, investigate the neurotoxicity and mechanisms of flunitrazepam and 7-aminoflunitrazepam. It reveals that they disrupt the blood-brain barrier in zebrafish and induce neuroinflammation primarily by inducing conformational changes in tight junction proteins. MD simulations are valuable for understanding pollutant-protein interactions. This research offers invaluable insights for the environmental risk assessment of psychoactive drugs and informs the development of strategies aimed at prevention and mitigation.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Ilechukwu I, Das RR, Jamodiong EA, Borghi S, Manzano GG, Hakim AA, Reimer JD. Abundance and distribution of marine litter on the beaches of Okinawa Island, Japan. MARINE POLLUTION BULLETIN 2024; 200:116036. [PMID: 38237260 DOI: 10.1016/j.marpolbul.2024.116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024]
Abstract
This study evaluated the distribution and abundance of marine litter on 30 beaches around Okinawa Island, Japan. Beach quality indices and multivariate statistical analyses were used to assess the quality of the beaches and their pollution patterns. A total of 11,626 items weighing 513.49 kg with an average density of 0.13 ± 0.10 items/m2 were collected. Litter was dominated by plastics (81.72 %), broken glass (8.38 %), and cigarette butts (7.44 %), and 74.05 % of total litter was from land-based sources. Single-use plastics (SUPs) were present in all surveyed beaches and made up 30.54 % of the total litter. The clean coast index (CCI), plastic abundance index (PAI), and hazardous index (HI) were between 0.1 and 7.6, 0.1-4.0 and 0.01-1.42, respectively, indicating low to moderate levels of pollution of Okinawan beaches. This study should aid in the formation of strategies to deal with marine litter in Okinawa, other areas of Japan and the Asia-Pacific region.
Collapse
Affiliation(s)
- Ifenna Ilechukwu
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan.
| | - Rocktim Ramen Das
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Emmeline A Jamodiong
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Stefano Borghi
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Geminne G Manzano
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Agus Alim Hakim
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan; Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University, JI. Agatis, Kampus IPB Dramaga Bogor, 16680, West Java, Indonesia
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| |
Collapse
|
9
|
Li X, Zhao Y, Pu Q, He W, Yang H, Hou J, Li Y. Microplastics in cultivated soil environment: Construction of toxicity grading evaluation system, development of priority control checklist, and toxicity mechanism analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132046. [PMID: 37467609 DOI: 10.1016/j.jhazmat.2023.132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The present study aimed to comprehensively evaluate the toxicological effects of microplastics (MPs) on cultivated soil quality. Based on improved G1 evaluation method, we first constructed a grading evaluation system comprising of the indicators of toxicological effects of cultivated soil quality under MPs exposure, while focusing on types of MPs that had significant/non-significant toxicity effects. Furthermore, we verified reliability of screening results of significance-links at each level, using several data processing methods. Then, using natural breakpoint classification method, a priority control checklist of toxicological effects of 18 types of MPs on cultivated soil was developed to determine the types of MPs having significant toxicity risks and cultivated soil quality links significantly affected by the toxicity of MPs exposure. Finally, quantum-mechanics/molecular-mechanics (QM/MM) methods were used to carry out the differential toxicity mechanism analysis. The results showed that MPs with higher non-polar surface area may lead to stronger toxicity effect to the cultivated soil quality. Notably, the MPs that have abundant binding sites enhance the binding affinity, and less polar MPs bind more strongly to the non-polar amino acids of target receptors. Our study provides a new theoretical perspective for multi-dimensional analysis toxicological effects of different MPs exposure on cultivated soil quality.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Wei He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
10
|
Mohsen M, Lin C, Abdalla M, Liu S, Yang H. Microplastics in canned, salt-dried, and instant sea cucumbers sold for human consumption. MARINE POLLUTION BULLETIN 2023; 192:115040. [PMID: 37216877 DOI: 10.1016/j.marpolbul.2023.115040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023]
Abstract
Determining the amount of microplastics (MPs) in food is key to clarifying their potential toxicity to humans. Here, we collected canned, instant, and salt-dried sea cucumbers Apostichopus japonicus, the most valued sea cucumbers, from Chinese markets to determine their content of MPs. Sea cucumbers contained MPs in the range of 0-4 MP individual-1, an average of 1.44 MP individual-1, and 0.081 MP g-1. Accordingly, consuming 3 g of sea cucumbers could result in an exposure risk of an average of 0.51 MPs, 0.135 MPs, and 0.078 MPs day-1 for canned, instant, and salt-dried sea cucumbers, respectively. MPs were in size range of 12-575 μm, and fibrous shape was dominant. Furthermore, among the five polymers identified, polypropylene showed the highest energy binding with two catalysts engaged in organic chemical oxidation. This study extends the knowledge regarding MPs occurrence in food and provides a theoretical basis for MPs toxicity in humans.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, Fujian 361021, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan 250022, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
11
|
Gu L, Hu B, Fu Y, Zhou W, Li X, Huang K, Zhang Q, Fu J, Zhang H, Zhang A, Fu J, Jiang G. Occurrence and risk assessment of organophosphate esters in global aquatic products. WATER RESEARCH 2023; 240:120083. [PMID: 37224669 DOI: 10.1016/j.watres.2023.120083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Organophosphate esters (OPEs), as an important class of new pollutants, have been pervasively detected in global aquatic products, arousing widespread public concern due to their potential bioaccumulative behavior and consequent risks. With the continuous improvement of living standards of citizens, there have been constant increment of the proportion of aquatic products in diets of people. The levels of OPEs exposed to residents may also be rising due to the augmented consumption of aquatic products, posing potential hazards on human health, especially for people in coastal areas. The present study integrated the concentrations, profiles, bioaccumulation, and trophic transfer of OPEs in global aquatic products, including Mollusca, Crustacea, and fish, evaluated health risks of OPEs through aquatic products in daily diets by Mont Carol Simulation (MCS), and found Asia has been the most polluted area in terms of the concentration of OPEs in aquatic products, and would have been increasingly polluted. Among all studied OPEs, chlorinated OPEs generally showed accumulation predominance. It is worth noting that some OPEs were found bioaccumulated and/or biomagnified in aquatic ecosystems. Though MCS revealed relative low exposure risks of residents, sensitive and special groups such as children, adolescents, and fishermen may face more serious health risks than the average residents. Finally, knowledge gaps and recommendations for future research are discussed encouraging more long-term and systematic global monitoring, comprehensive studies of novel OPEs and OPEs metabolites, and more toxicological studies to completely evaluate the potential risks of OPEs.
Collapse
Affiliation(s)
- Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| |
Collapse
|