1
|
Liu J, Dong Y, Liu Q, Liu W, Lin H. MoS 2-based nanocomposites and aerogels for antibiotic pollutants removal from wastewater by photocatalytic degradation process: A review. CHEMOSPHERE 2024; 354:141582. [PMID: 38462179 DOI: 10.1016/j.chemosphere.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Photocatalytic technologies based on molybdenum disulfide (MoS2) catalysts are effective, eco-friendly, and promising for antibiotic pollutants treatment. The technologies used by MoS2-based nanocomposites and aerogels for efficient degradation of antibiotics are reviewed in detail for the first time in this paper. The fundamental aspects of MoS2 were comprehensively scrutinized, encompassing crystal structure, optical properties, and photocatalytic principle. Then, the main synthesized methods and advantages/disadvantages for the preparation of MoS2-based nanocomposites and aerogels were systematically presented. Besides, a comprehensive overview of diverse MoS2-based nanocomposites and aerogels photo-degradation systems that enhanced the degradation of antibiotic pollutants were revealed. Meanwhile, the photo-degradation mechanism concentrated on the photoelectron transfer pathways and reactive oxygen species (ROS) were systematically evaluated. Finally, the challenges and perspectives for deeply development of MoS2-based nanocomposites and aerogels were discussed. This review may help researchers to deeply understand the research status of MoS2-based nanocomposites and aerogels for antibiotics removal, and makes clear the photo-degradation mechanism from photoelectron transfer pathways and ROS aspects of MoS2-based nanocomposites and aerogels.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qiaojun Liu
- West District of the First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
2
|
Anandhakumari G, Jayabal P, Balasankar A, Ramasundaram S, Oh TH, Aruchamy K, Kallem P, Polisetti V. Synthesis of strontium oxide-zinc oxide nanocomposites by Co-precipitation method and its application for degradation of malachite green dye under direct sunlight. Heliyon 2023; 9:e20824. [PMID: 37867874 PMCID: PMC10585331 DOI: 10.1016/j.heliyon.2023.e20824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Photocatalysts workable under direct sunlight are the safe and cost-effective option for water purification. The nanocomposites of strontium oxide and zinc oxide (SZ NCs) were synthesized using coprecipitation method. The respective precursors of SZ NCs were subjected to alkaline hydrolysis and subsequently thermally treated to yield SZ NCs. The SZ NCs with different ZnO composition was synthesized by varying the concentration of ZnO precursor from 0.2 to 1 M. The structural properties of SZ NCs evaluated using X-Ray diffraction (XRD), Thermogravimetric analysis (TGA), and Differential thermal analysis DTA). The optical properties of SZ NCs studied using ultraviolet-visible (UV-Vis) spectroscopic study. The trend observed in the intensity of XRD peaks indicated the occurrence of Zn doping in the crystalline lattice of SrO and the formation of SrO-ZnO composite. Upon incorporation of 1 M of ZnO precursor, the grain size of the SrO was decreased from 49.3 to 27.6 nm. The weight loss in the thermal analysis indicates the removal of carbonates from the sample upon heating and shows the formation of an oxide structure. UV-Vis spectra confirmed that the presence of SrO enhanced the sunlight absorption of SZ NCs. The increase in the composition of ZnO precursors increased the bandgap of SrO (2.09 eV) to the level of ZnO (3.14 eV). SZ NCs exhibited heterostructure morphology, where the nanosized domains with varying shapes (layered and rod-like) were observed. Under direct sunlight conditions, SZ NCs prepared using 1 M/0.6 M of SrO/ZnO precursors exhibited 15-20 % higher photocatalytic efficiency than neat SrO and ZnO. In precise, 1 mg of this SZ NC was degraded 98 % of malachite green dye dissolved in water (10 ppm) under direct sunlight. Additionally, the thermal stability results showed that 18 % decomposition was obtained due to the degradation impurities in SrO/ZnO catalysts and the XRD results revealed that no structural change is obtained in SrO/ZnO photocatalysts after stability test. The SZ NCs can be effectively used as safe and economic sunlight photocatalysts for water purification in remote areas without the electricity.
Collapse
Affiliation(s)
- Govindharaj Anandhakumari
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India
| | - Palanisamy Jayabal
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India
| | - Athinarayanan Balasankar
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India
| | | | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Parashuram Kallem
- Department of Environmental and Public Health, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Veerababu Polisetti
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE−100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Shanmugam Ranjith K, Majid Ghoreishian S, Han S, Chodankar NR, Seeta Rama Raju G, Marje SJ, Huh YS, Han YK. Synergistic effects of layered Ti 3C 2T X MXene/MIL-101(Cr) heterostructure as a sonocatalyst for efficient degradation of sulfadiazine and acetaminophen in water. ULTRASONICS SONOCHEMISTRY 2023; 99:106570. [PMID: 37678067 PMCID: PMC10495666 DOI: 10.1016/j.ultsonch.2023.106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
In this work, different mass loadings of MXene-coupled MIL-101(Cr) (MXe/MIL-101(Cr)) nanocomposites were generated through a hydrothermal process in order to investigate the potential of this nanocomposite as a novel sonocatalyst for the elimination of sulfadiazine (SD) and acetaminophen (AAP) in aqueous media. The sonocatalytic activity of different MXe/MIL-101(Cr) compositions and surface functionalities was investigated. In addition, the sonocatalytic activities at various pH values, temperatures, pollutant concentrations, catalyst dosages, initial H2O2 concentrations, and organic matter contents were investigated. The experiments on the sonocatalytic elimination of SD and AAP revealed that MXe/MIL-101(Cr) exhibited a catalytic efficiency of ∼ 98% in 80 min when the MXene loading was 30 wt% in the nanocomposite. Under optimized reaction conditions, the degradation efficiency of MXe/MIL-101(Cr) reached 91.5% for SD and 90.6% for AAP in 60 min; these values were 1.2 and 1.8 times greater than those of MXene and MIL-101(Cr), respectively. The high surface area of the MXe/MIL-101(Cr) nanocomposite increased from 4.68 m2/g to 294.21 m2/g, and the band gap of the tagged MIL-101(Cr) on the MXene surface was minimized. The superior sonocatalytic activity of MXe/MIL-101(Cr) was attributed to the effective contact interface, the effective separation rate of e- - h+ pairs through the type II heterostructure interface, and the favorable high free •OH radical production rates that promoted the degradation of SD and AAP. The solid heterointerface between MIL-101(Cr) and MXene was confirmed through Raman and FTIR analysis and was found to promote accessible •OH radical production under sonication, thus maximizing the catalytic activity of nanocomposites. The present results present an effective strategy for the design of a highly efficient, low-cost, reliable sonocatalyst that can eradicate pharmaceutical pollutants in our environment.
Collapse
Affiliation(s)
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Supriya J Marje
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
4
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|