• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5071034)   Today's Articles (71)
For: Banerjee A, De P, Kumar V, Kar S, Roy K. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening Endocrine Disruptor Chemicals using 2D-QSAR and Chemical Read-Across. Chemosphere 2022;309:136579. [PMID: 36174732 DOI: 10.1016/j.chemosphere.2022.136579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Number Cited by Other Article(s)
1
Banerjee A, Roy K. The multiclass ARKA framework for developing improved q-RASAR models for environmental toxicity endpoints. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025;27:1229-1243. [PMID: 40227888 DOI: 10.1039/d5em00068h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
2
Banerjee A, Roy K. Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs. Sci Rep 2025;15:808. [PMID: 39755865 PMCID: PMC11700179 DOI: 10.1038/s41598-024-85063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]  Open
3
Chen S, Fan T, Zhang N, Zhao L, Zhong R, Sun G. The oral acute toxicity of per- and polyfluoroalkyl compounds (PFASs) to Rat and Mouse: A mechanistic interpretation and prioritization analysis of untested PFASs by QSAR, q-RASAR and interspecies modelling methods. JOURNAL OF HAZARDOUS MATERIALS 2024;480:136071. [PMID: 39383696 DOI: 10.1016/j.jhazmat.2024.136071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/07/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
4
Đurić L, Milanović M, Drljača Lero J, Milošević N, Milić N. In silico analysis of endocrine-disrupting potential of triclosan, bisphenol A, and their analogs and derivatives. J Appl Toxicol 2024;44:1897-1913. [PMID: 39129338 DOI: 10.1002/jat.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
5
Banerjee A, Kar S, Roy K, Patlewicz G, Charest N, Benfenati E, Cronin MTD. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Crit Rev Toxicol 2024;54:659-684. [PMID: 39225123 PMCID: PMC12010357 DOI: 10.1080/10408444.2024.2386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
6
Dong F, Hardy B, Liu J, Mohoric T, Guo W, Exner T, Tong W, Dohler J, Bachler D, Hong H. Development of a comprehensive open access "molecules with androgenic activity resource (MAAR)" to facilitate risk assessment of chemicals. Exp Biol Med (Maywood) 2024;249:10279. [PMID: 39364092 PMCID: PMC11446862 DOI: 10.3389/ebm.2024.10279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]  Open
7
Yang S, Kar S. How safe are wild-caught salmons exposed to various industrial chemicals? First ever in silico models for salmon toxicity data gaps filling. JOURNAL OF HAZARDOUS MATERIALS 2024;477:135401. [PMID: 39111177 DOI: 10.1016/j.jhazmat.2024.135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
8
Lu X, Wang X, Chen S, Fan T, Zhao L, Zhong R, Sun G. The rat acute oral toxicity of trifluoromethyl compounds (TFMs): a computational toxicology study combining the 2D-QSTR, read-across and consensus modeling methods. Arch Toxicol 2024;98:2213-2229. [PMID: 38627326 DOI: 10.1007/s00204-024-03739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 06/13/2024]
9
Banerjee A, Roy K. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024;26:991-1007. [PMID: 38743054 DOI: 10.1039/d4em00173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
10
Ghosh S, Roy K. Quantitative read-across structure-activity relationship (q-RASAR): A novel approach to estimate the subchronic oral safety (NOAEL) of diverse organic chemicals in rats. Toxicology 2024;505:153824. [PMID: 38705560 DOI: 10.1016/j.tox.2024.153824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
11
Kumar V, Banerjee A, Roy K. Breaking the Barriers: Machine-Learning-Based c-RASAR Approach for Accurate Blood-Brain Barrier Permeability Prediction. J Chem Inf Model 2024;64:4298-4309. [PMID: 38700741 DOI: 10.1021/acs.jcim.4c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
12
Sanz-Serrano J, Callewaert E, De Boever S, Drees A, Verhoeven A, Vinken M. Chemical-induced liver cancer: an adverse outcome pathway perspective. Expert Opin Drug Saf 2024;23:425-438. [PMID: 38430529 DOI: 10.1080/14740338.2024.2326479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
13
Yang S, Kar S. First report on chemometric modeling of tilapia fish aquatic toxicity to organic chemicals: Toxicity data gap filling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;907:167991. [PMID: 37898216 DOI: 10.1016/j.scitotenv.2023.167991] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
14
Banerjee A, Roy K. Read-across-based intelligent learning: development of a global q-RASAR model for the efficient quantitative predictions of skin sensitization potential of diverse organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023;25:1626-1644. [PMID: 37682520 DOI: 10.1039/d3em00322a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
15
Banerjee A, Roy K. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients. Chem Res Toxicol 2023;36:1518-1531. [PMID: 37584642 DOI: 10.1021/acs.chemrestox.3c00155] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
16
Zhang R, Wang B, Li L, Li S, Guo H, Zhang P, Hua Y, Cui X, Li Y, Mu Y, Huang X, Li X. Modeling and insights into the structural characteristics of endocrine-disrupting chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023;263:115251. [PMID: 37451095 DOI: 10.1016/j.ecoenv.2023.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
17
Sun G, Bai P, Fan T, Zhao L, Zhong R, McElhinney RS, McMurry TBH, Donnelly DJ, McCormick JE, Kelly J, Margison GP. QSAR and Chemical Read-Across Analysis of 370 Potential MGMT Inactivators to Identify the Structural Features Influencing Inactivation Potency. Pharmaceutics 2023;15:2170. [PMID: 37631385 PMCID: PMC10458236 DOI: 10.3390/pharmaceutics15082170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]  Open
18
Moulishankar A, Thirugnanasambandam S. Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents. J Recept Signal Transduct Res 2023;43:83-92. [PMID: 37990804 DOI: 10.1080/10799893.2023.2281671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/03/2023] [Indexed: 11/23/2023]
19
Goyal S, Rani P, Chahar M, Hussain K, Kumar P, Sindhu J. Quantitative structure activity relationship studies of androgen receptor binding affinity of endocrine disruptor chemicals with index of ideality of correlation, their molecular docking, molecular dynamics and ADME studies. J Biomol Struct Dyn 2023;41:13616-13631. [PMID: 37010991 DOI: 10.1080/07391102.2023.2193991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 04/04/2023]
20
Banerjee A, Roy K. On Some Novel Similarity-Based Functions Used in the ML-Based q-RASAR Approach for Efficient Quantitative Predictions of Selected Toxicity End Points. Chem Res Toxicol 2023;36:446-464. [PMID: 36811528 DOI: 10.1021/acs.chemrestox.2c00374] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
21
Banerjee A, Kar S, Pore S, Roy K. Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach. Nanotoxicology 2023;17:78-93. [PMID: 36891579 DOI: 10.1080/17435390.2023.2186280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
22
Matore BW, Roy PP, Singh J. Discovery of novel VEGFR2-TK inhibitors by phthalimide pharmacophore based virtual screening, molecular docking, MD simulation and DFT. J Biomol Struct Dyn 2023;41:13056-13077. [PMID: 36775656 DOI: 10.1080/07391102.2023.2178510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 02/14/2023]
23
Ishfaq M, Aamir M, Ahmad F, M Mebed A, Elshahat S. Machine Learning-Assisted Prediction of the Biological Activity of Aromatase Inhibitors and Data Mining to Explore Similar Compounds. ACS OMEGA 2022;7:48139-48149. [PMID: 36591131 PMCID: PMC9798507 DOI: 10.1021/acsomega.2c06174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA