1
|
Pereira S, Rubina M, Roga A, Selga T, Skinderskis E, Gudrā D, Kalniņa I, Vonda K, Fridmanis D, Muter O. Evaluation of functional capacity and plastic-degrading potential of Bacillus spp. and other bacteria derived from the Getliņi landfill (Latvia). ENVIRONMENTAL RESEARCH 2025:121849. [PMID: 40373994 DOI: 10.1016/j.envres.2025.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
The mechanisms of plastic biodegradation by microorganisms remain poorly understood because of high variability in environmental conditions. This study aimed to isolate, identify, and characterise bacteria with plastic-degrading potential derived from the Getliņi EKO landfill (Riga, Latvia). Among the bacteria selected, Bacillus was the predominant genus identified, whereas Pseudomonas dominated the metagenome. Comparative testing revealed the highest non-specific esterase activity in cultures of B. licheniformis and B. altitudinis. Following a 6-week batch experiment, a newly developed bacterial consortium biologically reduced the weight of untreated low-density polyethylene (LDPE), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) by 19.44%, 5.99%, and 2.58%, respectively. Thermally pre-treated PET and acid pre-treated HDPE resulted in greater weight losses than their respective untreated forms. Scanning electron microscopy primarily showed single cells and microcolonies attached to the granule surfaces. Microbial respiration and fluorescein diacetate hydrolysis tests suggested that the granules had a stimulating effect on the metabolic activity of planktonic cells. Cultures with untreated LDPE and PET exhibited the highest ecotoxicity for Thamnocephalus platyurus, reducing ingestion activity by 60.39% and 71.25% of the control, respectively. In conclusion, the Getliņi EKO landfill appears to be a promising sampling source for bacteria capable of biodegrading fossil-based polymers. Further refinement of methods for the isolation and evaluation of plastic degraders will provide new insights into the potential of microbial resources for plastic degradation.
Collapse
Affiliation(s)
- Sara Pereira
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia; Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Marta Rubina
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Tūrs Selga
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Edmunds Skinderskis
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Dita Gudrā
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Ineta Kalniņa
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Kārlis Vonda
- Getliņi EKO Ltd., 57 Kaudzisu Str., Rumbula, LV-2121 Ropažu, Latvia
| | - Dāvids Fridmanis
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Olga Muter
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia.
| |
Collapse
|
2
|
Liu XH, Jin JL, Sun HT, Li S, Zhang FF, Yu XH, Cao QZ, Song YX, Li N, Lu ZH, Wang T, Liu F, Wang JM. Perspectives on the microorganisms with the potentials of PET-degradation. Front Microbiol 2025; 16:1541913. [PMID: 40143857 PMCID: PMC11938130 DOI: 10.3389/fmicb.2025.1541913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Polyethylene terephthalate (PET), a widely used synthetic polymer in daily life, has become a major source of post-consumer waste due to its complex molecular structure and resistance to natural degradation, which has posed a significant threat to the global ecological environment and human health. Current PET-processing methods include physical, chemical, and biological approaches, however each have their limitations. Given that numerous microbial strains exhibit a remarkable capacity to degrade plastic materials, microbial degradation of PET has emerged as a highly promising alternative. This approach not only offers the possibility of converting waste into valuable resources but also contributes to the advancement of a circular economy. Therefore in this review, it is mainly focused on the cutting-edge microbial technologies and the key role of specific microbial strains such as Ideonella sakaiensis 201-F6, which can efficiently degrade and assimilate PET. Particularly noteworthy are the catalytic enzymes related to the metabolism of PET, which have been emphasized as a sustainable and eco-friendly strategy for plastic recycling within the framework of a circular economy. Furthermore, the study also elucidates the innovative utilization of degraded plastic materials as feedstock for the production of high-value chemicals, highlighting a sustainable path forward in the management of plastic waste.
Collapse
Affiliation(s)
- Xiao-huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jun-li Jin
- School of Biological Science, Jining Medical University, Jining, China
| | - Hai-tong Sun
- School of Biological Science, Jining Medical University, Jining, China
| | - Shuo Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei-fei Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-hong Yu
- School of Biological Science, Jining Medical University, Jining, China
| | - Qi-zhi Cao
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-xuan Song
- School of Biological Science, Jining Medical University, Jining, China
| | - Nan Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jian-min Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
3
|
Gowthami A, Syed Marjuk M, Santhanam P, Thirumurugan R, Muralisankar T, Perumal P. Marine microalgae - Mediated biodegradation of polystyrene microplastics: Insights from enzymatic and molecular docking studies. CHEMOSPHERE 2025; 370:144024. [PMID: 39722402 DOI: 10.1016/j.chemosphere.2024.144024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Biodegradation of microplastics (MPs) through microalgal strains would be of eco-friendly approach for significant pollution abatement. Polystyrene (PS) is a major contaminant in the marine environment; however studies on marine microalgal degradation of PS MPs have been very limited. In the present study, six marine microalgal strains viz. Picochlorum maculatum, Dunaliella salina, Amphora sp., Navicula sp., Synechocystis sp. and Limnospira indica were investigated for their ability to degrade PS MPs for the incubation period of 45 days. Results from weight reduction, ATR-FTIR, SEM, and molecular docking analysis confirmed that microalgae formed biofilms on PS MPs, causing structural changes, and laccase-driven enzymatic breakdown. A maximum weight loss of 23.2 ± 0.21% and a minimum of 11.3 ± 0.026% were caused by the colonized microalgae Synechocystis sp. and Amphora sp. respectively. The study indicated that a higher reduction rate was observed in the Synechocystis sp. Treated PS MPs with a rate of 0.0058 g/day and a lower half-life of 119.34 days. SEM analysis showed that microalgae caused pits, erosion, and damage to the PS film. ATR-FTIR confirmed the chemical modifications and proved biodegradation. Laccase enzyme activity was higher in Synechocystis sp., and molecular docking showed the laccase interaction with the derivatives of PS, elucidating the breakdown process. This study highlights the potential of microalgae for eco-friendly microplastic degradation and paves the way for future research on the by-products of this process. Exploring the ecological impact of by-products and optimizing scalable methods can further enhance the sustainability and practical applications of this promising solution.
Collapse
Affiliation(s)
- Ayyasamy Gowthami
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Mohammed Syed Marjuk
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Perumal Santhanam
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Ramasamy Thirumurugan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Pachiappan Perumal
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
4
|
Basu AG, Paul RS, Wang F, Roy S. Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies. CHEMOSPHERE 2025; 370:143983. [PMID: 39701309 DOI: 10.1016/j.chemosphere.2024.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals. Consequently, they hinder plant growth when adsorbed to the plant surfaces. Moreover, the major metabolic processes, including photosynthesis, reproduction, and nutrient uptake, get affected due to the pore-filling of plant tissues and the blockage of sunlight. Subsequently, prolonged exposure to MPs inflicts excessive generation of reactive oxygen species (ROS), ultimately accelerating programmed cell death. However, it has been realized that bioremediation techniques, including phytoremediation, can effectively mitigate MPs pollution by adsorbing or accumulating MPs by 25-80% at the laboratory scale. In this connection, several microorganisms are vital in deteriorating MPs due to their ability to form biofilm over the MPs' surface. Additionally, the secretion of extracellular enzymes such as styrene monooxygenase, styrene oxide isomerase, phenylacetaldehyde dehydrogenase, PETase, etc., facilitates the degradation of MPs. Moreover, the inherent ability of plants to adsorb and accumulate MPs can be utilized to manage the MPs in aquatic ecosystems. However, there is a dearth of literature and comprehensive reviews highlighting the potential of bioremediation strategies. Therefore, apart from addressing the impact of MPs on aquatic flora, this article attempts to elucidate the physical and chemical basis of plant-plastic interaction and the potential strategies aquatic flora including microorganisms employ to mitigate plastic pollution.
Collapse
Affiliation(s)
- Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| | - Rita Som Paul
- Department of Botany, Siliguri College, Siliguri, Dist. Darjeeling, West Bengal, India.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong Province, PR China.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
5
|
Mendoza JE, Tineo D, Chuquibala-Checan B, Atalaya-Marin N, Taboada-Mitma VH, Tafur-Culqui J, Tarrillo E, Gómez-Fernández D, Goñas M, Reyes-Reyes MA. Global perspectives on the biodegradation of LDPE in agricultural systems. Front Microbiol 2025; 15:1510817. [PMID: 39839104 PMCID: PMC11748793 DOI: 10.3389/fmicb.2024.1510817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
The increasing use of plastics globally has generated serious environmental and human health problems, particularly in the agricultural sector where low-density polyethylene (LDPE) and other plastics are widely used. Due to its low recycling rate and slow degradation process, LDPE is a major source of pollution. This paper addresses the problem of plastic accumulation in agriculture, focusing on LDPE biodegradation strategies. The studies reviewed include recent data and the methodologies used include state-of-the-art technologies and others that have been used for decades, to monitor and measure the degree of biodegradation that each treatment applied can have, including SEM, GCMS, HPLC, and microscopy. The countries investigating these biodegradation methodologies are identified, and while some countries have been developing them for some years, others have only begun to address this problem in recent years. The use of microorganisms such as bacteria, fungi, algae, and insect larvae that influence its decomposition is highlighted. A workflow is proposed to carry out this type of research. Despite the advances, challenges remain, such as optimizing environmental conditions to accelerate the process and the need for further research that delves into microbial interactions in various environmental contexts.
Collapse
Affiliation(s)
- Jani E. Mendoza
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Daniel Tineo
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Beimer Chuquibala-Checan
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Nilton Atalaya-Marin
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Victor H. Taboada-Mitma
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Josué Tafur-Culqui
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Ever Tarrillo
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Darwin Gómez-Fernández
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Malluri Goñas
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - María Andrea Reyes-Reyes
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, Colombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
| |
Collapse
|
6
|
Srivastava P, Subramanian S, Manickam N. Biochemical and molecular mechanisms of Rhodococcus rhodochrous IITR131 for polyethylene terephthalate degradation. J Appl Microbiol 2025; 136:lxae312. [PMID: 39706601 DOI: 10.1093/jambio/lxae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
AIMS To isolate polyethylene terephthalate (PET)-degrading bacteria and elucidate the underlying mechanisms of PET biodegradation through biochemical and genome analysis. METHODS AND RESULTS Rhodococcus rhodochrous IITR131 was found to degrade PET. Strain IITR131 genome revealed metabolic versatility of the bacterium and had the ability to form biofilm on PET sheet, resulting in the cracks, abrasions, and degradation. IITR131 showed a reduction of 19.7%, exhibiting a half-life of 189.9 d of 0.1 mm PET film in 60 d and formed metabolites bis(2-hydroxyethyl) terephthalate (BHET), terephthalic acid (TPA), and benzoic acid (BA). The draft genome of 5.9 Mb of IITR131 revealed that this bacterium has plethora of genes such as terephthalate 1, 2 dioxygenase, carboxylesterase that together constituted a complete pathway for PET degradation. Moreover, strain IITR131 was found to have a variety of genes encoding for enzymes for the metabolism of several plastic polymers, xenobiotics including chloroalkanes, and polycyclic aromatic hydrocarbons. CONCLUSIONS Rhodococcus rhodochrous IITR131 demonstrated a significant potential in the biodegradation of PET. The comprehensive genomic and metabolic analyses further elucidated the molecular pathway involved in PET degradation, enhancing our understanding of the mechanisms underlying microbial PET biodegradation. These findings underscore the applicability of R. rhodochrous IITR131 in biotechnological approaches for mitigating plastic pollution.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Srikrishna Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Dar MA, Palsania P, Satya S, Dashora M, Bhat OA, Parveen S, Patidar SK, Kaushik G. Microplastic pollution: A global perspective in surface waters, microbial degradation, and corresponding mechanism. MARINE POLLUTION BULLETIN 2025; 210:117344. [PMID: 39615341 DOI: 10.1016/j.marpolbul.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Plastics are incredibly useful materials that have many benefits for both society and individual daily lives. However, the extensive utilization of plastic and plastic-derived products has led to plastic pollution in various environmental compartments across the world at alarming levels. Due to different biogeochemical processes, this plastic waste is broken down into tiny, omnipresent, and long-lasting fragments known as microplastics (<5 mm), which are causing great concern among scientists. Microplastics tend to bioaccumulate, contain toxic chemicals, and have other pollutants and pathogens adsorbed on their surface, thus having adverse effects on organisms. Globally dispersed, microplastics can now be found in almost every environmental niche. Therefore, the purpose of this paper is to give an overview of the research that has been done on this topic, summarize the evidence of microplastic pollution in surface waters, and discuss the analytical summary of recent findings on the microbial degradation of microplastics and effects of various parameters on its degradation as well as the potential degradation mechanism of microplastics. A summary of the most recent and relevant literature is provided on microplastic pollution and microorganisms that can break down various microplastics are classified according to their types including bacteria, fungi, and algae. The environmental factors influencing microplastic degradation and the associated degradation effects are therefore generalized. Additionally, a brief discussion of the mechanism underlying the microbial-mediated degradation of microplastics is provided. This review serves as a reference for upcoming research looking into efficient ways to reduce microplastic pollution.
Collapse
Affiliation(s)
- Mohd Ashraf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shalni Satya
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Milap Dashora
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Ommer Ahad Bhat
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Sana Parveen
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shailesh Kumar Patidar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
8
|
Wang M, Lin F, Zhao T, Dong Y, Hao X, Ning D, Zhang Y, Zhang K, Zhou D, Luo J, Li X, Wang B. The Application of a Sodium Benzoate Salt-Nucleating Agent in Recycled Polyethylene Terephthalate: Crystallization Behavior and Mechanism. Molecules 2024; 30:37. [PMID: 39795095 PMCID: PMC11722207 DOI: 10.3390/molecules30010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The molecular chains of recycled polyethylene terephthalate (rPET) show breakage during daily use, causing poor crystallization and leading to mechanical properties that, when blended with the nucleating agent, become an effective method of solving this problem. The salt-nucleating agent sodium benzoate (SB), disodium terephthalate (DT), and trisodium 1,3,5benzene tricarboxylic (TBT) were synthesized, and an rPET/nucleating agent blend was prepared. The intrinsic viscosity (η) results showed that the η of the rPET/SB was decreased, which indicated the breakage of the rPET molecular chains. The FTIR results indicated that a chemical reaction occurred between the rPET and Na+ of the SB. Moreover, the Na+ content of the DT and TBT were higher than that of the SB, which increased the opportunity for low-molecular-weight rPET to reattach to the organic carboxylic acid portion of the nucleating agent, thereby increasing the η of the rPET/DT and rPET/TBT. The salt-nucleating agent sodium benzoate greatly improved the crystallization properties of the rPET, resulting in the half-crystallization time decreasing, the crystallization temperature increasing, and the effect of SB being better than that of DT and TBT. This was because the nucleating agent caused chemical nucleation with rPET, and the ionic groups acted as nucleation sites, while the rPET/DT and rPET/TBT, which had high molecular weights, hindered the improvement of the crystallization properties. The mechanical properties prove that the rPET/SB decreased due to the severe degradation of the rPET molecular chains. The mechanical properties of the rPET/DT and rPET/TBT were effectively improved because of the nucleating agent refining the grain size of the rPET and the high molecular weight. But the stacking of multitudinous rPET molecular chains can form a structure resembling physical cross-linking, causing a slight decrease in the mechanical properties of the rPET/TBT compared to the rPET/DT.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Fuhua Lin
- School of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China;
| | - Tianjiao Zhao
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Yapeng Dong
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Xinyu Hao
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Dingyi Ning
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Yanli Zhang
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Kexin Zhang
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Dan Zhou
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| | - Jun Luo
- Guangzhou Fibre Product Testing and Research Institute, Guangzhou 510220, China;
| | - Xiangyang Li
- Department of Chemical and Chemical Engineering, Shanxi Polytechnic College, Taiyuan 030006, China
| | - Bo Wang
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (M.W.); (T.Z.); (Y.D.); (X.H.); (D.N.); (Y.Z.); (K.Z.); (D.Z.)
| |
Collapse
|
9
|
Wilkes R, Zhou N, Carroll AL, Aryal O, Teitel KP, Wilson RS, Zhang L, Kapoor A, Castaneda E, Guss AM, Waldbauer JR, Aristilde L. Mechanisms of Polyethylene Terephthalate Pellet Fragmentation into Nanoplastics and Assimilable Carbons by Wastewater Comamonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19338-19352. [PMID: 39360733 PMCID: PMC11526368 DOI: 10.1021/acs.est.4c06645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Comamonadaceae bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with Comamonas testosteroniKF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.5-fold increase in the abundance of small nanoparticles (<100 nm) during 30-day cultivation. Infrared spectroscopy captured primarily hydrolytic cleavage in the fragmented pellet particles. Solution analysis further demonstrated double hydrolysis of a PET oligomer, bis(2-hydroxyethyl) terephthalate, to the bioavailable monomer terephthalate. Supplementation with acetate, a common wastewater co-substrate, promoted cell growth and PET fragmentation. Of the multiple hydrolases encoded in the genome, intracellular proteomics detected only one, which was found in both acetate-only and PET-only conditions. Homology modeling of this hydrolase structure illustrated substrate binding analogous to reported PET hydrolases, despite dissimilar sequences. Mutants lacking this hydrolase gene were incapable of PET oligomer hydrolysis and had a 21% decrease in PET fragmentation; re-insertion of the gene restored both functions. Thus, we have identified constitutive production of a key PET-degrading hydrolase in wastewater Comamonas, which could be exploited for plastic bioconversion.
Collapse
Affiliation(s)
- Rebecca
A. Wilkes
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Nanqing Zhou
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin L. Carroll
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ojaswi Aryal
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly P. Teitel
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca S. Wilson
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Lichun Zhang
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Arushi Kapoor
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Edgar Castaneda
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Adam M. Guss
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacob R. Waldbauer
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Ludmilla Aristilde
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Safdar A, Ismail F, Iftikhar H, Majid Khokhar A, Javed A, Imran M, Safdar B. Determination of Biodegradation Potential of Aspergillus niger, Candida albicans, and Acremonium sclerotigenum on Polyethylene, Polyethylene Terephthalate, and Polystyrene Microplastics. Int J Microbiol 2024; 2024:7682762. [PMID: 39502512 PMCID: PMC11535424 DOI: 10.1155/2024/7682762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 11/08/2024] Open
Abstract
Plastics are used widely in almost every field of life, but their synthetic and persistent nature makes them harmful for the environment. The aim of this research was to evaluate the degradation abilities of Aspergillus niger, Candida albicans, and Acremonium sclerotigenum on microplastics (MPs). MP pieces of 4 ± 1 mm, including polyethylene, polyethylene terephthalate, and polystyrene, were incubated with fungal inoculums for 30 days. The degradation of treated MPs was determined by biofilm formation, weight loss, scanning electron microscopy (SEM), and Fourier transform analyses. The results indicated that the polyethylene MPs treated with Aspergillus niger exhibited the highest level of biofilm formation (optical density 1.595) and percentage weight loss (16%). In the case of polyethylene terephthalate and polystyrene MPs, Acremonium sclerotigenum and co-culture showed weight loss of 6% and 10%, respectively. Candida albicans was observed to be the least effective in biodegradation analyses. SEM observation revealed the surface modifications as holes, pits, cracks, and increased roughness in treated MPs. Fourier transform infrared (FTIR) spectroscopy showed that the chemical structure of each polymer exhibited some variations. The study concluded that the fungal strains play an important role in the biodegradation of plastics and can be utilized to mitigate environmental pollution.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Hafsa Iftikhar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Majid Khokhar
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Atika Javed
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Imran
- Institute for Advanced Study Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Bushra Safdar
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
11
|
Yip A, McArthur OD, Ho KC, Aucoin MG, Ingalls BP. Degradation of polyethylene terephthalate (PET) plastics by wastewater bacteria engineered via conjugation. Microb Biotechnol 2024; 17:e70015. [PMID: 39315602 PMCID: PMC11420662 DOI: 10.1111/1751-7915.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Wastewater treatment plants are one of the major pathways for microplastics to enter the environment. In general, microplastics are contaminants of global concern that pose risks to ecosystems and human health. Here, we present a proof-of-concept for reduction of microplastic pollution emitted from wastewater treatment plants: delivery of recombinant DNA to bacteria in wastewater to enable degradation of polyethylene terephthalate (PET). Using a broad-host-range conjugative plasmid, we enabled various bacterial species from a municipal wastewater sample to express FAST-PETase, which was released into the extracellular environment. We found that FAST-PETase purified from some transconjugant isolates could degrade about 40% of a 0.25 mm thick commercial PET film within 4 days at 50°C. We then demonstrated partial degradation of a post-consumer PET product over 5-7 days by exposure to conditioned media from isolates. These results have broad implications for addressing the global plastic pollution problem by enabling environmental bacteria to degrade PET.
Collapse
Affiliation(s)
- Aaron Yip
- Department of Chemical EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Owen D. McArthur
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Kalista C. Ho
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Marc G. Aucoin
- Department of Chemical EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Brian P. Ingalls
- Department of Applied MathematicsUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|
12
|
Twagirayezu G, Cheng H, Irumva O, Nizeyimana JC, Nizeyimana I, Bakunzibake P, Uwimana A, Birame CS. A critical review and analysis of plastic waste management practices in Rwanda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51126-51146. [PMID: 39126583 DOI: 10.1007/s11356-024-34572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Plastic products are now essential commodities, yet their widespread disposal leads to environmental and human health effects, particularly in developing nations. Therefore, developing nations require comprehensive studies to assess the current state of plastic and plastic waste production to enhance plastic waste management practices. This review analyzes the import and export of plastic and the production of plastic waste in Rwanda, aiming to improve waste management practices. This review used open-access papers, reports, and websites dealing with plastic waste management. In this review, 58 articles from the Web of Science and 86 from other search engines were consulted to write this review. The findings revealed that the daily estimated plastic waste produced per person ranges between 0.012 and 0.056 kg. The estimated amount of plastic waste generated per person per year in Rwanda could be between 4.38 and 20.44 kg. Plastic waste accounts for between 1 and 8% of the total municipal solid waste produced per person per day in the country, which ranges from 219 to 255.5 kg. The average annual amount of imported plastics could reach 568.2881 tons, whereas the average quantity of exported plastics could reach 103.7414 tons. This shows that plastic management practices have not yet adopted technically advanced or improved practices, which should concern efforts to protect our environment. This study suggests approaches that can vastly improve plastic waste management and potentially open massive opportunities for the people of Rwanda.
Collapse
Affiliation(s)
- Gratien Twagirayezu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, China.
| | - Olivier Irumva
- School of Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jean Claude Nizeyimana
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- CAS Key Laboratory of Urban Pollutant Conversion of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | | | - Philippe Bakunzibake
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Abias Uwimana
- College of Science and Technology, University of Rwanda, P. O. Box 3900, Kigali, Rwanda
| | | |
Collapse
|
13
|
Srivastava P, Saji J, Manickam N. Biodegradation of polyethylene terephthalate (PET) by Brucella intermedia IITR130 and its proposed metabolic pathway. Biodegradation 2024; 35:671-685. [PMID: 38459363 DOI: 10.1007/s10532-024-10070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/18/2024] [Indexed: 03/10/2024]
Abstract
Accumulation of polyethylene terephthalate (PET) polyester in ecosystems across the globe is a major pollution of concern. Microbial degradation recently generated novel insights into the biodegradation of varieties of plastics. In this study, a PET degrading bacterium Brucella intermedia IITR130 was isolated from a contaminated lake ecosystem at Pallikaranai, Chennai, India. Incubation of the bacterium along with the PET sheet (0.1 mm thickness) for 60 days resulted in 26.06% degradation, indicating a half-life of 137.8 days. Considerable changes in the surface morphology of the PET sheet were found as holes, pits, and cracks on incubation with strain IITR130, as revealed by scanning electron microscopy (SEM). After bacterial treatment of PET, the formation of new functional groups, most notably in the area of 3326 cm-1 suggestive of O-H stretch, leading to carboxylic acid and alcohol as products were suggested by fourier transform infrared (FTIR) analysis. Monomethyl terephthalate (MMT) and terephthalic acid (TPA) were identified by gas chromatography-mass spectrometry (GC-MS) analysis as PET degradation metabolites. Tributyrin clearance assay confirmed the presence of a lipase/esterase enzyme in the strain IITR130. In this study, a degradation pathway for PET by an isolated and identified bacterium Brucella intermedia IITR130 was characterized in detail.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Joel Saji
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
14
|
Omar MN, Minggu MM, Nor Muhammad NA, Abdul PM, Zhang Y, Ramzi AB. Towards consolidated bioprocessing of biomass and plastic substrates for semi-synthetic production of bio-poly(ethylene furanoate) (PEF) polymer using omics-guided construction of artificial microbial consortia. Enzyme Microb Technol 2024; 177:110429. [PMID: 38537325 DOI: 10.1016/j.enzmictec.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
Poly(ethylene furanoate) (PEF) plastic is a 100% renewable polyester that is currently being pursued for commercialization as the next-generation bio-based plastic. This is in line with growing demand for circular bioeconomy and new plastics economy that is aimed at minimizing plastic waste mismanagement and lowering carbon footprint of plastics. However, the current catalytic route for the synthesis of PEF is impeded with technical challenges including high cost of pretreatment and catalyst refurbishment. On the other hand, the semi-biosynthetic route of PEF plastic production is of increased biotechnological interest. In particular, the PEF monomers (Furan dicarboxylic acid and ethylene glycol) can be synthesized via microbial-based biorefinery and purified for subsequent catalyst-mediated polycondensation into PEF. Several bioengineering and bioprocessing issues such as efficient substrate utilization and pathway optimization need to be addressed prior to establishing industrial-scale production of the monomers. This review highlights current advances in semi-biosynthetic production of PEF monomers using consolidated waste biorefinery strategies, with an emphasis on the employment of omics-driven systems biology approaches in enzyme discovery and pathway construction. The roles of microbial protein transporters will be discussed, especially in terms of improving substrate uptake and utilization from lignocellulosic biomass, as well as from depolymerized plastic waste as potential bio-feedstock. The employment of artificial bioengineered microbial consortia will also be highlighted to provide streamlined systems and synthetic biology strategies for bio-based PEF monomer production using both plant biomass and plastic-derived substrates, which are important for circular and new plastics economy advances.
Collapse
Affiliation(s)
- Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Matthlessa Matthew Minggu
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia.
| |
Collapse
|
15
|
Jebashalomi V, Emmanuel Charles P, Rajaram R. Microbial degradation of low-density polyethylene (LDPE) and polystyrene using Bacillus cereus (OR268710) isolated from plastic-polluted tropical coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171580. [PMID: 38462004 DOI: 10.1016/j.scitotenv.2024.171580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The study focused on marine bacteria, specifically Bacillus cereus, sourced from heavily polluted coastal areas in Tamil Nadu, aiming to assess their efficacy in degrading low-density polyethylene (LDPE) and polystyrene over a 42-day period. When LDPE and polystyrene films were incubated with Bacillus cereus, they exhibited maximum weight losses of 4.13 ± 0.81 % and 14.13 ± 2.41 %, respectively. Notably, polystyrene exhibited a higher reduction rate (0.0036 day-1) and a shorter half-life (195.29 days). SEM images of the treated LDPE and polystyrene unveiled surface erosion with cracks. The energy dispersive X-ray (EDX) analysis revealed elevated carbon content and the presence of oxygen in the treated LDPE and polystyrene films. The ATR-FTIR spectra exhibited distinctive peaks corresponding to functional groups, with observable peak shifts in the treated films. Notable increases were detected in carbonyl, internal double bond, and vinyl indices across all treated groups. Additionally, both treated LDPE and polystyrene showed reduced crystallinity. This research sheds light on Bacillus cereus (OR268710) biodegradation capabilities, emphasizing its potential for eco-friendly waste management in coastal regions.
Collapse
Affiliation(s)
- Vethanayaham Jebashalomi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
16
|
Hossain S, Shukri ZNA, Waiho K, Ibrahim YS, Kamaruzzan AS, Rahim AIA, Draman AS, Wahab W, Khatoon H, Kasan NA. Biodegradation of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics by floc-forming bacteria, Bacillus cereus strain SHBF2, isolated from a commercial aquafarm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32225-32245. [PMID: 38644425 DOI: 10.1007/s11356-024-33337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.
Collapse
Affiliation(s)
- Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wahidah Wahab
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Helena Khatoon
- Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
17
|
Bocci V, Galafassi S, Levantesi C, Crognale S, Amalfitano S, Congestri R, Matturro B, Rossetti S, Di Pippo F. Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. Front Microbiol 2024; 15:1395401. [PMID: 38699475 PMCID: PMC11064797 DOI: 10.3389/fmicb.2024.1395401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.
Collapse
Affiliation(s)
- Valerio Bocci
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Galafassi
- Water Research Institute, CNR-IRSA, National Research Council, Verbania, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Bruna Matturro
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
18
|
K S V, Prapanchan VN, Selvan VNI, Karmegam N, Kim W, Barcelo D, Govarthanan M. Microplastics, their abundance, and distribution in water and sediments in North Chennai, India: An assessment of pollution risk and human health impacts. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 263:104339. [PMID: 38564944 DOI: 10.1016/j.jconhyd.2024.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Plastic particles, measuring <5 mm in size, mainly originate from larger plastic debris undergoing degradation, fragmenting into even smaller fragments. The goal was to analyze the spatial diversity and polymer composition of microplastics (MPs) in North Chennai, South India, aiming to evaluate their prevalence and features like composition, dimensions, color, and shape. In 60 sediment samples, a combined count of 1589 particles were detected, averaging 26 particles per 5 g-1 of dry sediment. The water samples from the North Chennai vicinity encompassed a sum of 1588 particles across 71 samples, with an average of 22 items/L. The majority of MPs ranged in size from 1 mm to 500 μm. The ATR-FTIR results identified the predominant types of MPs as polystyrene, polyvinyl chloride, polyethylene, polyethylene terephthalate, and polypropylene in sediment and water. The spatial variation analysis revealed high MPs concentration in landfill sites, areas with dense populations, and popular tourist destinations. The pollution load index in water demonstrated that MPs had contaminated all stations. Upon evaluating the polymeric and pollution risks, it was evident that they ranged from 5.13 to 430.15 and 2.83 to 15,963.2, which is relatively low to exceedingly high levels. As the quantity of MPs and hazardous polymers increased, the level of pollution and corresponding risks also escalated significantly. The existence of MPs in lake water, as opposed to open well water, could potentially pose a cancer risk for both children and adults who consume it. Detecting MPs in water samples highlights the significance of implementing precautionary actions to alleviate the potential health hazards they create.
Collapse
Affiliation(s)
- Vignesh K S
- Centre for Occupational Safety and Health, Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai 603203, Tamil Nadu, India
| | - V N Prapanchan
- Department of Geology, Anna University, Chennai 600025, Tamil Nadu, India.
| | - V N Indhiya Selvan
- Department of Geography, University of Madras, Chennai 600025, Tamil Nadu, India
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Damia Barcelo
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
19
|
Cognigni F, Temporiti MEE, Nicola L, Gueninchault N, Tosi S, Rossi M. Exploring the infiltrative and degradative ability of Fusarium oxysporum on polyethylene terephthalate (PET) using correlative microscopy and deep learning. Sci Rep 2023; 13:22987. [PMID: 38151495 PMCID: PMC10752890 DOI: 10.1038/s41598-023-50199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
Managing the worldwide steady increase in the production of plastic while mitigating the Earth's global pollution is one of the greatest challenges nowadays. Fungi are often involved in biodegradation processes thanks to their ability to penetrate into substrates and release powerful catabolic exoenzymes. However, studying the interaction between fungi and plastic substrates is challenging due to the deep hyphal penetration, which hinders visualisation and evaluation of fungal activity. In this study, a multiscale and multimodal correlative microscopy workflow was employed to investigate the infiltrative and degradative ability of Fusarium oxysporum fungal strain on polyethylene terephthalate (PET) fragments. The use of non-destructive high-resolution 3D X-ray microscopy (XRM) coupled with a state-of-art Deep Learning (DL) reconstruction algorithm allowed optimal visualisation of the distribution of the fungus on the PET fragment. The fungus preferentially developed on the edges and corners of the fragment, where it was able to penetrate into the material through fractures. Additional analyses with scanning electron microscopy (SEM), Raman and energy dispersive X-ray spectroscopy (EDX) allowed the identification of the different phases detected by XRM. The correlative microscopy approach unlocked a more comprehensive understanding of the fungus-plastic interaction, including elemental information and polymeric composition.
Collapse
Affiliation(s)
- Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome LA SAPIENZA, 00185, Rome, Italy
| | - Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
- National Biodiversity Future Centre, 90133, Palermo, Italy
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| | | | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
- National Biodiversity Future Centre, 90133, Palermo, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome LA SAPIENZA, 00185, Rome, Italy
| |
Collapse
|
20
|
Kumar A, Pandit S, Sharma K, Mathuriya AS, Prasad R. Evaluation of bamboo derived biochar as anode catalyst in microbial fuel cell for xylan degradation utilizing microbial co-culture. BIORESOURCE TECHNOLOGY 2023; 390:129857. [PMID: 37852505 DOI: 10.1016/j.biortech.2023.129857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
This study aimed to examine the microbial degradation of xylan through Bacillus sp. isolated from wastewater. Co-culture of Bacillus licheniformis strain and MTCC-8104 strain of Shewanella putrefaciens were employed in a microbial fuel cell (MFC) to facilitate energy production simultaneous xylan degradation under optimum conditions. Electrochemical properties of MFC and degradation analysis were used to validate xylan degradation throughout various experimental parameters. Degradation of the optimal xylan concentration using co-culture, resulting in a power density of 7.8 W/m3, the anode surface was modified with bamboo-derived biochar in order to increase power density under the same operational condition. Under optimum circumstances, increasing the anode's surface area boosted electron transport and electro-active biofilm growth, resulting in a higher power density of 12.9 W/m3. Co-culture of hydrolyzing and electro-active bacteria was found beneficial for xylan degradation and anode modifications enhance power output while microbial degradation.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Kalpana Sharma
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Abhilasha Singh Mathuriya
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh, New Delhi 110003, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India.
| |
Collapse
|
21
|
Jebashalomi V, Charles PE, Rajaram R, Sadayan P. A critical review on nanoplastics and its future perspectives in the marine environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1186. [PMID: 37695547 DOI: 10.1007/s10661-023-11701-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Nanoplastics (plastic particles smaller than 1 μm) are the least-known type of marine litter. Nanoplastics (NPs) have attracted much interest in recent years because of their prevalence in the environment and the potential harm they can cause to living organisms. This article focuses on understanding NPs and their fate in the marine environment. Sources of NPs have been identified, including accidental release from products or through nano-fragmentation of larger plastic debris. As NPs have a high surface area, they may retain harmful compounds. The presence of harmful additives in NPs poses unique practical challenges for studies on their toxicity. In this review, several methods specifically adapted for the physical and chemical characterization of NPs have been discussed. Furthermore, the review provides an overview of the translocation and absorption of NPs into organisms, along with an evaluation of the release of potential toxins from NPs. Further, we have provided an overview about the existing methods suggested for the possible degradation of these NPs. We conclude that the hazards of NPs are plausible but unknown, necessitating a thorough examination of NPs' sources, fate, and effects to better mitigate and spread awareness about this emerging contaminant.
Collapse
Affiliation(s)
- Vethanayaham Jebashalomi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - Paramasivam Sadayan
- Department of Oceanography and Coastal Area Studies, School of Marine Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
22
|
Kim JH, Lee SH, Lee BM, Son KH, Park HY. Biodegradation Potential of Polyethylene Terephthalate by the Two Insect Gut Symbionts Xanthomonas sp. HY-74 and Bacillus sp. HY-75. Polymers (Basel) 2023; 15:3546. [PMID: 37688172 PMCID: PMC10489954 DOI: 10.3390/polym15173546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Polyethylene terephthalate (PET) is a plastic material that is widely used in beverage bottles, food packaging, and other consumer products, which is highly resistant to biodegradation. In this study, we investigated the effects of two insect gut symbionts, Xanthomonas sp. HY-74 and Bacillus sp. HY-75, during PET biodegradation. Both strains degraded PET-containing agar plates, and the sole nutrition source assay showed that HY-74 had different degradation rates depending on the presence of specific carbon and nitrogen sources, whereas HY-75 exhibited comparable degradation across all tested conditions. The two strains biodegraded the PET film with 1.57 ± 0.21% and 1.42 ± 0.46% weight loss after 6 weeks, respectively. Changes in the morphology and structure of the PET films, such as erosion, scratching, and surface roughening, were determined using scanning electron microscopy (SEM). Further, the two strains biodegraded PET powder, broke it into its degradation products, and changed the surface functional groups. This is the first study to investigate the biodegradation of PET by Hymenoptera gut-derived microbes and offers promising insights into the potential applications of insect gut symbionts in PET waste management.
Collapse
Affiliation(s)
| | | | | | | | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.-H.K.); (S.-H.L.); (B.-M.L.); (K.-H.S.)
| |
Collapse
|
23
|
Idris SN, Amelia TSM, Bhubalan K, Lazim AMM, Zakwan NAMA, Jamaluddin MI, Santhanam R, Amirul AAA, Vigneswari S, Ramakrishna S. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. ENVIRONMENTAL RESEARCH 2023; 231:115988. [PMID: 37105296 DOI: 10.1016/j.envres.2023.115988] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Plastics have become an integral part of human life. Single-use plastics (SUPs) are disposable plastics designed to be used once then promptly discarded or recycled. This SUPs range from packaging and takeaway containers to disposable razors and hotel toiletries. Synthetic plastics, which are made of non-renewable petroleum and natural gas resources, require decades to perpetually disintegrate in nature thus contribute to plastic pollution worldwide, especially in marine environments. In response to these problems, bioplastics or bio-based and biodegradable polymers from renewable sources has been considered as an alternative. Understanding the mechanisms behind the degradation of conventional SUPs and biodegradability of their greener counterpart, bioplastics, is crucial for appropriate material selection in the future. This review aims to provide insights into the degradation or disintegration of conventional single-use plastics and the biodegradability of the different types of greener-counterparts, bioplastics, their mechanisms, and conditions. This review highlights on the biodegradation in the environments including composting systems. Here, the various types of alternative biodegradable polymers, such as bacterially biosynthesised bioplastics, natural fibre-reinforced plastics, starch-, cellulose-, lignin-, and soy-based polymers were explored. Review of past literature revealed that although bioplastics are relatively eco-friendly, their natural compositions and properties are inconsistent. Furthermore, the global plastic market for biodegradable plastics remains relatively small and require further research and commercialization efforts, especially considering the urgency of plastic and microplastic pollution as currently critical global issue. Biodegradable plastics have potential to replace conventional plastics as they show biodegradation ability under real environments, and thus intensive research on the various biodegradable plastics is needed to inform stakeholders and policy makers on the appropriate response to the gradually emerging biodegradable plastics.
Collapse
Affiliation(s)
- Siti Norliyana Idris
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anim Maisara Mohd Lazim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Muhammad Imran Jamaluddin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Rameshkumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang, Malaysia.
| | - Sevakumaran Vigneswari
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, national University of Singapore, 119260, Singapore.
| |
Collapse
|
24
|
Zhang B, Wu Q, Gao S, Ruan Y, Qi G, Guo K, Zeng J. Distribution and removal mechanism of microplastics in urban wastewater plants systems via different processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121076. [PMID: 36641065 DOI: 10.1016/j.envpol.2023.121076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastic pollution threatens water systems worldwide. As one of the most important parts of city wastewater treatment, wastewater treatment plants are not only microplastics interception barriers but also emission sources. Water samples were collected from each sewage treatment plant stage and sludge from the sludge dewatering room. Microplastics were extracted using wet peroxide oxidation and flotation, and the abundance, size, shape, and polymer type of microplastics were detected. Basis on the results, the influence of each process on the removal rate and characteristics of microplastics under the same influent source was analysed. The influent microplastic concentration in this study was 32.5 ± 1.0 n/L, which rapidly decreased after treatment. The removal rates of the sequencing batch reactor activated sludge, cyclic activated sludge, and anaerobic anoxic oxic technologies were 73.0%, 75.6%, and 83.9%, respectively. Most microplastics were transported to the sludge, and the concentration of microplastics in dehydrated sludge was 27.2 ± 3.1 n/g. Microplastics removal occurred primarily during the primary and secondary stages. Disposal processes, settling time, and process design affected wastewater treatment plant microplastic removal rates at each stage. Significant differences in microplastic characteristics were observed at each stage, with the most abundant being fragment shaped, particle sizes of 30-100 μm, and black in colour. Sixteen polymer types were identified using a Raman spectrometer. The predominant polymers are polypropylene, polyethylene, and polyethylene terephthalate. This study demonstrates that optimising the process design of existing wastewater treatment plants is crucial for the prevention and control of microplastic pollution. It is suggested that the process settings of contemporary wastewater treatment plants should be studied in depth to develop a scientific foundation for avoiding and managing microplastic pollution in urban areas.
Collapse
Affiliation(s)
- Borui Zhang
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China
| | - Qixin Wu
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China.
| | - Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Yunjun Ruan
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Guizhi Qi
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China
| | - Ke Guo
- Guiyang Research Academy of Eco-Environmental Science, Guiyang, Guizhou, 550000, China
| | - Jie Zeng
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| |
Collapse
|