1
|
Liu X, Bian WM, Feng YQ, Tang JT, Zuo N, Wang JJ, De Felici M, Wang X, Shen W. VigorBaby dietary supplement administration to mice during pregnancy and lactation alleviated ovarian disorders induced by Zearalenone in offsprings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118264. [PMID: 40334536 DOI: 10.1016/j.ecoenv.2025.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Zearalenone (ZEN) is a mycotoxin with estrogenic activity that is widely present in cereals. We exposed pregnant and lactating mice to 40 μg/kg body weight (bw) of ZEN to confirm and extend previous observational reports. The current study demonstrated that ZEN exposure increased reactive oxygen species (ROS), DNA damage, and mitochondrial dysfunction in the ovaries of neonatal offspring, leading to primordial follicle (PF) impairment. Moreover, before puberty, such dysfunction resulted in impairment of oocyte maturation (evaluated as their capacity to resume and complete meiosis) and ability to be fertilized and give rise to blastocysts. Remarkably, we found that these deleterious effects of the mycotoxin were almost completely abolished when dams, after ZEN administration, were fed 200 mg/kg of VigorBaby, a dietary supplement containing various vitamins and antioxidants. Moreover, some ovarian defects caused by ZEN in the F1 offsprings, such as decreased numbers of oocytes and PFs in 3 dpp ovaries and altered folliculogenesis in 21 dpp ovaries, were also observed in the F2 generation. However, this was not the case when dams of the F1 offsprings were fed ZEN supplemented with VigorBaby. These data provide further information regarding the mechanisms of ZEN's effects on the ovary and demonstrate that the use of a commercially dietary supplement was beneficial in preventing detrimental reproductive consequences of this mycotoxin.
Collapse
Affiliation(s)
- Xuan Liu
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen-Meng Bian
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Qin Feng
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Tian Tang
- College of Life Sciencs, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Jie Wang
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wei Shen
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Han B, Hua L, Yu S, Ge W, Huang C, Tian Y, Li C, Yan J, Qiao T, Guo J, Lu D, Wang B, Cai D, Zhang Y, Liang S, Zhao J, Hou Q, Shen W, Sun Z. Revealing the core suppression effects of various Di (2-ethylhexyl) phthalate exposure on early meiosis progression in postnatal male mice via single-cell RNA sequencing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117866. [PMID: 39923572 DOI: 10.1016/j.ecoenv.2025.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The male reproductive system has been the subject of considerable attention in recent years due to the adverse effects of Di (2-ethylhexyl) phthalate (DEHP). Although previous research has suggested that DEHP exposure hinders the early meiotic progression of male germ cells, the underlying mechanisms are still not well understood. The transcriptomic changes in testicular cells of postnatal male rodents following DEHP exposure were meticulously analyzed using 10X Genomics single-cell RNA sequencing in this study. For downstream analysis, we acquired 42,000 cells and generated 3172,754,990 reads. DEHP exposure at concentrations of 40 μg/kg/day (DEHP40) and 80 μg/kg/day (DEHP80) substantially decreased the proportion of pachytene and diplotene spermatocytes, indicating a shared inhibitory effect on early meiosis, as demonstrated by our findings. In addition, DEHP exposure disrupted the cellular communication between Sertoli cells and germ cells, which had a significant impact on the p38-MAPK signaling pathway. The expression of key ligand genes Tgfb1 and Tgfb3 in Sertoli cells was significantly reduced. DEHP exposure resulted in a substantial decrease in the expression of the Trp53 gene, which in turn down-regulated three critical downstream genes (Stmn1, Tubb5, and Ccnb1) that are implicated in spindle organization from a mechanistic perspective. This study offers the first comprehensive evidence that DEHP inhibits early meiotic progression in male germ cells through the Trp53-mediated p38-MAPK pathway, providing crucial insights into the molecular mechanisms underlying DEHP-induced male reproductive toxicity. Our results emphasize the enduring negative effects of DEHP exposure on male fertility, which have substantial ramifications for the comprehension and mitigation of the influence of environmental estrogens on reproductive health.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei Hua
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Shuai Yu
- Qingdao Fengxi Pharmaceuticals Co., Ltd., Qingdao, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yu Tian
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chunxiao Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiamao Yan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tian Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiachen Guo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Dongliang Lu
- Department of Urology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Bin Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Diya Cai
- Department of Urology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Yunqi Zhang
- STI-Zhilian Research Institute for Innovation and Digital Health, Beijing, China
| | - Shaolin Liang
- STI-Zhilian Research Institute for Innovation and Digital Health, Beijing, China; Institute for Six-sector Economy, Fudan University, Shanghai, China
| | - Jianjuan Zhao
- STI-Zhilian Research Institute for Innovation and Digital Health, Beijing, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Feng M, Wang J, Zhao X, Du H, Dai Y. Novel Insight into the mechanism of di (2-ethylhexyl) phthalate (DEHP) impairing early follicle development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117043. [PMID: 39293100 DOI: 10.1016/j.ecoenv.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), an artificially synthetic plasticizer, is a widespread environmental endocrine disruptor, which has raised substantial concern among the public about its potential reproductive toxicity effects. Taking large amounts of DEHP disrupts the normal functioning of the ovaries, however, the toxicological effects and the mechanisms by which DEHP impairs fetal folliculogenesis remain poorly understood. Our research aims to elucidate the associations between utero exposure to DEHP and fetal folliculogenesis in offspring. In this research, we monitored the spatiotemporal and expression levels of GDF9-Hedgehog (Hh) pathway-related genes during postnatal days 3-14, confirming initially the potential associations between defects in theca cell development and the downregulation of GDF9-Hh signaling. Moreover, utilizing an ovarian organ in vitro culture model, rescue validation experiments demonstrated that the addition of recombinant GDF9 protein effectively alleviate the theca cell damage caused by DEHP, thus supporting the aforementioned associations. In conclusion, our findings validate the significant role of the GDF9-Hh pathway in the enduring reproductive toxicity resulting from prenatal exposure to DEHP.
Collapse
Affiliation(s)
- Mingqian Feng
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jiapeng Wang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Xiaorong Zhao
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Hua Du
- Department of Pathology, Basic Medical College/Affifiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
4
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Visser N, Silva AV, Tarvainen I, Damdimopoulos A, Davey E, Roos K, Björvang RD, Kallak TK, Lager S, Lavogina D, Laws M, Piltonen T, Salumets A, Flaws JA, Öberg M, Velthut-Meikas A, Damdimopoulou P, Olovsson M. Epidemiologically relevant phthalates affect human endometrial cells in vitro through cell specific gene expression changes related to the cytoskeleton and mitochondria. Reprod Toxicol 2024; 128:108660. [PMID: 38992643 DOI: 10.1016/j.reprotox.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression. Human endometrial primary epithelial and stromal cells were isolated from healthy fertile-aged women (n=3), and were compared to endometrial cell lines T-HESC and Ishikawa. Three different epidemiologically relevant phthalate mixtures were used, defined by urine samples in the Midlife Women Health Study (MWHS) cohort. Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was used as a single phthalate control. Cells were harvested for proliferation testing and transcriptomic analyses after 24 h exposure. Even though all cell models responded differently to the phthalate exposures, many overlapping differentially expressed genes (DEGs, FDR<0.1), related to cell adhesion, cytoskeleton and mitochondria were found in all cell types. The qPCR analysis confirmed that MEHHP significantly affected cell adhesion gene vinculin (VCL) and NADH:ubiquinone oxidoreductase subunit B7 (NDUFB7), important for oxidative phosphorylation. Benchmark dose modelling showed that MEHHP had significant concentration-dependent effects on cytoskeleton gene actin-beta (ACTB). In conclusion, short 24 h phthalate exposures significantly altered gene expression cell-specifically in human endometrial cells, with six shared DEGs. The mixture effects were similar to those of MEHHP, suggesting MEHHP could be the main driver in the mixture. Impact of phthalate exposures on endometrial functions including receptivity should be addressed.
Collapse
Affiliation(s)
- Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Antero Vieira Silva
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilari Tarvainen
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Department of Obstetrics and Gynaecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki 00029 HUS, Finland
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Eva Davey
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic, Tallinn, Estonia
| | - Richelle D Björvang
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Terhi Piltonen
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Andres Salumets
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Mattias Öberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Zhao Y, Hu ZY, Lou M, Jiang FW, Huang YF, Chen MS, Wang JX, Liu S, Shi YS, Zhu HM, Li JL. AQP1 Deficiency Drives Phthalate-Induced Epithelial Barrier Disruption through Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15334-15344. [PMID: 38916549 DOI: 10.1021/acs.jafc.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
7
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
8
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
9
|
Wang JJ, Zhang XY, Zeng Y, Liu QC, Feng XL, Yan JM, Li MH, Reiter RJ, Shen W. Melatonin alleviates the toxic effect of di(2-ethylhexyl) phthalate on oocyte quality resulting from CEBPB suppression during primordial follicle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132997. [PMID: 38008054 DOI: 10.1016/j.jhazmat.2023.132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023]
Abstract
Presently, the exposure of plasticizers to humans and animals occurs daily, which pose a potential threat to reproductive health. In the present study, a pregnant mouse model exposed to di(2-ethylhexyl) phthalate (DEHP, one of the most common plasticizers) and melatonin was established, and the single-cell transcriptome technology was applied to investigate the effects of melatonin in ovarian cells against DEHP. Results showed that DEHP markedly altered the gene expression pattern of ovarian cells, and severely weakened the histone methylation modification of oocytes. The administration of melatonin recovered the expression of LHX8 and SOHLH1 proteins that essential for primordial follicle formation, and increased the expression of CEBPB, as well as key genes of histone methylation modification (such as Smyd3 and Kdm5a). In addition, the ovarian damage caused by DEHP was also relieved after the overexpression of CEBPB, which suggested melatonin could improve primordial follicle formation progress via enhancing CEBPB expression in mice. Besides, the apoptosis of ovarian cells induced by DEHP also was diminished by melatonin. The study provides evidence of melatonin preventing the damage mediated by plasticizers on the reproductive system in females and CEBPB may serve as a downstream target factor of melatonin in the process.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Yuan Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Zeng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Chun Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin-Lei Feng
- Animal Products Quality and Safety Center, Shandong Animal Husbandry and Veterinary Bureau, Jinan 250100, China
| | - Jia-Mao Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|