1
|
Asmare Z, Aragaw BA, Atlabachew M. Facile Synthesis of Natural Kaolin-Based CuO Catalyst: An Efficient Heterogeneous Catalyst for the Catalytic Reduction of 4-Nitrophenol. ACS OMEGA 2024; 9:48014-48031. [PMID: 39676930 PMCID: PMC11635686 DOI: 10.1021/acsomega.4c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Water contamination by nitro compounds from various industrial processes has significantly contributed to environmental pollution and severely threatened aquatic ecosystems. Inexpensive, efficient, and environmentally benign catalysts are required for the catalytic reduction of such nitro compounds. This study reports the fabrication of various nanocomposites (NCs) of copper oxide nanoparticles (CuO NPs) supported on a kaolin sheet using straightforward and simple one-pot synthesis procedures that control the metal precursor to kaolin ratios. The selected as-synthesized CuO/kaolin NC was characterized using a range of advanced spectroscopic and microscopic methods, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), high-angle annular dark-field scanning TEM (HAADF-STEM), and N2 adsorption/desorption analysis. The characterization results confirmed the successful incorporation of CuO NPs into the kaolin sheets, which had an average size of about 18.7 nm. The fabricated CuO/kaolin NC was used as a heterogeneous catalyst for the efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride (NaBH4) in an aqueous system at room temperature. The catalyst demonstrated superior catalytic performance with high 4-NP conversion into 4-AP (>99%) in the aqueous phase (50 mL, 20 mg L-1) within 6 min. In addition, the reaction kinetics of 4-NP reduction was also investigated, and the reaction followed the pseudo-first-order kinetics equation with the apparent rate constant of 1.76 min-1. Furthermore, the Arrhenius and Eyring parameters for the catalytic hydrogenation reaction of 4-NP were calculated in order to investigate the catalytic reaction process in more detail. Moreover, the catalyst exhibited excellent reusability and stability over seven repeated catalytic test cycles without any noticeable decline in catalytic activity. Therefore, this paper could provide a novel, efficient, and environmentally promising clay-based non-noble metal oxide nanocatalyst to reduce nitro compounds in the aqueous system.
Collapse
Affiliation(s)
- Zinabu
Gashaw Asmare
- Chemistry
Department, College of Science, Bahir Dar
University, PO Box 79 Bahir Dar, Ethiopia
- Chemistry
Department, College of Natural and Computational Sciences, Debre Tabor University, PO Box 272 Debre Tabor, Ethiopia
| | - Belete Asefa Aragaw
- Chemistry
Department, College of Science, Bahir Dar
University, PO Box 79 Bahir Dar, Ethiopia
| | - Minaleshewa Atlabachew
- Chemistry
Department, College of Science, Bahir Dar
University, PO Box 79 Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Ravikumar SB, Mallu TA, Subbareddy S, Shivamurthy SA, Neelalochana VD, Shantakumar KC, Rajabathar JR, Ataollahi N, Shadakshari S. An enhanced non-enzymatic electrochemical sensor based on the Bi 2S 3-TiO 2 nanocomposite with HNTs for the individual and simultaneous detection of 4-nitrophenol and nitrofurantoin in environmental samples. J Mater Chem B 2024; 12:9005-9017. [PMID: 39149933 DOI: 10.1039/d3tb03054g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In the current era of rapid population growth, there has been an increase in resource consumption and the subsequent release of organic pollutants into water bodies by various industries. To address this issue, we have developed a nanocomposite material, Bi2S3-TiO2/HNTs, for electrochemical sensors capable of simultaneously detecting nitrofurantoin (NFT) and 4-nitrophenol (4-NP) contaminants. The nanocomposite material was synthesized using a novel one-pot sol-gel method, and its structural morphology was characterized using techniques such as FE-SEM, FT-IR, HR-TEM, and XRD. The electrochemical sensor exhibited a remarkably low limit of detection (3.2 nM for NFT and 3.5 nM for 4-NP) and a wide concentration range from 0 μM to 260 μM for both NFT and 4-NP, demonstrating their high sensitivity and accuracy for pollutant detection, and furthermore its potential for real-world application was assessed considering pond and tap water as real samples.
Collapse
Affiliation(s)
| | - Trishul Alanahalli Mallu
- Department of Environmental Engineering, SJCE, JSS Science and Technology University, Mysuru, Karnataka 570006, India
| | - Sirisha Subbareddy
- Department of studies in Physics, University of Mysore, Mysuru, Karnataka 570006, India
| | - Santhosh Arehalli Shivamurthy
- Department of Chemistry (U.G.), N.M.K.R.V. College for Women, Jayanagara 3rd block, Bengaluru, Karnataka 560011, India.
| | | | | | - Jothi Ramalingam Rajabathar
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Narges Ataollahi
- Department of Civil, Environmental, and Mechanical Engineering, University of Trento, 38123 Trento, Italy
| | - Sandeep Shadakshari
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru, Karnataka 570006, India.
| |
Collapse
|
3
|
Liu Q, Wu D, Pan Y, Shen Y, Wang X, Xiong F, Han J, Zhang Z, Chen Y, Chen Z, Yuan S, Yu H, Yao W. Interaction behavior, mechanisms and hazardous changes of microplastics on single and binary component pesticide in the environment and food: Diethofencarb and pyrimethanil. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134809. [PMID: 38870852 DOI: 10.1016/j.jhazmat.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
In order to investigate the adsorption behavior and mechanism of microplastics (MPs) on multiple coexisting pesticides in practical systems, as well as their hazardous changes upon binding, diethofencarb and pyrimethanil were selected to be studied with four MPs. The adsorption rate of both pesticides would be faster in the binary-component case, conforming to pseudo-second-order kinetics, with adsorption sites and chemical adsorption dominating. And the more hydrophobic the pesticide, the faster the adsorption rate and the higher the adsorption capacity. Diethofencarb belonged to monolayer adsorption, whereas pyrimethanil belonged to monomolecular combined with multilayer adsorption, depending on the size of pesticides. And the adsorption process was both competitive and synergistic when pesticides coexist. In addition, the adsorption process was a spontaneous heat absorption process. Electrostatic forces have little effect on adsorption, while the adsorption capacity can be altered by the adsorption sites and hydrophobicity of MPs. The salting-out effect also facilitated the adsorption process. As for changes in hazard, the bioluminescence of A. fischeri wasn't significantly inhibited, lacking of acute environmental toxicity. However, in vitro digestion experiments demonstrated a significant increase in bioavailability of diethofencarb and pyrimethanil in combination with MPs. These findings suggest the stronger adsorption behaviors and higher loading capacities between pesticides and MPs could lead more serious hazards to the human body, which deserves further attention.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Dajun Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yue Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yao Shen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Fukang Xiong
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jinchi Han
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zixuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
4
|
John Felix MA, Rex Shanlee SS, Chen SM, Ruspika S, Balaji R, Chandrasekar N, Doss PA. Design and fabrication of La-based perovskites incorporated with functionalized carbon nanofibers for the electrochemical detection of roxarsone in water and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2857-2868. [PMID: 38639051 DOI: 10.1039/d4ay00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 μM and 2.08-497 μM, respectively), exhibiting a low limit of detection (LOD) of 0.004 μM with a high sensitivity of 13.24 μA μM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.
Collapse
Affiliation(s)
- Mariya Antony John Felix
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Santhiyagu Sahayaraj Rex Shanlee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Sundaresan Ruspika
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Ramachandran Balaji
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh 522302, India.
| | - Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi, Republic of Korea
| | - Periyanayagam Arockia Doss
- Department of Chemistry, St. Joseph's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu 620002, India
| |
Collapse
|
5
|
Ravipati M, Singh P, Badhulika S. Bismuth sulfide micro flowers decorated nickel foam as a promising electrochemical sensor for quantitative analysis of melamine in bottled milk samples. NANOTECHNOLOGY 2024; 35:175501. [PMID: 38334120 DOI: 10.1088/1361-6528/ad2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Here, we demonstrate hydrothermally grown bismuth sulfide (Bi2S3) micro flowers decorated nickel foam (NF) for electrochemical detection of melamine in bottled milk samples. The orthorhombic phase of hydrothermally grown Bi2S3is confirmed by the detailed characterization of x-ray diffraction and its high surface area micro flowers-like morphology is investigated via field emission scanning electron microscope. Furthermore, the surface chemical oxidation state and binding energy of Bi2S3/NF micro flowers is analyzed by x-ray photoelectron spectroscopy studies. The sensor exhibits a wide linear range of detection from 10 ng l-1to 1 mg l-1and a superior sensitivity of 3.4 mA cm-2to melamine using differential pulse voltammetry technique, with a lower limit of detection (7.1 ng l-1). The as-fabricated sensor is highly selective against interfering species of p-phenylenediamine (PPDA), cyanuric acid (CA), aniline, ascorbic acid, glucose (Glu), and calcium ion (Ca2+). Real-time analysis done in milk by the standard addition method shows an excellent recovery percentage of ̴ 98%. The sensor's electrochemical mechanism studies reveal that the high surface area bismuth sulfide micro flowers surface interacts strongly with melamine molecules through hydrogen bonding and van der Waals forces, resulting in a significant change in the sensor's electrical properties while 3D skeletal Nickel foam as a substrate provides stability, enhances its catalytic activity by providing a more number /of active sites and facilitates rapid electron transfer. The work presented here confirms Bi2S3/NF as a high-performance electrode that can be used for the detection of other biomolecules used in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Manaswini Ravipati
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502284, India
| | - Pratiksha Singh
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal, Madhya Pradesh, 462033, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502284, India
| |
Collapse
|
6
|
Sriram B, Stanley MM, Wang SF, Hsu YF, George M. Two-Dimensional CuMn-Layered Double Hydroxides: A Study of Interlayer Anion Variants on the Electrochemical Sensing of Trichlorophenol. Inorg Chem 2024; 63:2833-2843. [PMID: 38261278 PMCID: PMC10848258 DOI: 10.1021/acs.inorgchem.3c04568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Despite their diverse application profile, aromatic organochlorides such as 2,4,6-trichlorophenol (TP) are widely renowned for creating a negative toll on the balance of the ecosystem. Strict regulatory regimes are required to limit exposure to such organic pollutants. By deployment of a straightforward detection scheme, electrochemical sensing technology offers a competitive edge over the other techniques and practices available for pollutant monitoring. Here, we present a streamlined hydrothermal approach for synthesizing copper-manganese layered double hydroxide (CuMn-LDH) rods to be employed as electrocatalysts for detecting TP in various media. With a focused intention to leverage the full potential of the prepared CuMn-LDHs, the interlamellar region is configured using a series of intercalants. Further, a thorough comparative analysis of their structures, morphologies, and electrochemical performance is accomplished using various analytical techniques. The electrocatalytic oxidation ability of the CuMn-LDH toward TP molecules is markedly altered by incorporating various anions into the gallery region. The dynamic attributes of the developed sensor, such as a wide linear response (0.02-289.2 μM), a low detection limit (0.0026 μM), and good anti-interfering ability, acclaim its superior viability for real-time detection of TP with exceptional tolerance to the presence of foreign moieties. Hence, this work manifests that the nature of intercalants is a vital aspect to consider while designing LDH-based electrochemical probes to detect priority pollutants.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Megha Maria Stanley
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Sea-Fue Wang
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Fu Hsu
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
7
|
Basavapura Ravikumar S, Prasanna SB, Shivamurthy SA, Shadakshari S, Nagaraja BM, Rajabathar JR, Al-lohedan HA, Arokiyaraj S. Individual and Simultaneous Electrochemical Detection of Allura Red and Acid Blue 9 in Food Samples Using a Novel La 2YCrO 6 Double Perovskite Decorated on HLNTs as an Electrocatalyst. ACS OMEGA 2024; 9:2568-2577. [PMID: 38250369 PMCID: PMC10795027 DOI: 10.1021/acsomega.3c07330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The present study involved the synthesis of La2YCrO6 double perovskites using a sol-gel approach. Additionally, a sonication method was implemented to prepare La2YCrO6 double perovskites decorated on halloysites (La2YCrO6/HLNTs). The La2YCrO6/HLNTs exhibited remarkable conductivity, electrocatalytic activity, and rapid electron transfer. It is imperative to possess these characteristics when overseeing the concurrent identification of Allura red (AR) and acid blue 9 (AB) in food samples. The development of the La2YCrO6/HLNTs was verified through the utilization of diverse approaches for structural and morphological characterization. The electrochemical techniques were employed to evaluate the analytical techniques of La2YCrO6/HLNTs. Impressively, the La2YCrO6/HLNTs demonstrated exceptional sensitivity, yielding the lowest detection limit for AR at 8.99 nM and AB at 5.14 nM. Additionally, the linear concentration range was 10-120 nM (AR and AB). The sensor that was developed exhibited remarkable selectivity, and the feasibility of AR and AB in the food sample was effectively monitored, resulting in satisfactory recoveries.
Collapse
Affiliation(s)
| | - Sanjay Ballur Prasanna
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | | | - Sandeep Shadakshari
- Department
of Chemistry, SJCE, JSS Science and Technology
University, Karnataka 570006, India
| | - Bhari Mallanna Nagaraja
- Centre
for Nano and Material Science (CNMS), Jain
University, Jain Global
Campus, Bangalore 562112, India
| | - Jothi Ramalingam Rajabathar
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-lohedan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department
of Food Science and Biotechnology, Sejong
University, Seoul 05006, South Korea
| |
Collapse
|
8
|
Sriram B, Gouthaman S, Wang SF, Hsu YF. Cobalt molybdate hollow spheres decorated graphitic carbon nitride sheets for electrochemical sensing of dimetridazole. Food Chem 2024; 430:136853. [PMID: 37541041 DOI: 10.1016/j.foodchem.2023.136853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/06/2023]
Abstract
In the present work, a cobalt molybdate (CoMoO4) hollow spheres-incorporated graphitic carbon nitride (g-CN) composite is prepared for the electrochemical detection of dimetridazole (DZ). The synergistic effect between the hollow-structured CoMoO4 and g-CN nanosheets facilitates the transportation of electrons through kinetic barriers, thereby providing a high electrical conductivity with increased electroactive sites. The proposed CoMoO4@g-CN-modified electrode displayed a wide linear range (0.001-492.77 μM) and a lower detection limit (LOD: 0.4 nM) for the determination of DZ through the amperometry (i-t) method. In addition, the CoMoO4@g-CN-modified electrode achieved good operational stability, anti-interfering ability (five-fold excess amount of co-interfering compounds) and reproducibility. These results demonstrate the increased electrocatalytic activity of CoMoO4@g-CN modified glassy carbon electrode (GCE) towards the detection of DZ in food samples with satisfactory recovery ranges.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Zhongxiao East Rd., Da'an District, Taipei 106, Taiwan
| | - Siddan Gouthaman
- Organic Material Lab, Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Zhongxiao East Rd., Da'an District, Taipei 106, Taiwan.
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Zhongxiao East Rd., Da'an District, Taipei 106, Taiwan
| |
Collapse
|
9
|
Gopi S, Wang SF. Electrochemical determination of vanillin using 2D/2D heterostructure based on ZnCr-layered double hydroxide and g-CN. Mikrochim Acta 2023; 190:423. [PMID: 37775607 DOI: 10.1007/s00604-023-05985-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
A ZnCr-LDH@g-CN composite was synthesized through a one-pot hydrothermal method to fabricate an effective sensor for detecting vanillin. The prepared material was investigated by using structural and physical studies. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with applied potential (Epa = + 0.68 V vs Ag/AgCl) were used to examine the electrochemical behavior of vanillin. The fabricated electrode exhibited a linear detection range of 0.001-143.2 μM, a low detection limit of 0.9 nM, sensitivity of 4.72 µA µM-1 cm-2, selectivity, stability, reproducibility (RSD = 4.40%), and repeatability (RSD = 4.46%). The optimized sensor was successfully applied to detect vanillin in real samples, including ice cream, chocolate, and water, and their recovery was 98.46-99.80%. Overall, the ZnCr-LDH@g-CN composite sensor offers a promising solution for precise vanillin detection.
Collapse
Affiliation(s)
- Santhosam Gopi
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan.
| |
Collapse
|
10
|
Sriram B, Kogularasu S, Wang SF, Chang-Chien GP. The Fabrication of a La 2Sn 2O 7/ f-HNT Composite for Non-Enzymatic Electrochemical Detection of 3-Nitro-l-tyrosine in Biological Samples. BIOSENSORS 2023; 13:722. [PMID: 37504120 PMCID: PMC10377610 DOI: 10.3390/bios13070722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Reactive oxygen and nitrogen species (RONS), including 3-nitro-l-tyrosine, play a dual role in human health, inducing oxidative damage and regulating cellular functions. Early and accurate detection of such molecules, such as L-tyrosine in urine, can serve as critical biomarkers for various cancers. In this study, we aimed to enhance the electrochemical detection of these molecules through the synthesis of La2Sn2O7/f-HNT nanocomposites via a simple hydrothermal method. Detailed structural and morphological characterizations confirmed successful synthesis, consistent with our expected outcomes. The synthesized nanocomposites were utilized as nanocatalysts in electrochemical sensors, showing a notable limit of the detection of 0.012 µM for the real-time detection of 3-nitro-l-tyrosine. These findings underscore the potential of nanomaterial-based sensors in advancing early disease detection with high sensitivity, furthering our understanding of cellular oxidative processes.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | | | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| |
Collapse
|