1
|
Galahitigama H, Sandamali P, Jayapra T, Abesinghe N, Senavirathna MDHJ, Diola MBL, Tanchuling MA. Assessing the impact of micro and nanoplastics on the productivity of vegetable crops in terrestrial horticulture: a comprehensive review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:404. [PMID: 40095235 PMCID: PMC11914347 DOI: 10.1007/s10661-025-13820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Micro and nano plastics (MNPs) pollution has emerged as a significant environmental issue in recent years. Plastic contamination in the environment poses risks to both human health and other organisms within the ecosystem. This review discusses the overall impact of MNPs on the performance of vegetable crops, including a global perspective on the topic. Bibliometric analysis reveals that most research on this subject has been concentrated in a few countries, although the number of studies has notably increased in recent years. MNPs accumulate in arable lands due to human activities, often altering the soil's physical, chemical, and biological properties in the rhizosphere. Vegetable crops absorb these MNPs mainly through their roots, leading to accumulation in the edible parts of the plants. Consequently, this results in phytotoxic symptoms and poor growth and development. The phytotoxic effects of MNPs are attributed to genetic and metabolic changes within the plant's cellular structure. Current research on MNPs has been limited to a few vegetable cultivars. Future studies should encompass a broader range of vegetable crops under both laboratory and field conditions to advance this burgeoning field of research. Additionally, examining various types of plastics is essential to comprehensively understanding their impact.
Collapse
Affiliation(s)
- Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama, 338-8570, Japan
| | - Poorni Sandamali
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | - Thilini Jayapra
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, Pitipana, Homagama, Sri Lanka
| | - Nandula Abesinghe
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | | | - Ma Brida Lea Diola
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Antonia Tanchuling
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
2
|
Yan Q, Xing Q, Liu Z, Zou Y, Liu X, Xia H. The phytochemical and pharmacological profile of dandelion. Biomed Pharmacother 2024; 179:117334. [PMID: 39180794 DOI: 10.1016/j.biopha.2024.117334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Dandelion (Taraxacum genus), a perennial herb belonging to the Asteraceae family is widely distributed in hillside grasslands, roadsides, fields, and river beaches in middle and low-altitude areas. It has a long history of traditional Chinese medicine usage as a heat-clearing and detoxifying agent, often consumed as tea or vegetable. Multiple pharmacological studies have demonstrated the antiviral, antibacterial, anti-inflammatory, immune-regulating, antioxidant, anti-tumor, and other effects of the Taraxacum genus. Bioactive compounds associated with these effects include triterpenes and their saponins, phenolic acids, sterols and their glycosides, flavonoids, organic acids, volatile oils, and saccharides.
Collapse
Affiliation(s)
- Qingzi Yan
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Yang Zou
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Hong Xia
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Liu S, Han J, Yao L, Li H, Xin G, Ho SH, Huang X. Integrated multilevel investigation of photosynthesis revealed the algal response distinction to differentially charged nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134815. [PMID: 38885582 DOI: 10.1016/j.jhazmat.2024.134815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Nanoplastics (NPs), especially those with different charges, as one of emerging contaminants pose a threat to aquatic ecosystems. Although differentially charged NPs could induce distinct biological effects, mechanistic understanding of the critical physiological processes of aquatic organisms from an integrated multilevel perspective on aquatic organisms is still uncertain. Herein, multi-effects of differentially charged nanosized polystyrene (nPS) including neutral nPS, nPS-COOH, and nPS-NH2 on the photosynthesis-related physiological processes of algae were explored at the population, individual, subcellular, protein, and transcriptional levels. Results demonstrated that both nPS and nPS-COOH exhibited hormesis to algal photosynthesis but nPS-NH2 triggered severe inhibition. As for nPS-NH2, the integrity of algal subcellular structure, chlorophyll biosynthesis, and expression of photosynthesis-related proteins and genes were interfered. Intracellular NPs' content in nPS treatment was 25.64 % higher than in nPS-COOH treatment, and the content of chloroplasts in PS and nPS-COOH treatment were 3.09 % and 4.56 % higher than control, respectively. Furthermore, at the molecular levels, more photosynthesis-related proteins and genes were regulated under nPS-COOH exposure than those exposed to nPS. Light-harvesting complex II could be recognized as an underlying explanation for different effects between nPS and nPS-COOH. This study first provides a novel approach to assess the ecological risks of NPs at an integrated multilevel.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Linjie Yao
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Huijun Li
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, PR China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
4
|
Huang J, Gu P, Cao X, Miao H, Wang Z. Mechanistic study on the increase of Microcystin-LR synthesis and release in Microcystis aeruginosa by amino-modified nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134767. [PMID: 38820757 DOI: 10.1016/j.jhazmat.2024.134767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Ecological risk of micro/nano-plastics (MPs/NPs) has become an important environmental issue. Microcystin-leucine-arginine (MC-LR) produced by Microcystis aeruginosa (M. aeruginosa) is the most common and toxic secondary metabolites (SM). However, the influencing mechanism of MPs and NPs exposure on MC-LR synthesis and release have still not been clearly evaluated. In this work, under both acute (4d) and long-term exposure (10d), only high-concentration (10 mg/L) exposure of amino-modified polystyrene NPs (PS-NH2-NPs) promoted MC-LR synthesis (32.94 % and 42.42 %) and release (27.35 % and 31.52 %), respectively. Mechanistically, PS-NH2-NPs inhibited algae cell density, interrupted pigment synthesis, weakened photosynthesis efficiency, and induced oxidative stress, with subsequent enhancing the MC-LR synthesis. Additionally, PS-NH2-NPs exposure up-regulated MC-LR synthesis pathway genes (mcyA, mcyB, mcyD, and mcyG) combined with significantly increased metabolomics (Leucine and Arginine), thereby enhancing MC-LR synthesis. PS-NH2-NPs exposure enhanced the MC-LR release from M. aeruginosa via up-regulated MC-LR transport pathway genes (mcyH) and the shrinkage of plasma membrane. Our results provide new insights into the long-time coexistence of NPs with algae in freshwater systems might pose a potential threat to aquatic environments and human health.
Collapse
Affiliation(s)
- Jinjie Huang
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
5
|
Gao M, Peng H, Zhao X, Xiao Z, Qiu W, Song Z. Effect of cadmium on polystyrene transport in parsley roots planted in a split-root system and assessment of the combined toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171633. [PMID: 38471591 DOI: 10.1016/j.scitotenv.2024.171633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Micro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals. Yet, the possible effects of heavy metals on MP/NP transport and toxicity within co-contaminated systems are still not well-understood. In this study, we conducted split-root experiments to explore the transport and toxicity of polystyrene (PS) particles of varying sizes in parsley seedlings, both with and without the addition of cadmium (Cd). Both the PS-NPs (100 nm) and PS-MPs (300 nm) traveled from the PS-spiked roots (Roots-1) to the non-PS-spiked roots (Roots-2), with or without Cd, possibly because of phloem transport. Furthermore, the presence of Cd reduced the accumulation and movement of PS-NP/MP in the roots, likely due to the increased positive charge (Cd2+) on the PS surface. PS-NPs/MPs in both Roots-1 and Roots-2 were observed using transmission electron microscopy (TEM). When Cd was added to either Roots-1 (PS + Cd|H) or Roots-2 (PS|Cd), there was a minor reduction in the chlorophyll a and carotenoids content in leaves with PS|H. The adverse impacts of MPs|H on both indicators were influenced by the MP concentration. However, chlorophyll b significantly increased in the PS|H, PS + Cd|H, and PS|Cd treatments. Consequently, the chlorophyll a/b ratio declined, indicating inhibition of photosynthesis. The dehydrogenase content showed a minor change in Roots-1 and Roots-2 without Cd stress, whereas it significantly decreased on the Cd-spiked side and subsequently inhibited root growth. In contrast, the marked rise in glutathione (GSH) levels within Cd-spiked roots suggested, based on Gaussian analysis, that GSH and Cd chelation were instrumental in mitigating Cd toxicity. When Cd was introduced to both Roots-1 and Roots-2 simultaneously (PS + Cd|Cd), the aforementioned index showed a notable decline.
Collapse
Affiliation(s)
- Minling Gao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Hongchang Peng
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Xuesong Zhao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Zhengzhen Xiao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
6
|
Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134086. [PMID: 38521034 DOI: 10.1016/j.jhazmat.2024.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.
Collapse
Affiliation(s)
- Yi Jiang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
8
|
Naidu G, Nagar N, Poluri KM. Mechanistic Insights into Cellular and Molecular Basis of Protein-Nanoplastic Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305094. [PMID: 37786309 DOI: 10.1002/smll.202305094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
9
|
Yu Q, Liu H, Lv G, Liu X, Wang L, Liao L. Mechanistic insight into lead immobilization on bone-derived carbon/hydroxyapatite composite at low and high initial lead concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165910. [PMID: 37524186 DOI: 10.1016/j.scitotenv.2023.165910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.
Collapse
Affiliation(s)
- Qihui Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Lijuan Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
10
|
Mészáros E, Bodor A, Kovács E, Papp S, Kovács K, Perei K, Feigl G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3282. [PMID: 37765446 PMCID: PMC10538034 DOI: 10.3390/plants12183282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Plastics have inundated the world, with microplastics (MPs) being small particles, less than 5 mm in size, originating from various sources. They pervade ecosystems such as freshwater and marine environments, soils, and the atmosphere. MPs, due to their small size and strong adsorption capacity, pose a threat to plants by inhibiting seed germination, root elongation, and nutrient absorption. The accumulation of MPs induces oxidative stress, cytotoxicity, and genotoxicity in plants, which also impacts plant development, mineral nutrition, photosynthesis, toxic accumulation, and metabolite production in plant tissues. Furthermore, roots can absorb nanoplastics (NPs), which are then distributed to stems, leaves, and fruits. As MPs and NPs harm organisms and ecosystems, they raise concerns about physical damage and toxic effects on animals, and the potential impact on human health via food webs. Understanding the environmental fate and effects of MPs is essential, along with strategies to reduce their release and mitigate consequences. However, a full understanding of the effects of different plastics, whether traditional or biodegradable, on plant development is yet to be achieved. This review offers an up-to-date overview of the latest known effects of plastics on plants.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Sarolta Papp
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Kamilla Kovács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| |
Collapse
|
11
|
Li X, Ullah S, Chen N, Tong X, Yang N, Liu J, Guo X, Tang Z. Phytotoxicity assessment of dandelion exposed to microplastics using membership function value and integrated biological response index. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121933. [PMID: 37277069 DOI: 10.1016/j.envpol.2023.121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Microplastic (MP) pollution is a critical environmental issue. Dandelions could be used as a biomonitor of environmental pollution. However, the ecotoxicology of MPs in dandelions remains unclear. Therefore, the toxic effects of polyethylene (PE), polystyrene (PS), and polypropylene (PP) at concentrations of 0, 10, 100, and 1000 mg L-1 on the germination and early seedling growth of dandelion were investigated. PS and PP inhibited seed germination and decreased root length and biomass while promoting membrane lipid peroxidation, increasing O2•-, H2O2, SP, and proline contents, and enhancing the activities of SOD, POD, and CAT. Principal component analysis (PCA) and membership function value (MFV) analysis indicated that PS and PP could be more harmful than PE in dandelion, especially at 1000 mg L-1. In addition, according to the integrated biological response (IBRv2) index analysis, O2•-, CAT, and proline were sensitive biomarkers of dandelion contamination by MPs. Here we provide evidence that dandelion has the potential to be a biomonitor to assess the phytotoxicity of MPs pollution, especially PS with high toxicity. Meanwhile, we believe that if dandelion is to be used as a biomonitor for MPs, attention should also be paid to the practical safety of dandelion.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
12
|
Chen JY, Liu S, Deng WK, Niu SH, Liao XD, Xiang L, Xing SC. The effect of manure-borne doxycycline combined with different types of oversized microplastic contamination layers on carbon and nitrogen metabolism in sandy loam. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131612. [PMID: 37245359 DOI: 10.1016/j.jhazmat.2023.131612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The different forms and properties of microplastics (MPs) have different effects on the elemental cycles in soil ecosystems, and this is further complicated when the soil contains antibiotics; meanwhile, oversized microplastic (OMP) in soil is always ignored in studies of environmental behavior. In the context of antibiotic action, the effects of OMP on soil carbon (C) and nitrogen (N) cycling have rarely been explored. In this study, we created four types of oversized microplastic (thick fibers, thin fibers, large debris, and small debris) composite doxycycline (DOX) contamination layers (5-10 cm) in sandy loam, hoping to reveal the effects on soil C and N cycling and potential microbial mechanisms when exposed to the combination of manure-borne DOX and different types of OMP from the perspective of metagenomics in the longitudinal soil layer (0-30 cm). The results showed that all different forms of OMP, when combined with DOX, reduced the soil C content in each layer, but only reduced the soil N content in the upper layer of the OMP contamination layer. The microbial structure of the surface soil (0-10 cm) was more noteworthy than that of the deeper soil (10-30 cm). The genera Chryseolinea and Ohtaekwangia were key microbes involved in C and N cycling in the surface layer and regulated carbon fixation in photosynthetic organisms (K00134), carbon fixation pathways in prokaryotes (K00031), methane metabolism (K11212 and K14941), assimilatory nitrate reduction (K00367), and denitrification (K00376 and K04561). The present study is the first to reveal the potential microbial mechanism of C and N cycling under OMP combined with DOX in different layers, mainly the OMP contamination layer and its upper layer, and the OMP shape plays an important role in this process.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Lei Xiang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
13
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
14
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
15
|
Ullah R, Tsui MTK, Chow A, Chen H, Williams C, Ligaba-Osena A. Micro(nano)plastic pollution in terrestrial ecosystem: emphasis on impacts of polystyrene on soil biota, plants, animals, and humans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:252. [PMID: 36585967 DOI: 10.1007/s10661-022-10769-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Pollution with emerging microscopic contaminants such as microplastics (MPs) and nanoplastics (NPs) including polystyrene (PS) in aquatic and terrestrial environments is increasingly recognized. PS is largely used in packaging materials and is dumped directly into the ecosystem. PS micro-nano-plastics (MNPs) can be potentially bioaccumulated in the food chain and can cause human health concerns through food consumption. Earlier MP research has focused on the aquatic environments, but recent researches show significant MP and NP contamination in the terrestrial environments especially agricultural fields. Though PS is the hotspot of MPs research, however, to our knowledge, this systematic review represents the first of its kind that specifically focused on PS contamination in agricultural soils, covering sources, effects, and ways of PS mitigation. The paper also provides updated information on the effects of PS on soil organisms, its uptake by plants, and effects on higher animals as well as human beings. Directions for future research are also proposed to increase our understanding of the environmental contamination of PS in terrestrial environments.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China
| | - Alex Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
- Dep. of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
- Dep. of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, Cardon Ln, Maricopa, AZ, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|