1
|
Sánchez-Piñero J, Concha-Graña E, Moreda-Piñeiro J, López-Mahía P, Muniategui-Lorenzo S. Exploring the release of microplastics' additives in the human digestive environment by an in vitro dialysis approach using simulated fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179333. [PMID: 40220466 DOI: 10.1016/j.scitotenv.2025.179333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Ingestion of microplastics represents a significant exposure pathway to harmful additives to humans. In the last years, many studies have been focused on assessing the additives' fraction that could be released in gastrointestinal simulated fluids to estimate their potential health risk. In the present study, oral bioaccessibility (i.e., fraction dissolved in gastrointestinal fluids) and bioavailability (i.e., fractions absorbed in simulated blood) of plastic additives were simultaneously assessed by an in vitro method including a dialysis membrane filled with simulated human plasma. To this end, a method consisting of a vortex-assisted liquid-liquid extraction (VALLME) prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) determination was successfully validated for the analysis of 38 multi-class additives in simulated fluids. This methodology was novelty applied to 3 conventional petroleum-based polymers (high-density polyethylene (r-HDPE), polypropylene (r-PP) and polyethylene terephthalate (PET)) and biopolymer (polylactic acid (PLA), polyhydroxy butyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBv)) microplastics, as well as after additional mechanical recycling and marine-ageing processes to explore changes in additives' release. Biopolymers were observed to release 4-fold more additives in bioaccessible fractions than conventional polymers, being tri-n-butyl phosphate (TnBP) the most profuse (101 ng g-1, by average); whereas diethyl phthalate (DEP) was only quantitated in bioavailable fractions (mean of 8.6 ng g-1), with a ratio of 14.1 %. Moreover, different additives were released after marine ageing and additional recycling, observing an increase in bioaccessible additives concentrations for PLA, PET, and r-HDPE, and reduced for PHB and r-PP; while a decrease in bioavailable additives was observed for PLA and r-HDPE.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Estefanía Concha-Graña
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| |
Collapse
|
2
|
Amirian V, Russel M, Yusof ZNB, Chen JE, Movafeghi A, Kosari-Nasab M, Zhang D, Szpyrka E. Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution. World J Microbiol Biotechnol 2025; 41:24. [PMID: 39762597 DOI: 10.1007/s11274-024-04243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms. Thus, environmentally friendly and sustainable solutions for their removal are urgently needed. In this context, both natural and engineered bacterial and algal communities have played a crucial role in the degradation of various phthalic acid esters present in water and soil. When algae-bacteria co-culture is compared to a singular algae or bacteria system, this symbiotic system shows superior performance in the removal of dibutyl phthalates and diethyl phthalates from synthetic wastewater. This review provides an optimistic outlook for co-culture systems by in-depth examining single microorganisms, namely bacteria and algae, as well as algae-bacterial consortiums for phthalates degradation, which will draw attention to species co-existence for the removal of various pollutants from the environment. In addition, further development and research, particularly on the mechanisms, genes involved in the degradation of phthalic acid esters, and interactions between bacterial and algal species, will lead to the discovery of more adaptable species as well as the production of targeted species to address the environmental pollution crisis and provide a green, efficient, and sustainable approach to environmental protection. Discrepancies in knowledge and potential avenues for exploration will enhance the existing body of literature, enabling researchers to investigate this field more comprehensively.
Collapse
Affiliation(s)
- Veghar Amirian
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Mohammad Russel
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China.
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Putra University Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Jit Ern Chen
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Bandar Sunway, 47500, Malaysia
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Morteza Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Dayong Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
| | - Ewa Szpyrka
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland
| |
Collapse
|
3
|
Suresh S, Ambily SKA, Chandran P. Plastic Debris in the Aquatic Environment: An Emerging Substratum for Antimicrobial Resistant (AMR) Biofilms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:311-320. [PMID: 39244709 DOI: 10.1007/s00244-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Plastic pollution has quadrupled over the past years and has become a global concern due to its direct impact on life forms. The present study analysed whether the plastic debris in aquatic environments could act as the substratum for the antimicrobial-resistant (AMR) bacteria to form biofilm for survival. We have collected various plastic debris (n = 32) from six sites of the Periyar River, the drinking water source for the entire city and one of the most polluted rivers in Kerala (India). The chemical composition of plastics was screened via FTIR analysis and found that they comprised two types, viz., polyethylene and polypropylene. Bacteria isolated from the samples were screened for the AMR characteristics towards eight different classes of antibiotics. All isolates showed 100% resistance towards colistin and obtained the MAR index value of 0.1-0.4 range. Six representative bacterial isolates with high multiple antibiotic resistance (MAR) index were selected and identified by 16sRNA sequencing as Lysinibacillus mangiferihumi, Bacillus pumilus, Bacillus safensis, Bacillus cereus, Bacillus altitudins and Bacillus pumilus. In vitro biofilm formation was experimented on the purchased plastic samples in artificial media and river water using two selected strains, Bacillus pumilus and Bacillus cereus. Significant variations were observed in biofilm growth in different media (P < 0.05) regardless of plastic types (P > 0.05). The extracellular polymeric substances (EPS) and the characteristic holes on the surface morphology were visualized in SEM analysis, thus indicating the conditioning of the plastics by the isolates for biofilm formation.
Collapse
Affiliation(s)
- Sneha Suresh
- School of Environmental Studies, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, India
| | - S K A Ambily
- School of Environmental Studies, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, India
| | - Preethy Chandran
- School of Environmental Studies, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, India.
| |
Collapse
|
4
|
Du J, Huang W, Pan Y, Xu S, Li H, Jin M, Liu Q. Ecotoxicological Effects of Microplastics Combined With Antibiotics in the Aquatic Environment: Recent Developments and Prospects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1950-1961. [PMID: 38980257 DOI: 10.1002/etc.5950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Both microplastics and antibiotics are commonly found contaminants in aquatic ecosystems. Microplastics have the ability to absorb antibiotic pollutants in water, but the specific adsorption behavior and mechanism are not fully understood, particularly in relation to the impact of microplastics on toxicity in aquatic environments. We review the interaction, mechanism, and transport of microplastics and antibiotics in water environments, with a focus on the main physical characteristics and environmental factors affecting adsorption behavior in water. We also analyze the effects of microplastic carriers on antibiotic transport and long-distance transport in the water environment. The toxic effects of microplastics combined with antibiotics on aquatic organisms are systematically explained, as well as the effect of the adsorption behavior of microplastics on the spread of antibiotic resistance genes. Finally, the scientific knowledge gap and future research directions related to the interactions between microplastics and antibiotics in the water environment are summarized to provide basic information for preventing and treating environmental risks. Environ Toxicol Chem 2024;43:1950-1961. © 2024 SETAC.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
| | - Wenfei Huang
- Eco-Environmental Science and Research, Institute of Zhejiang Province, Hangzhou, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | | | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
5
|
Almutairy B. Extensively and multidrug-resistant bacterial strains: case studies of antibiotics resistance. Front Microbiol 2024; 15:1381511. [PMID: 39027098 PMCID: PMC11256239 DOI: 10.3389/fmicb.2024.1381511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
The development of antibiotic resistance compromises the effectiveness of our most effective defenses against bacterial infections, presenting a threat to global health. To date, a large number of research articles exist in the literature describing the case reports associated with extensively drug-resistant (XDR) and multidrug-resistant (MDR) bacterial strains. However, these findings are scattered, making it time-consuming for researchers to locate promising results and there remains a need for a comparative study to compile these case reports from various geographical regions including the Kingdom of Saudi Arabia. Additionally, no study has yet been published that compares the genetic variations and case reports of MDR and XDR strains identified from Saudi Arabia, the Middle East, Central Europe, and Asian countries. This study attempts to provide a comparative analysis of several MDR and XDR case reports from Saudi Arabia alongside other countries. Furthermore, the purpose of this work is to demonstrate the genetic variations in the genes underlying the resistance mechanisms seen in MDR and XDR bacterial strains that have been reported in Saudi Arabia and other countries. To cover the gap, this comprehensive review explores the complex trends in antibiotic resistance and the growing risk posed by superbugs. We provide context on the concerning spread of drug-resistant bacteria by analyzing the fundamental mechanisms of antibiotic resistance and looking into individual case reports. In this article, we compiled various cases and stories associated with XDR and MDR strains from Saudi Arabia and various other countries including China, Egypt, India, Poland, Pakistan, and Taiwan. This review will serve as basis for highlighting the growing threat of MDR, XDR bacterial strains in Saudi Arabia, and poses the urgent need for national action plans, stewardship programs, preventive measures, and novel antibiotics research in the Kingdom.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
6
|
Gautam K, Dwivedi S, Verma R, Vamadevan B, Patnaik S, Anbumani S. Combined effects of polyethylene microplastics and carbendazim on Eisenia fetida: A comprehensive ecotoxicological study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123854. [PMID: 38527586 DOI: 10.1016/j.envpol.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India
| | - Rahul Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Analysis Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Beena Vamadevan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Central Pathology Laboratory, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Analysis Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Xu JY, Ding J, Du S, Zhu D. Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133333. [PMID: 38147751 DOI: 10.1016/j.jhazmat.2023.133333] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.
Collapse
Affiliation(s)
- Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, People' s Republic of China
| | - Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| |
Collapse
|
8
|
Bai Y, Ji B. Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater. World J Microbiol Biotechnol 2023; 40:40. [PMID: 38071273 DOI: 10.1007/s11274-023-03819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
9
|
Bhatia SK, Gurav R, Cho DH, Kim B, Jung HJ, Kim SH, Choi TR, Kim HJ, Yang YH. Algal biochar mediated detoxification of plant biomass hydrolysate: Mechanism study and valorization into polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2023; 370:128571. [PMID: 36603752 DOI: 10.1016/j.biortech.2022.128571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
In this study, fourteen types of biochar produced using seven biomasses at temperatures 300 °C and 600 °C were screened for phenolics (furfural and hydroxymethylfurfural (HMF)) removal. Eucheuma spinosum biochar (EB-BC 600) showed higher adsorption capacity to furfural (258.94 ± 3.2 mg/g) and HMF (222.81 ± 2.3 mg/g). Adsorption kinetics and isotherm experiments interpreted that EB-BC 600 biochar followed the pseudo-first-order kinetic and Langmuir isotherm model for both furfural and HMF adsorption. Different hydrolysates were detoxified using EB-BC 600 biochar and used as feedstock for engineered Escherichia coli. An increased polyhydroxyalkanoates (PHA) production with detoxified barley biomass hydrolysate (DBBH: 1.71 ± 0.07 g PHA/L), detoxified miscanthus biomass hydrolysate (DMBH: 0.87 ± 0.03 g PHA/L) and detoxified pine biomass hydrolysate (DPBH: 1.28 ± 0.03 g PHA/L) was recorded, which was 2.8, 6.4 and 3.4 folds high as compared to undetoxified hydrolysates. This study reports the mechanism involved in furfural and HMF removal using biochar and valorization of hydrolysate into PHA.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|