1
|
Gkotsis G, Nika MC, Alygizakis N, Vasilatos K, Athanasopoulou A, Barber JL, Berbee R, Burgeot T, Oliveira SG, Gustafsson J, Campos AI, Kammann U, Kirchgeorg T, Koschorreck J, Mauffret A, Mil-Homens M, Larsen MM, Munch Chistensen A, Näslund J, Oswald P, Hjermann DØ, Parmentier K, Pirntke U, Power A, Soerensen AL, Van der Stap I, Viñas L, von der Ohe P, Webster L, Wilson S, Slobodnik J, Thomaidis NS, McHugh B. Assessing the chemical burden of the North-East Atlantic ecosystem through targeted and untargeted HRMS-based approaches. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138393. [PMID: 40300518 DOI: 10.1016/j.jhazmat.2025.138393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Human activities have introduced significant amounts of anthropogenic chemicals into marine ecosystems, posing threats to aquatic biodiversity and human health. Although, traditional marine monitoring focus primarily on legacy pollutants, the presence and potential risks associated with complex emerging chemical mixtures should not be neglected. In the context of the present study organized via OSPAR Commission and supported by NORMAN network, 52 marine samples were gathered from North-East Atlantic Ocean. State-of-the-art HRMS-based analytical workflows were employed to identify their chemical fingerprint. 132 organic pollutants were identified through wide-scope target screening of more than 2,400 environmentally relevant organic pollutants. The HRMS data were digitally stored in NORMAN DSFP and 134 additional chemicals were tentatively identified through suspect screening of more than 65,000 chemicals. The list included legacy pollutants, along with emerging pollutants, their metabolites and transformation products. A simplified environmental risk assessment was conducted, aiming to prioritize substances based on their potential risks to the marine ecosystem. This study provides a valuable snapshot of the marine pollution, offering insights into chemical occurrence and risks. The findings can support marine scientists, environmental managers and policymakers in identifying pollutant sources, understanding their impacts, and informing regulatory measures to mitigate threats to marine ecosystems.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece; Environmental Institute s.r.o., Okruzna 784/42, Kos 97241, Slovak Republic.
| | - Konstantinos Vasilatos
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Antonia Athanasopoulou
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Jonathan L Barber
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Rob Berbee
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, Rijnstraat 8, The Hague 2515 XP, the Netherlands.
| | - Thierry Burgeot
- French Research Institute for Exploitation of the Sea (IFREMER), Chemical Contamination of Marine Ecosystems Unit (CCME) unit, Nantes, France.
| | - Susana Galante Oliveira
- Centre for Environmental and Marine Studies (CESAM), Biology Department, University of Aveiro, Campus de Santiago, Aveiro 3810-123, Portugal.
| | - Johan Gustafsson
- Swedish Institute for the Marine Environment, Seminariegatan 1F, Göteborg 413 13, Sweden.
| | | | - Ulrike Kammann
- Johann Heinrich von Thünen Institute, Bundesallee 50, Braunschweig 38116, Germany.
| | - Torben Kirchgeorg
- Federal Maritime and Hydrographic Agency (BSH), Wüstland 2, Hamburg 22589, Germany.
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Colditzstrasse 34, Berlin 12099, Germany.
| | - Aourell Mauffret
- French Research Institute for Exploitation of the Sea (IFREMER), Chemical Contamination of Marine Ecosystems Unit (CCME) unit, Nantes, France.
| | - Mário Mil-Homens
- Portuguese Institute for Sea and Atmosphere, Rua C do Aeroporto, Lisboa 1749-077, Portugal.
| | | | | | - Johan Näslund
- Swedish Environmental Protection Agency, Naturvårdsverket, Stockholm 106 48, Sweden.
| | - Peter Oswald
- Environmental Institute s.r.o., Okruzna 784/42, Kos 97241, Slovak Republic.
| | | | - Koen Parmentier
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Bruxelles 1000, Belgium.
| | - Ulrike Pirntke
- German Environment Agency (Umweltbundesamt), Colditzstrasse 34, Berlin 12099, Germany.
| | - Andrew Power
- Marine & Freshwater Research Centre, Department of Natural Sciences, Atlantic Technological University, Dublin Road H91 T8NW, Galway, Ireland.
| | - Anne L Soerensen
- Swedish Museum of Natural History, Frescativägen 40, Stockholm 114 18, Sweden.
| | - Irene Van der Stap
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, Rijnstraat 8, The Hague 2515 XP, the Netherlands.
| | - Lucia Viñas
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo - Canido, Subida Radio Faro, 50-52, Vigo, Pontevedra 36390, Spain.
| | - Peter von der Ohe
- German Environment Agency (Umweltbundesamt), Colditzstrasse 34, Berlin 12099, Germany.
| | - Lynda Webster
- Marine Directorate, Scottish Government, Marine Laboratory, Aberdeen, Scotland AB11 9DB, UK.
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP), Hjalmar Johansens Gate 14, Tromsø 9007, Norway.
| | - Jaroslav Slobodnik
- Environmental Institute s.r.o., Okruzna 784/42, Kos 97241, Slovak Republic.
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Brendan McHugh
- Marine Institute, Co, Rinville, Oranmore, Galway H91 R673, Ireland.
| |
Collapse
|
2
|
Ask AV, Jaspers VLB, Zhang J, Asimakopoulos AG, Frøyland SH, Jolkkonen J, Prian WZ, Wilson NM, Sonne C, Hansen M, Öst M, Koivisto S, Eeva T, Vakili FS, Arzel C. Contaminants of emerging concern in an endangered population of common eiders (Somateria mollissima) in the Baltic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125409. [PMID: 39613177 DOI: 10.1016/j.envpol.2024.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments and pose a range of biological effects including endocrine disruption. Yet, knowledge of their occurrence in wildlife including seabirds remains scarce. We investigated the occurrence of selected bisphenols, benzophenones, phthalate metabolites, benzotriazoles, benzothiazoles, parabens, triclosan, and triclocarban in plasma of 18 breeding female common eiders (Somateria mollissima) from an endangered population in the Baltic Sea as most of these CECs have never before been examined in eiders. We sampled blood at the start (T1) and end (T2) of incubation to investigate concentration changes during incubation. As early- and late-breeding eiders tend to differ in how they finance reproduction (local vs stored nutrient reserves), we compared early and late breeders to assess whether CEC concentrations differed by breeding phenology. Of the 58 targeted CECs, 21 were detected in at least one female, with bisphenol A (BPA) and benzophenone-3 (BzP-3) occurring most frequently (T1: 78% and 61%; T2: 61% and 67%, respectively), while mono(2-ethyl-1-hexyl) phthalate (mEHP), BPA, and monoethyl phthalate (mEP) were detected in the highest concentrations (median concentrations 27.1, 12.7, and 11.2 ng/g wet weight, respectively, at T1). No CEC concentrations differed between early and late incubation. Late breeders had significantly higher concentrations of BzP-3, monomethyl phthalate (mMP), and mEP during early incubation (4.55 vs 1.24 ng/g ww, 7.05 vs 3.52, and 11.2 vs < limit of detection (LOD), respectively) and significantly higher concentrations of mMP and mEP during late incubation (6.16 vs
Collapse
Affiliation(s)
- Amalie V Ask
- Department of Biology, University of Turku, FI-20014, Turku, Finland.
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Sunniva H Frøyland
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Juho Jolkkonen
- Department of Biological and Environmental Science, FI-40014, University of Jyväskylä, Finland
| | - Wasique Z Prian
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Nora M Wilson
- Ab Bengtskär Oy, FI-25950, Rosala, Finland; Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500, Turku, Finland
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), DK-4000, Roskilde, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark
| | - Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | - Sanna Koivisto
- Finnish Safety and Chemicals Agency, P.O. Box 66, FI-00521, Helsinki, Finland
| | - Tapio Eeva
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Farshad S Vakili
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Céline Arzel
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
3
|
Alygizakis N, Kostopoulou N, Gkotsis G, Nika MC, Orfanioti A, Ng K, Bizani E, Nikolopoulou V, Badry A, Brownlow A, Centelleghe C, Chadwick EA, Ciesielski TM, Cincinelli A, Claßen D, Danielsson S, Dekker RWRJ, Duke G, Glowacka N, Gol'din P, Jansman HAH, Jauniaux T, Knopf B, Koschorreck J, Krone O, Lekube X, Martellini T, Movalli P, O'Rourke E, Oswald P, Oswaldova M, Saavedra C, Persson S, Rohner S, Roos A, Routti H, Schmidt B, Sciancalepore G, Siebert U, Treu G, van den Brink NW, Vishnyakova K, Walker LA, Thomaidis NS, Slobodnik J. Network analysis to reveal the most commonly detected compounds in predator-prey pairs in freshwater and marine mammals and fish in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175303. [PMID: 39127197 DOI: 10.1016/j.scitotenv.2024.175303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Marine and freshwater mammalian predators and fish samples, retrieved from environmental specimen banks (ESBs), natural history museum (NHMs) and other scientific collections, were analysed by LIFE APEX partners for a wide range of legacy and emerging contaminants (2545 in total). Network analysis was used to visualize the chemical occurrence data and reveal the predominant chemical mixtures for the freshwater and marine environments. For this purpose, a web tool was created to explore these chemical mixtures in predator-prey pairs. Predominant chemicals, defined as the most prevalent substances detected in prey-predator pairs were identified through this innovative approach. The analysis established the most frequently co-occurring substances in chemical mixtures from AP&P in the marine and freshwater environments. Freshwater and marine environments shared 23 chemicals among their top 25 predominant chemicals. Legacy chemical, including perfluorooctanesulfonic acid (PFOS), brominated diphenyl ethers (BDEs), polychlorinated biphenyls (PCBs), hexachlorobenzene and mercury were dominant chemicals in both environments. Furthermore, N-acetylaminoantipyrine was a predominant pharmaceutical in both environments. The LIFE APEX chemical mixture application (https://norman-data.eu/LIFE_APEX_Mixtures) was proven to be useful to establish most prevalent compounds in terms of number of detected counts in prey-predator pairs. Nonetheless, further research is needed to establish food chain associations of the predominant chemicals.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Niki Kostopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Anastasia Orfanioti
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Erasmia Bizani
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Varvara Nikolopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Elizabeth A Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Sara Danielsson
- Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | | | - Guy Duke
- Environmental Change Institute, University of Oxford, 3 South Parks Rd, Oxford OX1 3QY, United Kingdom
| | - Natalia Glowacka
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Pavel Gol'din
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Hugh A H Jansman
- Wageningen University & Research, Wageningen Environmental Research, Droevendaalsesteeg 3-3 A, 6708 PB Wageningen, the Netherlands
| | - Thierry Jauniaux
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Burkhard Knopf
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 57392 Schmallenberg, Germany
| | | | - Oliver Krone
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Xabier Lekube
- Biscay Bay Environmental Biospecimen Bank (BBEBB), Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza 47, 48620 Plentzia, Basque Country, Spain; CBET+ Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Movalli
- Naturalis Biodiversity Center, 2333 RA Leiden, the Netherlands
| | - Emily O'Rourke
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | | | - Camilo Saavedra
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de Vigo, Vigo, Spain
| | - Sara Persson
- Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany
| | - Anna Roos
- Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany
| | - Giuseppe Sciancalepore
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany; Department of Ecoscience, Marine Mammal Research, Aarhus University, Denmark
| | | | | | - Karina Vishnyakova
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65062 Odesa, Ukraine
| | | | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
4
|
Rojo M, Ball AL, Penrose MT, Weir SM, LeBaron H, Terasaki M, Cobb GP, Lavado R. Accumulation of Parabens, Their Metabolites, and Halogenated Byproducts in Migratory Birds of Prey: A Comparative Study in Texas and North Carolina, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2365-2376. [PMID: 39172001 DOI: 10.1002/etc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;43:2365-2376. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Mike T Penrose
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | | | - Masanori Terasaki
- Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
5
|
Zhang K, Zheng Z, Mutzner L, Shi B, McCarthy D, Le-Clech P, Khan S, Fletcher TD, Hancock M, Deletic A. Review of trace organic chemicals in urban stormwater: Concentrations, distributions, risks, and drivers. WATER RESEARCH 2024; 258:121782. [PMID: 38788526 DOI: 10.1016/j.watres.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Urban stormwater, increasingly seen as a potential water resource for cities and towns, contains various trace organic chemicals (TrOCs). This study, conducted through a comprehensive literature review of 116 publications, provides a detailed report on the occurrence, concentration distribution, health, and ecological risks of TrOCs, as well as the impact of land use and rainfall characteristics on their concentrations. The review uncovers a total of 629 TrOCs detected at least once in urban stormwater, including 228 pesticides, 132 pharmaceutical and personal care products (PPCPs), 29 polycyclic aromatic hydrocarbons (PAHs), 30 per- and polyfluorinated substances (PFAS), 28 flame retardants, 24 plasticizers, 22 polychlorinated biphenyls (PCBs), nine corrosion inhibitors, and 127 other industrial chemicals/intermediates/solvents. Concentration distributions were explored, with the best fit being log-normal distribution. Risk assessment highlighted 82 TrOCs with high ecological risk quotients (ERQ > 1.0) and three with potential health risk quotients (HQ > 1.0). Notably, 14 TrOCs (including six PAHs, five pesticides, three flame-retardants, and one plasticizer) out of 68 analyzed were significantly influenced by land-use type. Relatively weak relationships were observed between rainfall characteristics and pollutant concentrations, warranting further investigation. This study provides essential information about the occurrence and risks of TrOCs in urban stormwater, offering valuable insights for managing these emerging chemicals of concern.
Collapse
Affiliation(s)
- Kefeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Kensington, NSW 2052, Australia.
| | - Zhaozhi Zheng
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Lena Mutzner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Baiqian Shi
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - David McCarthy
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia; Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Stuart Khan
- School of Civil Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Tim D Fletcher
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Richmond, VIC 3121, Australia
| | - Marty Hancock
- Water Research Australia, Adelaide, SA 5000, Australia
| | - Ana Deletic
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Chen D, Chen Y, Zhang Y, Du J, Xiao H, Yang Z, Xu J. Multi-class analysis of 100 drug residues in cosmetics using high-performance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Talanta 2024; 266:124954. [PMID: 37478768 DOI: 10.1016/j.talanta.2023.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Cosmetics are an important aspect of the lives of many people. With an increasing demand for cosmetics, consumers pay more attention to their efficacy and composition. To improve their efficacy, prohibited substances, such as hormones, glucocorticoids, antibiotics, antifungals and antihistamines, may be added to cosmetics. We developed a rapid method for the multi-class analysis of drug residues in toner and lotion cosmetic samples using high-performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (HPLC-Q-TOF-HRMS). The primary variables in the extraction and purification steps were studied to minimize the interference of the sample matrix. The non-information-dependent sequential window acquisition of all theoretical fragment ion spectra (SWATH®) mode was used to improve the data acquisition efficiency. The secondary product ion peak areas were used for quantification to obtain a satisfactory matrix effects. The validation experiments confirmed that the developed method exhibited good linearity (5-200 ng/L) with correlation coefficients (R) ≥ 0.9902. Our developed method was then successfully applied to 92 real cosmetic samples. The calibration curve established by this method can be used for retrospective quantitative analysis over long durations without re-calibration. This method is efficient and suitable for screening and controlling multi-class prohibited substances in the cosmetics industry to reduce potential risks.
Collapse
Affiliation(s)
- Dan Chen
- Guangdong Institute of Sport Science, Guangzhou, 510663, PR China
| | - Ying Chen
- Guangdong Institute of Sport Science, Guangzhou, 510663, PR China
| | - Yuan Zhang
- Guangdong Institute of Sport Science, Guangzhou, 510663, PR China
| | - Juan Du
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China
| | - Zong Yang
- Asia Pacific Technical Support Center of SCIEX, Shanghai, 200050, PR China
| | - Jia Xu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China.
| |
Collapse
|
7
|
Shekwa W, Maliehe TS, Masoko P. Antimicrobial, antioxidant and cytotoxic activities of the leaf and stem extracts of Carissa bispinosa used for dental health care. BMC Complement Med Ther 2023; 23:462. [PMID: 38102607 PMCID: PMC10722736 DOI: 10.1186/s12906-023-04308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Carissa bispinosa (L.) Desf. ex Brenan is one of the plants used traditionally to treat oral infections. However, there is limited data validating its therapeutic properties and photochemistry. The aim of this study was to investigate the protective efficacy of the leaf and stem extracts of C. bispinosa against oral infections. METHODS The phenolic and tannin contents were measured using Folin-Ciocalteau method after extracting with different solvents. The minimum inhibitory concentrations (MIC) of the extracts were assessed using the microdilution method against fungal (Candida albicans and Candida glabrata) and bacterial (Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecalis) strains. The 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing power (FRP) models were utilised to assess the antioxidant potential of the extracts. Cytotoxicity of the leaf acetone extract was evaluated using the methylthiazol tetrazolium assay. RESULTS The methanol leaf extract had the highest phenolic content (113.20 mg TAE/g), whereas hexane extract displayed the highest tannin composition of 22.98 mg GAE/g. The acetone stem extract had the highest phenolic content (338 mg TAE/g) and the stem extract yielded the highest total tannin content (49.87 mg GAE/g). The methanol leaf extract demonstrated the lowest MIC value (0.31 mg/mL), whereas the stem ethanol extract had the least MIC value of 0.31 mg/mL. The stem methanol extract had the best DPPH free radical scavenging activity (IC50, 72 µg/mL) whereas the stem ethanol extract displayed maximum FRP with absorbance of 1.916. The leaf acetone extract had minimum cytotoxicity with the lethal concentration (LC50) of 0.63 mg/mL. CONCLUSIONS The results obtained in this study validated the protective effect of C. bispinosa against oral infections.
Collapse
Affiliation(s)
- Wanda Shekwa
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa
| | - Tsolanku Sidney Maliehe
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa.
| |
Collapse
|
8
|
Wei L, Huang Q, Qiu Y, Zhao J, Rantakokko P, Gao H, Huang F, Bignert A, Bergman Å. Legacy persistent organic pollutants (POPs) in eggs of night herons and poultries from the upper Yangtze Basin, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93744-93759. [PMID: 37516701 DOI: 10.1007/s11356-023-28974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.
Collapse
Affiliation(s)
- Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Hongwen Gao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Fei Huang
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
- Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Åke Bergman
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden
- Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
9
|
Oró-Nolla B, Dulsat-Masvidal M, Bertolero A, Lopez-Antia A, Lacorte S. Target and untargeted screening of perfluoroalkyl substances in biota using liquid chromatography coupled to quadrupole time of flight mass spectrometry. J Chromatogr A 2023; 1701:464066. [PMID: 37207413 DOI: 10.1016/j.chroma.2023.464066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Perfluoroalkyl substances (PFAS) are known to bioaccumulate and trigger adverse effects in marine birds. This study develops an extraction and analytical methodology for the target/untargeted analysis of PFAS in eggs of Yellow-legged gull (Larus michahellis) and Audouin's gull (Larus audouinii) and blood of Greater flamingo (Phoenicopterus roseus), which are used as bioindicators of organic chemical pollution. Samples were extracted by ultrasonication with acetonitrile and cleaned-up with activated carbon, and analysis was performed by ultra-high-performance liquid chromatography coupled to a quadrupole-time of flight mass spectrometer (UHPLC-Q-TOF) with negative electrospray ionization. Data-independent acquisition (DIA) was performed through full-scan acquisition to obtain MS1 at 6 eV and MS2 at 30 eV. In a first step, quantitative analysis of 25 PFAS was performed using 9 mass-labelled internal standard PFAS and quality parameters of the method developed are provided. Then, an untargeted screening workflow is proposed using the high-resolution PFAS library database from NORMAN to identify new chemicals through accurate mass measurement of MS1 and MS2 signals. The method permitted to detect several PFAS at concentrations ranging from 0.45 to 55.2 ng/g wet weight in gull eggs and from 0.75 to 125 ng/mL wet weight in flamingos' blood, with PFOS, PFOA, PFNA, PFUdA, PFTrDA, PFDoA, PFHxS and PFHpA the main compounds detected. In addition, perfluoro-p-ethylcyclohexylsulfonic acid (PFECHS, CAS number 646-83-3) and 2-(perfluorohexyl)ethanol (6:2 FTOH, CAS number 647-42-7) were tentatively identified. The developed UHPLC-Q-TOF target/untargeted analytical approach increases the scope of PFAS analysis, enabling a better assessment on contaminant exposure and promoting the use of bird species as bioindicators of chemical pollution.
Collapse
Affiliation(s)
- B Oró-Nolla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - M Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - A Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, La Galera 53, Amposta 43870, Spain
| | - A Lopez-Antia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - S Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
10
|
Movalli P, Biesmeijer K, Gkotsis G, Alygizakis N, Nika MC, Vasilatos K, Kostakis M, Thomaidis NS, Oswald P, Oswaldova M, Slobodnik J, Glowacka N, Hooijmeijer JCEW, Howison RA, Dekker RWRJ, van den Brink N, Piersma T. High resolution mass spectrometric suspect screening, wide-scope target analysis of emerging contaminants and determination of legacy pollutants in adult black-tailed godwit Limosa limosa limosa in the Netherlands - A pilot study. CHEMOSPHERE 2023; 321:138145. [PMID: 36791819 DOI: 10.1016/j.chemosphere.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The Dutch breeding population of the black-tailed godwit Limosa limosa limosa has declined substantially over recent decades; the role of contaminants is unknown. We analysed liver samples from 11 adult birds found dead on their breeding grounds in SW Friesland 2016-2020, six from extensive, herb-rich grasslands, five from intensive grasslands. We carried out LC and GC wide-scope target analysis of more than 2400 substances, LC suspect screening for more than 60,000 substances, target analysis for Cd, Hg, Ni and Pb, organo-phosphate flame retardants (OPFRs), dechlorane plus compounds and selected polybrominated diphenyl ether flame retardants (PBDEs), and bioassay for polybrominated dibenzo-p-dioxins and dibenzofurans (PBDDs/PDBFs) and dioxin-like polychlorinated biphenyls (dl-PCBs). Residues of 29 emerging contaminants (ECs) were determined through wide-scope target analysis. Another 20 were tentatively identified through suspect screening. These contaminants include industrial chemicals (personal care products, surfactants, PAHs and others), plant protection products (PPPs) and pharmaceuticals and their transformation products. Total contaminant load detected by wide-scope target analysis ranged from c. 155 to c. 1400 ng g-1 and was generally lower in birds from extensive grasslands. Heatmaps suggest that birds from intensive grasslands have a greater mix and higher residue concentrations of PPPs, while birds from extensive grasslands have a greater mix and higher residue concentrations of per- and polyfluoroalkyl substances (PFAS). All four metals and two OPFRs were detected. All tested PBDEs were below the respective LODs. Bioassay revealed presence of PBDDs, PBDFs and dl-PCBs. Further research is required to elucidate potential health risks to godwits and contaminant sources.
Collapse
Affiliation(s)
- P Movalli
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands.
| | - K Biesmeijer
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - G Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - M C Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - K Vasilatos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - M Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - P Oswald
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - M Oswaldova
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - J Slobodnik
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - N Glowacka
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - J C E W Hooijmeijer
- Conservation Ecology Group, Groningen Institute for Evolutionary Science (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands
| | - R A Howison
- Knowledge Infrastructures Department, Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE Leeuwarden, The Netherlands
| | - R W R J Dekker
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands
| | - N van den Brink
- Wageningen University, Division of Toxicology, Box 8000, NL6700 EA, Wageningen, the Netherlands
| | - T Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Science (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands; NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, PO Box 59, 1790 AB Den Burg, Texel, the Netherlands
| |
Collapse
|