1
|
Wang P, Hu J, Zhang Q, Ma W, Tian L, Liu T, Zheng H, Han G. Risk assessment and contamination drivers for heavy metals in kindergarten resuspended dust. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137757. [PMID: 40048790 DOI: 10.1016/j.jhazmat.2025.137757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
It is essential for effective health risk management to precisely evaluate the health risks (HRs) associated with heavy metals (HM) contamination in kindergarten-resuspended dust (KRD) smaller than 100 μm and to identify the driving factors of contamination. The contamination levels and drivers of HM in KRD were investigated in a typical mega-city, and the content- and source-oriented HRs associated with the bio-accessibility (BA) of HM were evaluated. The results show that KRD is heavily polluted by Cd, Cr, and Ni. Furthermore, the BA in gastric solution is higher than that in intestinal solution due to the greater solubility of HM in the acidic environment. Industrial sources are the primary contributors to carcinogenic risks, with Cr and Ni being the main contributors. Notably, HRs based on total HM concentrations are greatly overestimated, so considering the BA of HM can provide more precise risk assessment results. Additionally, the spatial variations of Cr and Ni are primarily influenced by road density and industrial output, while the spatial variation of Cd is mainly affected by elevation, population density, and road density. This work underscores the critical importance of precisely assessing health risks and identifying the drivers of HM contamination in KRD.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jian Hu
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenmin Ma
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing 100038, PR China
| | - Guilin Han
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
2
|
Han X, Wang J, Xiong Z, Li S, Jing J, Wang L, Liang T. Spatial and ecological health impacts of potentially toxic elements in road dust from long-term mining activities: A case study of the Bayan Obo deposit. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137595. [PMID: 39955990 DOI: 10.1016/j.jhazmat.2025.137595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
The long-term impacts of mining activities at the Bayan Obo deposit on potentially toxic elements (PTEs) in road dust remain insufficiently understood. This study aims to enrich knowledge in this area by investigating the spatial and eco-health impacts of PTEs in both bulk road dust (BRD) and resuspended road dust (RRD) from mining. An integrated approach combining Monte Carlo simulations with multiple statistical and geostatistical methods was used to quantify mining-related impacts. The findings revealed that Cd was the most polluted element. Concentrations of Cd, Mo, Pb and Zn were notably higher near the mine and decreased with increasing distance, with mining activities directly contributing over 20 % to these PTEs. Moderate and considerable eco-risks were identified for BRD and RRD, respectively, primarily driven by Cd and Mo, with higher risks closer to the mine. While non-carcinogenic risks were negligible, carcinogenic risks for adults required attention. Mining-related sources accounted for over 30 % of eco-risks but less than 10 % of health risks. This research integrates multiple methods, providing a more comprehensive understanding of the spatial and eco-health impacts of mining activities on PTEs in road dust. These findings offer critical insights and guidance for managing similar environmental challenges in other mining regions.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jing
- School of Geographic and Environmental Sciences, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Feng X, Tian Y, Guo D, Xue Q, Song D, Huang F, Feng Y. Quantifying role of source variations on PM 2.5-bound toxic components under climate change: Measurement at multiple sites during 2018-2022 in a Chinese megacity. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138584. [PMID: 40373396 DOI: 10.1016/j.jhazmat.2025.138584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Understanding the response of PM2.5-bound toxic components to source variations under climate change is crucial for public health protection. However, the lack of long-term and multi-site observational data of toxic components limits such efforts. Here, we conducted a five-year PM2.5 measurement (2018-2022) at 10 sites across a Chinese megacity, analyzing 15 polycyclic aromatic hydrocarbons (PAHs), 6 organophosphate esters (OPEs), and 9 potentially toxic elements (PTEs). Using explainable machine learning, we found that source variations from particle matter mass reduction under climate change can impact PM2.5-bound toxic components. Meteorological factors like extreme heat days and max temperature impact most toxic components, while geographic, socioeconomic, and anthropogenic factors mainly affect PTEs, especially Cu. We also designed 10 extreme heat and source variation scenarios to predict the response of toxic components. When comparing scenario 2-1 (source variation without temperature change) with scenario 2-2 and 2-3 (the same source variation but higher temperatures), many PM2.5-bound organics and As show higher reduction rates under climate change, highlighting the need to focus more on gas-phase organics and products of atmospheric process. Benzo[b]fluoranthene (BbF) is most sensitive to traffic source reductions, and Cu, Mn, Zn and Fe are more sensitive to industrial source reductions.
Collapse
Affiliation(s)
- Xinyao Feng
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300074, China.
| | - Danfeng Guo
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qianqian Xue
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Danlin Song
- Chengdu Research Academy of Environmental Sciences, Chengdu 610072, China.
| | - Fengxia Huang
- Chengdu Research Academy of Environmental Sciences, Chengdu 610072, China
| | - Yinchang Feng
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300074, China
| |
Collapse
|
4
|
Tian M, Xue S, Hui F, Cao W, Zhang P. Environmental Risk Assessment of Metals in Groundwater in an Area of Jiujiang City, Jiangxi Province, China. TOXICS 2025; 13:197. [PMID: 40137524 PMCID: PMC11945868 DOI: 10.3390/toxics13030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
To conduct an environmental risk assessment for metals in the groundwater of a site in Jiujiang City, Jiangxi Province, we analyzed seven metals (Cr, Zn, Pb, Ni, Sb, Cu, and Tl) that exhibited higher detection rates among the elements we measured. For example, in our measurement data, the average concentration of the element cobalt (Co) is less than 2 × 10-3 μg/L, and the average concentration of the element cadmium (Cd) is less than 5 × 10-3 μg/L. The purpose of this environmental risk assessment was to provide a scientific basis for site remediation and subsequent construction. The risk assessment was carried out using the single-factor pollution index, the Nemerow comprehensive pollution index (Pn), and potential ecological hazard index methods. Principal component analysis and correlation analyses were used to investigate the sources of metal pollution in the groundwater. The results indicated the following: (1) The average concentrations of the seven metals in the groundwater of the study area did not exceed the Class IV groundwater quality standard limits. The highest average concentration was for Zn (38.08 μg/L), indicating that metal concentrations in the groundwater were relatively low. (2) The Pn for the seven metals was below 0.7, indicating that the study area was at a non-polluted level. (3) The correlation and principal component analyses of the metals indicate that the sources of these metals may be residues from material stored in the raw material warehouse of the former iron smelting plant at the site. The results show that the level of groundwater contamination at the site falls within an extremely low range; thus, the focus on groundwater pollution can be reduced in subsequent site remediation and construction activities.
Collapse
Affiliation(s)
- Minghao Tian
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (M.T.); (S.X.); (F.H.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Shihan Xue
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (M.T.); (S.X.); (F.H.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Fujiang Hui
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (M.T.); (S.X.); (F.H.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (M.T.); (S.X.); (F.H.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Ping Zhang
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (M.T.); (S.X.); (F.H.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
5
|
Yu B, Lu X, Wang Z, Yang Y, Lei K, Pan H. Comprehensive assessment of potential toxic elements in surface dust of community playgrounds in Xi'an, China. ENVIRONMENTAL RESEARCH 2025; 264:120386. [PMID: 39551370 DOI: 10.1016/j.envres.2024.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
To identify the key factors for managing and controlling potential toxic elements (PTEs) in surface dust of urban community playgrounds, this study comprehensively analyzed the content, pollution characteristics, eco-health risks, and sources of commonly concerned PTEs in surface dust of Xi'an community playgrounds. The average levels of Cd, Hg, Cu, Cr, Ba, Zn and Pb in the dust were 2.2, 0.27, 1.4 × 102, 2.1 × 102, 1.7 × 103, 2.9 × 102, 1.5 × 102 mg kg-1, respectively, exceeding the soil background values. The main sources of PTEs in the dust were natural source, mixed source of construction and weathering of entertainment facilities, traffic source, and industrial source, accounting for 24.9%, 45.7%, 18.1%, and 11.3%, respectively. The contamination and ecological risk of PTEs in the dust were elevated, and Cd and industrial source were identified as the primary contributors. The non-carcinogenic risks for different age groups were within a safe range, but the cancer risk was high, especially for toddlers and the elderly. It is worth noting that the cancer risk based on the minimum values of key exposure parameters for toddlers, preschool children, children, and teenagers has exceeded the acceptable level. According to the results of source-oriented health risk assessment, the traffic source was identified as the main contributors of health risk, and Ni was a particularly concerned PTE. These findings can provide the scientific basis for controlling PTEs pollution in urban community playgrounds and the guidance for protecting residents' health.
Collapse
Affiliation(s)
- Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China.
| | - Huiyun Pan
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
6
|
Han X, Xiong Z, Wang S, Wang L, Liang T. Long-term open-pit mining activities at the world's largest light rare earth mine significantly affect light rare earth elements in road dust over long distances. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136287. [PMID: 39488983 DOI: 10.1016/j.jhazmat.2024.136287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The long-term effects of decades of open-pit mining at the Bayan Obo deposit, the world's largest light rare earth mine, on the concentrations of several elements in road dust over long distances are unknown. Here, bulk road dust (BRD) and resuspended road dust (RRD) were collected from different distances from the mine for subsequent analysis of mining impacts. As a result of mining activities, light rare earth elements (LREEs), especially La, Ce, Pr and Nd, show different statistical and spatial variations compared to other elements. These LREEs decrease with increasing distance from the mine, and the values found in RRD are higher than those in other particle sizes. Mining emissions and soil have the most significant influence on these LREEs compared to other factors. Spatially, these four LREEs changed significantly over a large area (up to 60 km from the mine) due to mining emissions. However, long-term mining activities affect these elements mainly through mining-contaminated soil as opposed to mining emissions. This study confirms the significant impact of mining activities on LREEs in road dust via a comprehensive data-driven framework, emphasizing the significant environmental effects of long-term open pit mining.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Wang P, Hu J, Zhang Q, Ma W, Tian L, Liu T, Li J, Zheng H, Han G. Sources and health risks of heavy metals in kindergarten dust: The role of particle size. ENVIRONMENTAL RESEARCH 2024; 262:119955. [PMID: 39243844 DOI: 10.1016/j.envres.2024.119955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Particle size effects significantly impact the concentration and toxicity of heavy metals (HMs) in dust. Nevertheless, the differences in concentrations, sources, and risks of HMs in dust with different particle sizes are unclear. Therefore, guided by the definition of atmospheric particulate matter, dust samples with particle sizes under 1000 μm (DT1000), 100 μm (DT100), and 63 μm (DT63) from Beijing kindergartens were collected. The concentrations of HMs (e.g., Cd, Pb, Zn, Ni, Cr, Ba, Cu, V, Mn, Co, and Ti) in dust samples with different particle sizes were measured. Besides, the differences in HM concentrations, contamination levels, sources, and source-oriented health risks in dust samples of different particle sizes were systematically explored. The results show that the concentrations of Mn, V, Zn, and Cd gradually increase with decreasing dust particle sizes, the concentrations of Ba and Pb show a decreasing trend, and the concentrations of Cr, Cu, Ni, and Co display an increasing and then decreasing trend. The degree of contamination of HMs in dust of different particle sizes varies, with Cd being the most dominant contaminant. Compared with DT1000 and DT63, DT100 is the most polluted. In addition, the sources of HMs in DT1000, DT100, and DT63 become more single with decreasing particle size, which may be mainly due to the particle-size effect inducing the redistribution of HMs in different sources. Notably, the potential health risk is higher in DT100 than in DT1000 and DT63. The highest contribution of industrial sources to the health risk is found in DT100, which is mainly caused by highly toxic chromium (Cr). This work emphasizes the importance of considering particle size in risk assessment and pollution control, which can provide a theoretical basis for precise management of HMs pollution in dust.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geo sciences, (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China; The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jian Hu
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wenmin Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geo sciences, (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China
| | - Jun Li
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing, 100038, PR China
| | - Guilin Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geo sciences, (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
8
|
Hu J, Wang P, Li J, Zhang Q, Tian L, Liu T, Ma W, Zheng H. Hazard profiles, distribution trends, and sources tracing of rare earth elements in dust of kindergartens in Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124374. [PMID: 38906400 DOI: 10.1016/j.envpol.2024.124374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Children, the most vulnerable group in urban populations, are susceptible to the effects of pollution in urban environments. It is significant to evaluate the influence of rare earth elements (REEs) from kindergartens dust (KD) in Beijing on children's health. This study collected surface dust from 73 kindergartens in 16 districts of the mega-city of Beijing, and the concentrations of 14 REEs in KD, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, were detected. The contamination levels, source apportionment, and health exposure risk of REEs were comprehensively investigated. The results indicate that the contamination levels of 14 REEs are within the acceptable range. Nevertheless, Eu, Ce, La, Pr, Nd, Gd, and Sm show high enrichment due to anthropogenic influence. Besides, KD is rich in light rare earth elements (LREEs) (90.97 mg kg-1) compared to heavy rare earth elements (HREEs) (8.65 mg kg-1). The distribution parameter patterns of REEs suggest that complicated anthropogenic sources influence the enrichment of REEs in KD. The main sources of REEs in KD include natural sources (40.64%), mixed high-tech industries and construction (33.89%), and mixed coal-fired, historical industrial, and transportation sources (26.47%). The primary pathway for daily intake of REEs in children is through ingestion, which presents a low but not negligible health risk. This study provides guidance for the effective risk management of REEs in KD.
Collapse
Affiliation(s)
- Jian Hu
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Peng Wang
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jun Li
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China
| | - Wenmin Ma
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing, 100038, PR China
| |
Collapse
|
9
|
Wang X, Gao Q, Wang W, Yan J, Liu Y, Kuang S, Lu J. Determining priority control factors for heavy metal management in urban road dust based on source-oriented probabilistic ecological-health risk assessment: A study in Xi'an during peak pollution season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122105. [PMID: 39213844 DOI: 10.1016/j.jenvman.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Urban road dust (URD) is essential for transporting heavy metals (HMs), which can be a major danger to both the environment and human health. Moreover, URD has the potential to be carried into bodies of water, leading to contamination of the aquatic ecosystem. A study was conducted in Xi'an, a city in northwestern China known for high air pollution levels, during January 2024 - a period characterized by peak pollution due to frequent low wind speeds and temperature inversions. The research investigated the presence of 10 types of HMs (Cu, Zn, Cd, Cr, Pb, As, Ni, Hg, Co, and Mn) in URD. Findings revealed elevated levels of Cu, Zn, Cd, Cr, Pb, As, and Hg in URD compared to background levels. Hg showed the most significant contamination (moderate to heavy), followed by moderate contamination of Cd, and lower levels of As, Zn, and Cu. The main sources of HMs were traffic (58.2%), mixed natural and industrial (30.3%), and industrial (11.5%). The ecological risk in the area was deemed to be very high, primarily because of Hg and Cd. Based on probabilistic health risk assessments, it was determined that non-carcinogenic risks were deemed acceptable for all groups. Nevertheless, the possibility of carcinogenic risks should not be disregarded. Strategies for controlling ecological-health risks prioritize mixed natural and industrial sources, with a focus on Hg, Cd, and As in URD. The results offer a foundation for policymakers to create specific control strategies.
Collapse
Affiliation(s)
- Xuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qi Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weizhou Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiaxin Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yunchong Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shixiang Kuang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
10
|
Zeng Y, Liu X, Li Y, Jin Z, Shui W, Wang Q. Analysis of driving factors for potential toxic metals in major urban soils of China: a geodetetor-based quantitative study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:389. [PMID: 39172173 DOI: 10.1007/s10653-024-02163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Potential toxic metal (PTM) is hazardous to human health, but the mechanism of spatial heterogeneity of PTM at a macro-scale remains unclear. This study conducts a meta-analysis on the data of PTM concentrations in the soil of 164 major cities in China from 2006 to 2021. It utilizes spatial analysis methods and geodetector to investigate the spatial distribution characteristics of PTMs. The geographic information systems (GIS) and geodetector were used to investigate the spatial distribution characteristics of PTMs, assess the influence of natural factors (NFs) and anthropogenic factors (AFs) on the spatial heterogeneity of PTMs in urban soils, and identified the potential pollution areas of PTMs. The results indicated that the pollution levels of PTMs in urban soils varied significantly across China, with higher pollution levels in the south than in the north. Cd and Hg were the most severely contaminated elements. The geodetector analysis showed that temperature and precipitation in NFs and land use type in AFs were considered as the main influencing factors, and that both AF and NF together led to the PTM variation. All these factors showed a mutually enhancing pattern which has important implications for urban soil management. PTM high-risk areas were identified to provide early warning of pollution risk under the condition of climate change.
Collapse
Affiliation(s)
- Yue Zeng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education of China, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xinyu Liu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yunqin Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Zhifan Jin
- Fujian Provincial Fuzhou Environmental Monitoring Center Station, Fuzhou, 350013, People's Republic of China
| | - Wei Shui
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education of China, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Qianfeng Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education of China, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
11
|
Fatmi B, Hazzab A, Rahmani A, Ghenaim A. Examining temporal trends in heavy metal levels to analyze sediment pollution dynamics in the Saida urban watershed (N-W Algeria). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11084. [PMID: 39117585 DOI: 10.1002/wer.11084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The study focuses on current pollution in the Saïda basin, a semi-arid region in north-western Algeria. By analyzing sediments, the study provides interesting results on urban pollution and its environmental impact. The research consists of two main phases, each addressing different aspects of pollution. In the first phase, different pollution indicators are used to analyze heavy metals and organic pollutants in urban drainage sediments. The results are compared with sediment quality guidelines, regulatory thresholds, and local and international references. Most of the metallic contaminants exceed the toxicity levels established by the continental crust and sediment quality guidelines, suggesting an anthropogenic origin. In addition, contamination indices show significant accumulation. In this context, the results highlight the importance of accumulation and transport processes in urban sediments. Hydrological parameters significantly influence heavy metal distribution mechanisms. Remarkable variations between copper (Cu) and lead (Pb) suggest a combined or singular source during transport. Conversely, chromium (Cr), nickel (Ni), and iron (Fe) are mainly derived from natural lithological sources. Cadmium (Cd) is associated with anthropogenic sources related to the agricultural use of phosphate fertilizers, whereas zinc (Zn) is mainly derived from physical corrosion processes. In the second phase, a combined descriptive and multivariate statistical analysis examines the mobility and distribution of heavy metals and their relationships with organic matter (OM) over time. Pronounced temporal variations in Cd, Zn, and Cu concentrations are attributed to human activities. Strong correlations exist between OM and cobalt (Co), Cu and Pb, confirming the ability of OM to adsorb these metals under specific geochemical conditions associated with waste disposal. Conversely, Zn, Cd, Cr, and Ni show weak or negative correlations with OM, suggesting diverse sources, including potential agricultural, industrial, and natural origins. The dendrogram confirms the existence of previously identified contaminant groups, suggesting common sources and potential co-occurrence patterns. This analysis highlights the role of the drainage network as a physico-chemical reactor in the mobilization of contaminants. It underlines the importance of sediment interactions in urban pollution processes. Finally, recommendations are proposed to ensure effective pollution control and remediation. PRACTITIONER POINTS: Useful information on pollution and its environmental impact is provided by the analysis of sediments in the urban basin of Saida (NW-Algeria). The results of this study indicate high levels of heavy metals in the sediments, in excess of toxicity limits, and evidence of anthropogenic sources. Temporal variations in metal concentrations indicate the influence of human activities. The study has made it possible to identify the sources, to understand the mobility and distribution, and to control the contamination by heavy metals in the urban sediments. Drainage system serves as a pathway for dispersing contaminants.
Collapse
Affiliation(s)
- Belaid Fatmi
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
- Algerian National Organism for the Technical Control of Hydraulic Constructions (CTH), Tlemcen, Algeria
| | - Abdelkrim Hazzab
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
| | - Asmaa Rahmani
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
| | - Abdellah Ghenaim
- Laboratory of Mechanics and Environment ICUBE/INSA, National Institute of the Applied Sciences, Strasbourg, France
| |
Collapse
|
12
|
Yang Y, Lu X, Yu B, Wang Z, Wang L, Lei K, Zuo L, Fan P, Liang T. Exploring the environmental risks and seasonal variations of potentially toxic elements (PTEs) in fine road dust in resource-based cities based on Monte Carlo simulation, geo-detector and random forest model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134708. [PMID: 38795490 DOI: 10.1016/j.jhazmat.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The environmental pollution caused by mineral exploitation and energy consumption poses a serious threat to ecological security and human health, particularly in resource-based cities. To address this issue, a comprehensive investigation was conducted on potentially toxic elements (PTEs) in road dust from different seasons to assess the environmental risks and influencing factors faced by Datong City. Multivariate statistical analysis and absolute principal component score were employed for source identification and quantitative allocation. The geo-accumulation index and improved Nemerow index were utilized to evaluate the pollution levels of PTEs. Monte Carlo simulation was employed to assess the ecological-health risks associated with PTEs content and source orientation. Furthermore, geo-detector and random forest analysis were conducted to examine the key environmental variables and driving factors contributing to the spatiotemporal variation in PTEs content. In all PTEs, Cd, Hg, and Zn exhibited higher levels of content, with an average content/background value of 3.65 to 4.91, 2.53 to 3.34, and 2.15 to 2.89 times, respectively. Seasonal disparities were evident in PTEs contents, with average levels generally showing a pattern of spring (winter) > summer (autumn). PTEs in fine road dust (FRD) were primarily influenced by traffic, natural factors, coal-related industrial activities, and metallurgical activities, contributing 14.9-33.9 %, 41.4-47.5 %, 4.4-8.3 %, and 14.2-29.4 % to the total contents, respectively. The overall pollution and ecological risk of PTEs were categorized as moderate and high, respectively, with the winter season exhibiting the most severe conditions, primarily driven by Hg emissions from coal-related industries. Non-carcinogenic risk of PTEs for adults was within the safe limit, yet children still faced a probability of 4.1 %-16.4 % of unacceptable risks, particularly in summer. Carcinogenic risks were evident across all demographics, with children at the highest risk, mainly due to Cr and smelting industrial sources. Geo-detector and random forest model indicated that spatial disparities in prioritized control elements (Cr and Hg) were primarily influenced by particulate matter (PM10) and anthropogenic activities (industrial and socio-economic factors); variations in particulate matter (PM10 and PM2.5) and meteorological factors (wind speed and precipitation) were the primary controllers of seasonal disparities of Cr and Hg.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Wagner S, Funk CW, Müller K, Raithel DJ. The chemical composition and sources of road dust, and of tire and road wear particles-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171694. [PMID: 38485005 DOI: 10.1016/j.scitotenv.2024.171694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
To gain better understanding of how the transition to electric vehicles affects road dust (RD) composition, and potential health and environmental risks, it is crucial to analyze the chemical composition of RD and identify its sources. Sources of RD include wear of tire tread (TT), brake wear (BW) and road wear (RW). A relevant component of RD are tire and road wear particles (TRWPs). This literature review compiles data on the chemical bulk composition of RD sources, RD in Asia, Europe and North America and TRWP as a RD component. The focus is on elements such as Cd, Co, Cr, Cu, Ni, Pb, V, and Zn. Although the comparability of global RD data is limited due to differences in sampling and analytical methods, no significant differences in the composition from Asia, Europe, and North America were found for most of the investigated elements studied, except for Cd, Co, and V. Sources of RD were analyzed using elemental markers. On average TT, BW, and RW contributed 3 %, 1 %, and 96 %, respectively. The highest concentrations of TT (9 %) and BW (2 %) were observed in the particle size fraction of RD ≤ 10 μm. It is recommended that these results be verified using additional marker compounds. The chemical composition of TRWPs from different sources revealed that (i) TRWPs isolated from a tunnel dust sample are composed of 31 % TT, 6 % BW, and 62 % RW, and (ii) test material from tire test stands show a similar TT content but different chemical bulk composition likely because e.g., of missing BW. Therefore, TRWPs from test stands need to be chemically characterized prior to their use in hazard testing to validate their representativeness.
Collapse
Affiliation(s)
- Stephan Wagner
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany; Hochschule für Angewandte Wissenschaften Hof, Germany.
| | | | - Kathrin Müller
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany
| | | |
Collapse
|
14
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
15
|
Liu X, Sheng Y, Liu Q, Li Z. Suspended particulate matter affects the distribution and migration of heavy metals in the Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169537. [PMID: 38141984 DOI: 10.1016/j.scitotenv.2023.169537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Suspended particulate matter (SPM) is an important heavy metal transporter in water. As a well-known high-SPM river, its impact on the distribution and migration of heavy metals in the Yellow River (YR) deserves special attention. In this study, the spatial distributions of heavy metals in surface water and SPM of the YR were investigated. The results indicate that the concentrations (dissolved and particulate phases) and bioavailability (particulate phase) of most heavy metals were higher during the rainy season than during the dry season. A considerable proportion of heavy metals (>70 %) was transported by SPM and fine particles (clay) controlled the pollution status of heavy metals in the YR. This could lead to higher heavy metal concentrations in the SPM midstream and downstream during the rainy season and higher heavy metal concentrations in upstream during the dry season. Heavy metal adsorption experiments showed that specific combination methods (such as binding with carbonate) between Cd and SPM may cause SPM to act as a source of Cd midstream and downstream. This study provides a new perspective on the effects of SPM on heavy metal distribution and migration in the YR.
Collapse
Affiliation(s)
- Xiaozhu Liu
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Qunqun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhaoran Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
16
|
Lu X, Wang Z, Chen Y, Yang Y, Fan X, Wang L, Yu B, Lei K, Zuo L, Fan P, Liang T, Cho JW, Antoniadis V, Rinklebe J. Source-specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119056. [PMID: 37757688 DOI: 10.1016/j.jenvman.2023.119056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 μm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.
Collapse
Affiliation(s)
- Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yurong Chen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Woo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| |
Collapse
|
17
|
Wang Z, Lu X, Yu B, Yang Y, Wang L, Lei K. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164022. [PMID: 37172841 DOI: 10.1016/j.scitotenv.2023.164022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Re-suspended surface dust (RSD) often poses higher environmental risks due to its specific physical characteristics. To ascertain the priority pollution sources and pollutants for the risk control of toxic metals (TMs) in RSD of medium-sized industrial cities, this study took Baotou City, a representative medium-sized industrial city in North China, as an example to systematically study TMs pollution in RSD. The levels of Cr (242.6 mg kg-1), Pb (65.7 mg kg-1), Co (54.0 mg kg-1), Ba (1032.4 mg kg-1), Cu (31.8 mg kg-1), Zn (81.7 mg kg-1), and Mn (593.8 mg kg-1) in Baotou RSD exceeded their soil background values. Co and Cr exhibited significant enrichment in 94.0 % and 49.4 % of samples, respectively. The comprehensive pollution of TMs in Baotou RSD was very high, mainly caused by Co and Cr. The main sources of TMs in the study area were industrial emissions, construction, and traffic activities, accounting for 32.5, 25.9, and 41.6 % of the total TMs respectively. The overall ecological risk in the study area was low, but 21.5 % of samples exhibited moderate or higher risk. The carcinogenic risks of TMs in the RSD to local residents and their non-carcinogenic risks to children cannot be ignored. Industrial and construction sources were priority pollution sources for eco-health risks, with Cr and Co being the target TMs. The south, north and west of the study area were the priority control areas for TMs pollution. The probabilistic risk assessment method combining of Monte Carlo simulation and source analysis can effectively identify the priority pollution sources and pollutants. These findings provide scientific basis for TMs pollution control in Baotou and constitute a reference for environmental management and protection of residents' health in other similar medium-sized industrial cities.
Collapse
Affiliation(s)
- Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|
18
|
Yang Y, Lu X, Yu B, Zuo L, Wang L, Lei K, Fan P, Liang T, Rennert T, Rinklebe J. Source-specific risk judgement and environmental impact of potentially toxic elements in fine road dust from an integrated industrial city, North China. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131982. [PMID: 37413801 DOI: 10.1016/j.jhazmat.2023.131982] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
The contamination of potentially toxic elements (PTEs) in road dust of large industrial cities is extremely serious. Determining the priority risk control factors of PTE contamination in road dust is critical to enhance the environmental quality of such cities and mitigate the risk of PTE pollution. The Monte Carlo simulation (MCS) method and geographical models were employed to assess the probabilistic pollution levels and eco-health risks of PTEs originating from different sources in fine road dust (FRD) of large industrial cities, and to identify key factors affecting the spatial variability of priority control sources and target PTEs. It was observed that in FRD of Shijiazhuang, a typical large industrial city in China, more than 97% of the samples had an INI > 1 (INImean = 1.8), indicating moderately contaminated with PTEs. The eco-risk was at least considerable (NCRI >160) with more than 98% of the samples, mainly caused by Hg (Ei (mean) = 367.3). The coal-related industrial source (NCRI(mean) = 235.1) contributed 70.9% to the overall eco-risk (NCRI(mean) = 295.5) of source-oriented risks. The non-carcinogenic risk of children and adults are of less importance, but the carcinogenic risk deserves attention. The coal-related industry is a priority control pollution source for human health protection, with As corresponding to the target PTE. The major factors affecting the spatial changes of target PTEs (Hg and As) and coal-related industrial sources were plant distribution, population density, and gross domestic product. The hot spots of coal-related industrial sources in different regions were strongly interfered by various human activities. Our results illustrate spatial changes and key-influencing factors of priority source and target PTEs in Shijiazhuang FRD, which are helpful for environmental protection and control of environmental risks by PTEs.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|