1
|
Xu L, Shi M, Qin G, Lin X, Huang B. Environmental pollutant Di-(2-ethylhexyl) phthalate induces asthenozoospermia: new insights from network toxicology. Mol Divers 2025; 29:2179-2192. [PMID: 39259422 DOI: 10.1007/s11030-024-10976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The global decline in sperm quality in men is closely associated with environmental exposure to the plasticizer Di-(2-ethylhexyl) phthalate (DEHP), but the molecular mechanisms underlying its induction of asthenozoospermia (AZS) remain incompletely understood. By integrating the toxicological targets of DEHP and differential genes in AZS patients, and combining machine learning, molecular docking, and dynamics simulations, this study successfully identified hub genes and signaling pathways induced by DEHP in AZS, aiming to provide new strategies for the prevention and treatment of this disease. A total of 26 toxicological targets were identified, with FGFR1, MMP7, and ST14 clearly defined as playing crucial regulatory roles in DEHP-induced AZS. This study also reveals that DEHP may induce reproductive system inflammation, affecting the proliferation and survival of reproductive cells, and subsequently impacting sperm vitality, possibly through regulating the mTORC1 pathway, TNF-α signaling via the NF-κB pathway, and MYC targets v1 pathway. Furthermore, changes in the immune microenvironment revealed the significant impact of immune status on testicular function. In conclusion, this study provides important scientific evidence for understanding the molecular mechanisms of AZS and developing prevention and treatment strategies based on toxicological targets.
Collapse
Affiliation(s)
- Lei Xu
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Menghua Shi
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Guozheng Qin
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, 650021, Yunnan, China
| | - Xuyao Lin
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Bin Huang
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
2
|
Liao J, Zhang Y, Yang J, Chen L, Zhang J, Chen X. Peroxiredoxin 6 in Stress Orchestration and Disease Interplay. Antioxidants (Basel) 2025; 14:379. [PMID: 40298631 PMCID: PMC12024067 DOI: 10.3390/antiox14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators in various conditions have yet to be comprehensively reviewed. In this study, these stressors were systematically reviewed both in vivo and in vitro and classified into chemical, physical, and biological categories. We found that the regulatory effects of these stressors on PRDX6 expression were primarily mediated via key transcriptional factors (e.g., NRF2, HIF-1α, SP1, and NF-κB), micro-RNAs, and receptor- or kinase-dependent signaling pathways. Additionally, certain stressors, including reactive oxygen species, pH fluctuations, and post-translational modifications, induced the structure-based functional switches in the PRDX6 enzyme. We further reviewed the altered expression of PRDX6 under various disease conditions, with a particular focus on neuropsychiatric disorders and cancers, and proposed the concept of PRDX6-related disorders (PRD), which refers to a spectrum of diseases mediated by or associated with dysregulated PRDX6 expression. Finally, we found that an exogenous supplementation of PRDX6 protein provided preventive and therapeutic potentials for oxidative stress-related injuries in both in vivo and in vitro models. Taken together, this review underscores the critical role of PRDX6 as a cellular orchestrator in response to various stressors, highlighting its clinical potential for disease monitoring and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Yusi Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Jianwei Yang
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Longfei Chen
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jing Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Xiaochun Chen
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| |
Collapse
|
3
|
Tesic B, Fa Nedeljkovic S, Markovic Filipovic J, Samardzija Nenadov D, Pogrmic-Majkic K, Andric N. Early-life exposure to di(2-ethylhexyl) phthalate impairs reproduction in adult female zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110090. [PMID: 39617312 DOI: 10.1016/j.cbpc.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer used in various industrial and consumer products. It is not covalently bound within these products and leaches out during repeated use, heating, or cleaning. Main routes of environmental DEHP pollution are through the industrial and municipal wastewaters, which pollute aquatic environments. The reproductive system of adult fish is known to be vulnerable to DEHP exposure; however, the effects of early-life exposure to DEHP on reproductive function in adult zebrafish (Danio rerio) females are less studied. To evaluate the impact of early-life exposure to DEHP on freshwater female fish reproduction, zebrafish embryos were exposed to DEHP at 0, 10, 100, and 1000 nmol/L from 5 h post-fertilization (hpf) to 120 hpf (larval stage) and then raised to adulthood in clean water. DEHP decreased the number of released eggs and the fertilization rate after mating with unexposed males. Bodyweight and length, the weight of the ovaries, and the gonadosomatic index were decreased in adult female zebrafish following early-life exposure to DEHP. Histological analysis of the ovaries revealed that DEHP inhibited oogenesis. Serum 17β-estradiol levels were significantly reduced. DEHP inhibited gene expression of all three nuclear estrogen receptors in the ovaries, namely esr1, esr2a, and esr2b, and two gonadotropin receptors, fshr and lhr. These results suggest that transient early-life exposure to environmentally relevant concentrations of DEHP can inhibit the reproduction of adult female zebrafish.
Collapse
Affiliation(s)
- Biljana Tesic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | | | | | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| |
Collapse
|
4
|
Zhang L, Yang R, Xu G, Wang L, Chen W, Tan Y, Zhang G, Liu W, Zhang G, Li J, Zhou Z. Paternal DEHP Exposure Triggers Reproductive Toxicity in Offspring via Epigenetic Modification of H3K27me3. TOXICS 2025; 13:172. [PMID: 40137499 PMCID: PMC11945355 DOI: 10.3390/toxics13030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is an acknowledged endocrine disruptor with male reproductive toxicity; nevertheless, the transgenerational impacts on male offspring resulting from paternal exposure, along with the mechanisms involved, are not well understood. To develop a transgenerational model of DEHP paternal exposure, male C57BL/6J mice (4-week) exposed to DEHP (5, 250, and 500 mg/kg/d) for 35 days were then bred with unexposed female mice at a ratio of 1:2 to produce offspring. Findings indicate that the sperm quality and relative sex hormones were adversely affected in males of F1 and F2 generations, and pathological damage in the testes and the apoptosis of testicular cells were also observed. Interestingly, an increase in the expression levels of H3K27me3 was observed in the testicular tissues of male descendants. It was further confirmed by in vitro approach that H3K27me3 may down-regulate the expression of Bcl-2 and plays a role in regulating the initiation of apoptosis in Leydig cells triggered by MEHP (the primary metabolite of DEHP). Additionally, the down-regulation of Bcl-2 can be reversed by treatment with the H3K27me3 inhibitor GSK126. To conclude, DEHP leads to transgenerational harm to male offspring reproductive systems, with the epigenetic mechanism of H3K27me3 playing a key role in mediating these effects.
Collapse
Affiliation(s)
- Lu Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Heath, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (L.Z.); (R.Y.); (G.X.)
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Rui Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Heath, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (L.Z.); (R.Y.); (G.X.)
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Guiyong Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Heath, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (L.Z.); (R.Y.); (G.X.)
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Heath, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (L.Z.); (R.Y.); (G.X.)
| | - Ziyuan Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Heath, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (L.Z.); (R.Y.); (G.X.)
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (L.W.); (W.C.); (Y.T.); (G.Z.); (W.L.); (G.Z.)
| |
Collapse
|
5
|
Tombul OK, Akdağ AD, Thomas PB, Kaluç N. Assessing the impact of sub-chronic polyethylene terephthalate nanoplastic exposure on male reproductive health in mice. Toxicol Appl Pharmacol 2025; 495:117235. [PMID: 39832568 DOI: 10.1016/j.taap.2025.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The widespread use of polyethylene terephthalate (PET) in food and beverage packaging raises concerns about its potential health effects, particularly when PET-derived nanoplastics (PET-NPs) are released into the environment. This study investigates the reproductive toxicity of PET-NPs in male mice. Mice were exposed to PET-NPs at doses of 0.1 mg/day and 0.5 mg/day for 28 days, and the testes index, sperm count, sperm morphology, Reactive Oxygen Species (ROS) production, DNA integrity, histopathology, and spermatogenesis were evaluated. PET-NP exposure resulted in a significant decrease in sperm concentration and an increase in abnormal spermatozoa-particularly blunt-headed sperm and sperm with neck and tail anomalies- and elevated ROS levels in testicular tissue in a dose-dependent manner (p < 0.05). Additionally, PET-NPs induced DNA strand breaks, as demonstrated by the COMET assay (p < 0.05). Histopathological analysis revealed disorganization of the germinal epithelium, vacuolization, reduced sperm density, and increased interstitial spaces, accompanied by a significant decline in spermatogenic activity, as assessed by Johnsen scoring. These findings strongly suggest that the observed adverse effects on male reproductive health, including sperm abnormalities, DNA damage, and impaired spermatogenesis, are primarily driven by ROS-induced oxidative stress. The observed changes provide clear evidence of the adverse effects of subchronic exposure to PET nanoplastics on male reproductive health, highlighting the inherent risks associated with nanoplastic exposure and offering crucial insights for public health awareness and regulatory considerations.
Collapse
Affiliation(s)
- Oğuz Kaan Tombul
- Experimental Animal Application and Research Center, Maltepe University, İstanbul, Turkey; Department of Clinical Embryology, Institute of Graduate School, Maltepe University, Istanbul, Turkey
| | | | - Pınar Buket Thomas
- Department of Medical Biology and Genetics, School of Medicine, Maltepe University, Istanbul, Turkey
| | - Nur Kaluç
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
6
|
Anwar C, Chu YC, Tsai ML, Ho CT, Lai CS. Tetrahydrocurcumin alleviates di-(2-ethylhexyl) phthalate-induced adipose tissue dysfunction and testicular toxicity in adult mice: possible involvement of adiponectin-adipoR signaling in the testis. Food Funct 2025; 16:583-600. [PMID: 39704213 DOI: 10.1039/d4fo04271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Widespread exposure to endocrine disruptors is associated with metabolic dysfunction and reproductive toxicity. Tetrahydrocurcumin (THC) has attracted attention as it offers protection against obesity and metabolic disorders due to its potent antioxidative and diverse biological properties but its influence and underlying mechanism of action on adipose tissue function and DEHP-induced testicular injury remain unknown. Our results showed that THC (100 mg kg-1 day-1) administration for 27 weeks enlarged adipocytes while attenuating macrophage infiltration and IL-6 expression in the adipose tissue of male C57BL/6J mice exposed to 5 mg kg-1 day-1 of DEHP. Moreover, THC ameliorated DEHP-induced deregulation of adiponectin but not leptin. DEHP caused testicular histological damage, spermatogenesis impairment, apoptosis, inflammation, and AGE, which were improved by THC. THC treatment elevated Nrf2/HO-1 and decreased Glut1 in interstitial Leydig cells, which may contribute to its beneficial effects on the testis. Our results further demonstrated that THC also ameliorated circulating adiponectin and testicular adipoR1-AMPK signaling, partially accounting for the improvement of DEHP-caused testicular dysfunction. The finding of this study revealed that THC is a promising candidate for improving adipose and testicular dysfunction caused by DEHP.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan
| | - Yu-Chi Chu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| |
Collapse
|
7
|
Zhang Y, Qin H, Li B, Yu Z, Zu B, Kong R, Letcher RJ, Liu C, Zhou B. A Novel Organophosphate Ester, Tris(2,4-di tert-butylphenyl) Phosphate, Induced Reproductive Toxicity in Male Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:279-290. [PMID: 39718999 DOI: 10.1021/acs.est.4c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
As a novel organophosphate ester (NOPE), tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) has attracted significant attention due to its unexpectedly high detection in natural environments. However, the ecological toxic effects of environmentally relevant concentrations of TDtBPP in organisms remain entirely unknown. In this study, 1 month old zebrafish were exposed to 0, 50, 500, or 5000 ng/L TDtBPP for 150 days, and the reproductive toxicity in male fish was evaluated. Results demonstrated that TDtBPP exposure significantly inhibited the maturation of spermatozoa and thus decreased spermatogenesis. Furthermore, abnormal sperm morphology and decreased sperm motility were also observed. The decrease in sperm quantity and quality eventually resulted in the declining fecundity. Moreover, TDtBPP exposure downregulated the expression of hsd3b1 in vivo and in vitro and subsequently inhibited the synthesis of androgens in zebrafish testes and Leydig cells. This inhibition of androgen synthesis appeared to be responsible for the observed reproductive toxicity in male fish. Molecular docking and dual-luciferase reporter gene experiments elucidated that TDtBPP inhibited the promotion of vitamin D on hsd3b1 transcription by the vitamin D receptor and thus downregulated the expression of hsd3b1. Our findings provide first time evidence that TDtBPP poses a risk to male fish reproduction at environmentally relevant levels.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, OttawaK1S 5B6, Ontario ,Canada
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| |
Collapse
|
8
|
Koriem KM, El-Masry MS. Behenic acid protects the testosterone cycle and prevents the sperm apoptosis and protein loss in phthalate exposure by inhibiting oxidative stress and stimulating ATPase activity. Toxicol Rep 2024; 13:101845. [PMID: 39698145 PMCID: PMC11652937 DOI: 10.1016/j.toxrep.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Background Plastic products use phthalate to enhance their flexibility, transparency, and stability, while behenic acid is a carboxylic acid with antioxidant activity. Objectives This study evaluates whether behenic acid can protect the testosterone cycle and prevent the sperm apoptosis and protein loss in phthalate-treated male rats. Methods There were 36 male albino rats in all, divided into six equal sets of six rats each: control, behenic acid (13 g/kg), behenic acid (26 g/kg), diethyl phthalate (10 mg/kg), behenic acid (13 g/kg) + diethyl phthalate (10 mg/kg), and behenic acid (26 g/kg) + diethyl phthalate (10 mg/kg)-treated groups. Measurements were made of serum male hormones, sex hormone-binding globulin, sodium/potassium ATPase, superoxide dismutase, glutathione, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, protein, and cholesterol in the testis, as well as malondialdehyde in the sperm, testis, and hypothalamus. Sperm monoclonal proliferating antibody Ki-67, sperm counts, motility, and abnormalities were measured. Results Oral administration of diethyl phthalate increased malondialdehyde, serum follicle stimulating hormone, sex hormone binding globulin, luteinizing hormone, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, cholesterol, total protein, sperm abnormality, and the percentage of spermatogonia, first spermatocyte, second spermatocyte, and spermatid in the testis. Superoxide dismutase, glutathione, serum testosterone and dehydroepiandrosterone sulphate, sperm count and motility, and sodium/potassium-ATPase activity were all reduced. Additionally, all of the previously described parameters reverted to near control values after receiving two doses of behenic acid in phthalate-treated rats; a higher dose of behenic acid had a more effective effect than a lower dose. Conclusion behenic acid can protect the testosterone cycle and prevent the sperm apoptosis and protein loss in phthalate-treated male rats by inhibiting oxidative stress and stimulating ATPase activity.
Collapse
Affiliation(s)
- Khaled M.M. Koriem
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth Street, P.O. Box. 12622, Dokki, Giza, Egypt
| | - Mayar S.R. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box.11562, Cairo, Egypt
| |
Collapse
|
9
|
Kordbacheh R, Ashley M, Cutts WD, Keyzer TE, Chatterjee S, Altman TJ, Alexander NG, Sparer TE, Kim BJ, Sin J. Common Chemical Plasticizer Di(2-Ethhylhexyl) Phthalate Exposure Exacerbates Coxsackievirus B3 Infection. Viruses 2024; 16:1821. [PMID: 39772131 PMCID: PMC11680387 DOI: 10.3390/v16121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis. Though CVB infections are common, severe illness is relatively rare, and it is unclear what factors mediate disease severity. In this study, we sought to determine the effects that DEHP has on CVB infection in a variety of human cell types to evaluate whether this plastic-derived pollutant could represent a proviral environmental factor. METHODS HeLa cervical cancer cells, human induced pluripotent stem cell-derived brain-like endothelial cells (iBECs), and Caco-2 colon carcinoma cells were exposed to 40 µg/mL DEHP for 24 h prior to infecting with enhanced green fluorescent protein (EGFP)-expressing CVB. The severity of the infection was evaluated via fluorescence microscopy and flow cytometry-based viral EGFP detection, viral plaque assay on tissue culture media, and Western blotting to detect VP1 viral capsid protein. Interferon-associated proteins such as interferon regulatory factor (IRF) 3, IRF7, interferon-induced transmembrane (IFITM) 2, and IFITM3 were measured by Western blotting. The roles of IFITM2 and IFITM3 in the context of CVB infection were evaluated via siRNA silencing. RESULTS We found that DEHP drastically increased CVB infection in each of the cell types we tested, and, while the cellular processes underlying DEHP's proviral properties were not entirely clear, we observed that DEHP may subvert CVB-induced interferon signaling and elevate levels of IFITMs, which appeared to bolster CVB infection. CONCLUSIONS DEHP may represent a major environmental factor associated with the severity of CVB infection. Further understanding of how DEHP exacerbates infection may better elucidate its potential role as a proviral environmental factor.
Collapse
Affiliation(s)
- Ramina Kordbacheh
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Madelyn Ashley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - William D. Cutts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Taryn E. Keyzer
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Shruti Chatterjee
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Tyler J. Altman
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Natalie G. Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| |
Collapse
|
10
|
Zhang XD, Sun J, Zheng XM, Zhang J, Tan LL, Fan LL, Luo YX, Hu YF, Xu SD, Zhou H, Zhang YF, Li H, Yuan Z, Wei T, Zhu HL, Xu DX, Xiong YW, Wang H. Plin4 exacerbates cadmium-decreased testosterone level via inducing ferroptosis in testicular Leydig cells. Redox Biol 2024; 76:103312. [PMID: 39173539 PMCID: PMC11387904 DOI: 10.1016/j.redox.2024.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2⁺) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⁺ and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
11
|
Li H, Wang XR, Hu YF, Xiong YW, Zhu HL, Huang YC, Wang H. Advances in immunology of male reproductive toxicity induced by common environmental pollutants. ENVIRONMENT INTERNATIONAL 2024; 190:108898. [PMID: 39047547 DOI: 10.1016/j.envint.2024.108898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been identified as major risk factors for male reproductive health, even associated with male infertility. Male infertility is usually due to the reproductive system damage, which may be influenced by the exposure to contaminants such as heavy metals, plasticizers, along with genetics and lifestyle. Testicular immune microenvironment (TIM) is important in maintaining normal physiological functions of the testis, whether disturbed TIM after exposure to environmental toxicants could induce reproductive toxicity remains to be explored. Therefore, the current review aims to contribute to the further understanding of exposure and male infertility by characterizing environmental exposures and the effect on TIM. We first summarized the male reproductive toxicity phenotypes induced by common environmental pollutants. Contaminants including heavy metals and plastic additives and fine particulate matter (PM2.5), have been repetitively associated with male infertility, whereas emerging contaminants such as perfluoroalkyl substances and micro(nano)plastics have also been found to disrupt TIM and lead to male reproductive toxicity. We further reviewed the importance of TIM and its homeostasis in maintaining the normal physiological functions of the testis. Most importantly, we discussed the advances in immunology of male reproductive toxicity induced by metals and metalloids, plastic additives, persistent organic pollutants (POPs), micro(nano)plastic and PM2.5 to suggest the importance of reproductive immunotoxicology in the future study of environmental toxicants, but also contribute to the development of effective prevention and treatment strategies for mitigating adverse effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Hao Li
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Xin-Run Wang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yi-Fan Hu
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yong-Wei Xiong
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Hua-Long Zhu
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yi-Chao Huang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230000, China.
| | - Hua Wang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230000, China.
| |
Collapse
|
12
|
Kim SM, Han GU, Kim SG, Moon SH, Shin SH, Ryu BY. Mitigation of benzyl butyl phthalate toxicity in male germ cells with combined treatment of parthenolide, N-acetylcysteine, and 3-methyladenine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116544. [PMID: 38838463 DOI: 10.1016/j.ecoenv.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/09/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Benzyl butyl phthalate (BBP) is a widely used plasticizer that poses various potential health hazards. Although BBP has been extensively studied, the direct mechanism underlying its toxicity in male germ cells remains unclear. Therefore, we investigated BBP-mediated male germ cell toxicity in GC-1 spermatogonia (spg), a differentiated mouse male germ cell line. This study investigated the impact of BBP on reactive oxygen species (ROS) generation, apoptosis, and autophagy regulation, as well as potential protective measures against BBP-induced toxicity. A marked dose-dependent decrease in GC-1 spg cell proliferation was observed following treatment with BBP at 12.5 μM. Exposure to 50 μM BBP, approximating the IC50 of 53.9 μM, markedly increased cellular ROS generation and instigated apoptosis, as evidenced by augmented protein levels of both intrinsic and extrinsic apoptosis-related markers. An amount of 50 μM BBP induced marked upregulation of autophagy regulator proteins, p38 MAPK, and extracellular signal-regulated kinase and substantially downregulated the phosphorylation of key kinases involved in regulating cell proliferation, including phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase. The triple combination of N-acetylcysteine, parthenolide, and 3-methyladenine markedly restored cell proliferation, decreased BBP-induced apoptosis and autophagy, and restored mTOR phosphorylation. This study provides new insights into BBP-induced male germ cell toxicity and highlights the therapeutic potential of the triple inhibitors in mitigating BBP toxicity.
Collapse
Affiliation(s)
- Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Gil Un Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
13
|
Zheng N, Wang X, Zhang Y, Hua J, Zhu B, Zhou Y, Xu Z, Luo L, Han J, Yang L, Zhou B. Mechanistic Insights into 1,2-bis(2,4,6-tribromophenoxy)ethane-Induced Male Reproductive Toxicity in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8251-8263. [PMID: 38695612 DOI: 10.1021/acs.est.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 μg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.
Collapse
Affiliation(s)
- Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lijun Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
15
|
Jiang D, Xu Y, Han X, Yang L, Li Q, Yang Y, Wang Y, Guo A, Li H, Fan Z, Chao L. Cresyl Diphenyl Phosphate exposure induces reproductive functional defects in men and male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116003. [PMID: 38286103 DOI: 10.1016/j.ecoenv.2024.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Cresyl Diphenyl Phosphate (CDP), as a novel organophosphate esters (OPEs), achieves widely used and exposed in multiple industries. However, its male reproductive toxicity and underlying mechanism remains unclear. In vivo, male mice were gavaged with CDP (0, 4, 20, or 100 mg/kg/d) for 8 weeks. And we treated TM3, TM4 and GC-2 cells with 0, 10, 25, and 50 μM CDP for 24 h to detect its reproductive toxicity effect in vitro. In our study, we revealed that CDP inhibited proliferation and induced apoptosis in mice testis and GC-2 cells, thereby leading to the decreased sperm quality. In mechanism, CDP trigger the oxidative stress and ROS production, thus partially causing DNA damage and cell apoptosis. Moreover, CDP exposure causes injury to Ledyig cells and Sertoli cells, thus disturbing the testicular microenvironment and inhibiting spermatogonia proliferation. In conclusion, this research reveals multiple adverse impacts of CDP on the male reproductive system and calls for further study of the toxicological effects of CDP on human health.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China; Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, No. 27, East Section of Jiefang Road, Lin'yi, Shandong 276003, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Anliang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Zhihao Fan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China.
| |
Collapse
|
16
|
Li XL, Cai XY, Ning X, Liang YY, Hong Y, Li QM, Hu D, Zheng YZ, Cai Y, Xu T, Zhao LL. Role of sleep in asthenospermia induced by di (2-ethyl-hexyl) phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13965-13980. [PMID: 38265591 DOI: 10.1007/s11356-024-32030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP) mainly enters the human body through the digestive tract, respiratory tract, and skin. At the same time, it has reproductive and developmental toxicity, neurotoxicity, and so on, which can cause the decrease of sperm motility. Asthenospermia is also known as low sperm motility, and the semen quality of men in some areas of China is declining year by year. Interestingly, previous studies have shown that sleep disorders can also lead to asthenospermia. However, the relationship between sleep, DEHP, and asthenospermia is still unclear. Analysis of the National Health and Nutrition Examination Survey (NHANES) population database showed that DEHP was associated with sleep disorders, and subsequent experiments in mice and Drosophila indicated that DEHP exposure had certain effects on sleep and asthenospermia. Furthermore, we analyzed the Comparative Toxicogenomics Database (CTD) to find out the common signaling pathway among the three: hypoxia-inducible factor 1(HIF-1). Then Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to screen out the proteins that DEHP affected the HIF-1 pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), and finally Western blot analysis was used to detect the expression levels of the three proteins. Compared with the control group, DEHP decreased the protein expression levels of GAPDH and AKT1 in the HIF-1 pathway, and caused sleep disorders and decreased sperm motility. This study provides preliminary evidence for exploring the mechanism among DEHP, sleep disorders, and asthenospermia.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xiao-Yue Cai
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xia Ning
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yue-Yue Liang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yun Hong
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Qi-Meng Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Die Hu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yuan-Zhuo Zheng
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yang Cai
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Tao Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
17
|
Wang Y, Xu Y, Yang L, Yang Y, Guo AL, Han XJ, Jiang DN, Chao L. N-acetylcysteine alleviated tris(2-chloroisopropyl) phosphate-induced sperm motility decline and functional dysfunction in mice through reversing oxidative stress and DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116000. [PMID: 38266359 DOI: 10.1016/j.ecoenv.2024.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The decline in male fertility caused by environmental pollutants has attracted worldwide attention nowadays. Tris(2-chloroisopropyl) phosphate (TCPP) is a chlorine-containing organophosphorus flame retardant applied in many consumer products and has multiple side effects on health. However, whether TCPP impairs spermatogenesis remains unclear. In this study, we found that TCPP reduced the sperm motility and blastocyst formation, inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Moreover, TCPP induced imbalance of oxidant and anti-oxidant, DNA damage and mitochondrial dysfunction, thus induced abnormal spermatogenesis. In this process, p53 signaling pathway was activated and N-acetylcysteine treatment partially alleviated the side effects of TCPP, including decrease of sperm motility, activation of p53 signaling pathway and DNA damage. Finally, our study verified that TCPP elevated reactive oxygen species (ROS), decreased mitochondrial membrane potential and induced apoptosis in human semen samples. Overall, ROS mediated TCPP-induced germ cell proliferation inhibition and apoptosis, which finally led to the decline of sperm motility.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China; Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Lin'yi, Shandong 276003, PR China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - An-Liang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Xiao-Juan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Dan-Ni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China.
| |
Collapse
|
18
|
Fu K, Hua J, Zhang Y, Du M, Han J, Li N, Wang Q, Yang L, Li R, Zhou B. Integrated Studies on Male Reproductive Toxicity of Bis(2-ethylhexyl)-tetrabromophthalate: in Silico, in Vitro, ex Vivo, and in Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:194-206. [PMID: 38113192 DOI: 10.1021/acs.est.3c07129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bis(2-ethylhexyl)tetrabromophthalate (TBPH) has been widely detected in the environment and organisms; thus, its toxic effects on male reproduction were systematically studied. First, we found that TBPH can stably bind to the androgen receptor (AR) based on in silico molecular docking results and observed an antagonistic activity, but not agonistic activity, on the AR signaling pathway using a constructed AR-GRIP1 yeast assay. Subsequently, we validated the adverse effects on male germ cells by observing inhibited androgen production and proliferation in Leydig cells upon in vitro exposure and affected general motility and motive tracks of zebrafish sperm upon ex vivo exposure. Finally, the in vivo reproductive toxicity was demonstrated in male zebrafish by reduced mating behavior in F0 generation when paired with unexposed females and abnormal development of their offspring. In addition, reduced sperm motility and impaired germ cells in male zebrafish were also observed, which may be related to the disturbed homeostasis of sex hormones. Notably, the specifically suppressed AR in the brain provides further evidence for the antagonistic effects as above-mentioned. These results confirmed that TBPH affected male reproduction through a classical nuclear receptor-mediated pathway, which would be helpful for assessing the ecological and health risks of TBPH.
Collapse
Affiliation(s)
- Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingpu Du
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ruiwen Li
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
19
|
Shi H, Zhao XH, Peng Q, Zhou XL, Liu SS, Sun CC, Cao QY, Zhu SP, Sun SY. Green tea polyphenols alleviate di-(2-ethylhexyl) phthalate-induced liver injury in mice. World J Gastroenterol 2023; 29:5054-5074. [PMID: 37753369 PMCID: PMC10518738 DOI: 10.3748/wjg.v29.i34.5054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-induced organ damage. However, limited studies have examined the therapeutic effects of green tea polyphenols (GTPs) on DEHP-induced liver damage. AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage. METHODS C57BL/6J mice were divided into the following five groups: Control, model [DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 8 wk, the liver function, blood lipid profile, and liver histopathology were examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the liver tissues were examined using high-throughput sequencing. Additionally, functional enrichment analysis and immune infiltration prediction were performed. The miRNA-mRNA regulatory axis was elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry. RESULTS GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice. CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xin-Hai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xian-Ling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Si-Si Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Chuan-Chuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qiu-Yu Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Shi-Ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Sheng-Yun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| |
Collapse
|
20
|
Zhou F, Guo C, Wang L, Zhang G, Wang J, Chen W, Cui K, Tan Y, Zhou Z. Mono-(2-ethylhexyl) Phthalate (MEHP)-Induced Telomere Structure and Function Disorder Mediates Cell Cycle Dysregulation and Apoptosis via c-Myc and Its Upstream Transcription Factors in a Mouse Spermatogonia-Derived (GC-1) Cell Line. TOXICS 2023; 11:toxics11050448. [PMID: 37235262 DOI: 10.3390/toxics11050448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
As a typical environmental endocrine disrupting chemical (EDC), di-(2-ethylhexyl) phthalate (DEHP) is thought to be related to reproductive disorders, especially in males. Growing evidence suggests that various EDCs may result in an impaired telomere structure and function, which is associated with male infertility. However, the adverse effect of DEHP on telomeres in male reproductive cells has rarely been studied, and the related mechanisms remain unclear. In this study, we tested the effects of mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP, on telomere dysfunction in mouse spermatogonia-derived cells (GC-1) and the potential role of TERT and c-Myc in MEHP-induced spermatogenic cell damage. Results showed that MEHP induced cell viability inhibition, G0/G1 phase cell cycle arrest, and apoptosis in GC-1 cells in a dose-dependent manner. Shortened telomeres, reduced telomerase activity, and decreased expression of TERT, c-Myc, and upstream transcription factors of c-Myc were also observed in the MEHP-treated cells. In conclusion, it can be concluded that TERT-mediated telomere dysfunction may contribute to MEHP-induced G0/G1 phase cell cycle arrest and apoptosis in GC-1 cells through the impairment of c-Myc and its upstream transcription factors.
Collapse
Affiliation(s)
- Fangji Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|