1
|
Lopopolo L, Herrera-Melián JA, Arocha-Espiau D, Naghoum I, Ranieri E, Guedes-Alonso R, Sosa-Ferrera Z. Upgrading a horizontal surface flow constructed wetland with forest waste and aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124468. [PMID: 39914219 DOI: 10.1016/j.jenvman.2025.124468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Constructed wetlands (CWs) are regarded as sustainable wastewater treatment systems for small to medium-sized communities. However, ponds and horizontal surface flow CWs (SF-CWs) can be an ideal environment for mosquitoes to thrive. In the current context of climate change, this may pose serious health problems for the population, which may predispose authorities against their use. A possible solution for existing SF-CWs is to convert them into sub-surface flow by filling them with conventional media, i.e. gravel and/or sand. However, the mining of these materials poses an enormous environmental threat. Thus, alternative, sustainable filling materials for CWs should be tested. Another constraint of CWs is their large footprint, which in many cases (lack of expensive land) limits their applicability. This work studies the effects of filling a full-scale SF-CW with a forest residue (palm tree branches) and aeration. The results indicate that in terms of percentage removal, filling increased that of E. coli and Total Coliforms, while the combination of filling and aeration resulted in a significant improvement in BOD5, turbidity, and ammonium. However, the analysis of surface loads removed indicated significant increases in E. coli and TC with the filling alone, and of BOD5, turbidity, E. coli, Total Coliformis, and ammonium for the filling + aeration combination. Studies at full-scale level on the use of forest residues as CW substrate and aeration are scarce, thus this work can serve as a guide for more sustainable designs.
Collapse
Affiliation(s)
- L Lopopolo
- Università degli studi di Bari "Aldo Moro", Italy.
| | - J A Herrera-Melián
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| | - D Arocha-Espiau
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| | - I Naghoum
- Faculty of Sciences and Tecnhiques de Tanger (FSTT), Morocco
| | - E Ranieri
- Università degli studi di Bari "Aldo Moro", Italy
| | - R Guedes-Alonso
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| | - Z Sosa-Ferrera
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Donato MA, de Oliveira Souza A, Pacheco A, de Carvalho Silva L, Svenar S, Nagalli A, Passig FH, Brasil Bernardelli JK, Querne de Carvalho K. Intensifying intermittent aeration for optimizing nutrient and hormone removal in vertical-flow constructed wetlands filled with aerated concrete. CHEMOSPHERE 2025; 370:143941. [PMID: 39681191 DOI: 10.1016/j.chemosphere.2024.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.4 LO2 min-1) and CW-2 (1.4 LO2 min-1) were fed with synthetic wastewater in sequencing-batch mode (cycles 48-48-72 h) and intermittently aerated for 1 h, followed by 7 h without aeration for 377 days. Combined with the intensification strategy, the use of planted free-floating macrophytes and concrete-based material (emergent) as filtering media stand out as the innovation and originality aspects of this study. Despite the hormone addition, intensifying aeration enhanced the efficiencies since CW-1 achieved the highest removals with 91% COD, 77% TN, 74% TAN, 60% nitrate, and 97% TP in Stage I (no hormone addition) and 90% COD, 80% TN, 93% TAN, 63% nitrate, and 82% TP in Stage II (with hormone addition). CW-1 achieved the highest removal efficiencies of E1 (84%), E2 (95%), and EE2 (73%). Conversely, the efficiencies decreased under the lower aeration rate (in CW-2) for all parameters. Macrophyte uptake and adsorption stood out for TN (>60.25%) and TP (>27.6%) removal as the main mechanisms in the VFCWs. The characteristics of AC favored ion exchange and precipitation, reinforcing the potential of this material as filtering media in VFCWs. Intensification of intermittent aeration combined with hormone addition diverse and riched the microbial community with the presence of Thauera, Lentimicrobium (denitrification), Candidatus Accumulibacter (phosphorus removal), Pseudomonas, Fusibacter, and Azoarcus (EE2 degradation). Intensifying intermittent aeration was an important strategy to enhance the simultaneous removal of nutrients and hormones in the VFCWs under the evaluated operational conditions.
Collapse
Affiliation(s)
- Mayra Alves Donato
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Amanda Pacheco
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Lucas de Carvalho Silva
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Silvana Svenar
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Tecnhology - Paraná (UTFPR) - Biology and Chemistry Academic Department. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Wang Y, Li L, Guo X, Wang A, Pan Y, Ma J, Lu S, Liu D. A comprehensive review on iron‒carbon microelectrolysis constructed wetlands: Efficiency, mechanism and prospects. WATER RESEARCH 2025; 268:122648. [PMID: 39461209 DOI: 10.1016/j.watres.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The traditional constructed wetlands (CWs) face challenges such as significant seasonal fluctuations in decontamination performance and susceptibility to clogging, with the bottlenecks in advanced wastewater treatment becoming increasingly prominent. The iron‒carbon microelectrolysis coupled with constructed wetlands (ICME‒CWs) represents a promising new type of CWs, capable of removing typical and emerging pollutants in water through various mechanisms including adsorption, precipitation, oxidation‒reduction, microelectrolysis, and plant‒microbial synergy. Therefore, this review summarizes the sources, preparation, and basic properties of the ICME substrate commonly used in ICME‒CWs in recent years. It systematically outlines the decontamination mechanisms of ICME‒CWs and their removal performance for pollutants. Additionally, the potential ecological effects of ICME on wetland organisms (microorganisms and plants) are discussed. Finally, the prospects and challenges of ICME‒CWs in applications such as greenhouse gas reduction, groundwater remediation, and the removal of emerging pollutants are proposed. This review aims to advance the development of ICME‒CWs technology for efficient wastewater treatment and provide prospects and guidance for the sustainable and environmentally friendly development of CWs.
Collapse
Affiliation(s)
- Yongqiang Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Fu J, Zhao Y, Dai Y, Yao Q, Zhang X, Yang Y. Pyrite in recirculating stacking hybrid constructed wetland: Electron transfer for nitrate reduction and phosphorus immobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123906. [PMID: 39740448 DOI: 10.1016/j.jenvman.2024.123906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Pyrite is considered as an effective and environmentally friendly substrate in constructed wetlands (CW) for wastewater treatment, but its application in recirculation stacking hybrid constructed wetlands (RSHCW) has been scarcely studied. This study uses varying amounts of pyrite as the substrate in RSHCW, leveraging the recirculation of wastewater to alter microenvironments such as dissolved oxygen (DO) and pH, to explore the potential mechanisms of nitrogen (N) and phosphorus (P) removal in pyrite-based RSHCW. The results show that as the proportion of pyrite increases, the removal rate of total phosphorus (TP) in the effluent also increases (25%→58%), significantly enhancing the deposition of iron-bound phosphorus (Fe-P) on the substrate, thereby turning CW into a P reservoir. Even in the absence of a carbon source, the total nitrogen (TN) removal rate in the CW still increases by 20%, which can be attributed to the enrichment of sulfur autotrophic denitrifying bacteria driving autotrophic denitrification by pyrite. Additionally, the addition of pyrite significantly increases the electron transfer system activity (ETSA) in the CW system by approximately 6.14 times and facilitates a "charging and discharging" function through the sulfur-iron electron cycle. Selective enrichment of microbes in moderated pH environment due to RSHCW recirculation in the pyrite-CW (PCW) enhances the coordination among microbial communities and the interaction among functional genes. This study provides new insights into the mechanisms of N and P removal in CWs under the influence of pyrite.
Collapse
Affiliation(s)
- Jingmiao Fu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Yunv Dai
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Qi Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xiaomeng Zhang
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yang Yang
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
5
|
Ji J, Hu F, Qin J, Zhao Y, Dong Y, Yang H, Bai Z, Wu G, Wang Q, Jin B. Comparation on the responses and resilience of single-Anammox system and synergistic partial-denitrification/anammox system to long-term nutrient starvation: Performance and metagenomic insights. BIORESOURCE TECHNOLOGY 2025; 415:131694. [PMID: 39447919 DOI: 10.1016/j.biortech.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Starvation disturbance was a common problem in biological sewage treatment processes. However, understanding about the responses and resilience of different active anammox biomass in autotrophic and heterotrophic systems to long-term nutrient starvation remains limited. This study compared responses and potential recovery mechanisms of autotrophic single-Anammox and heterotrophic synergistic partial-denitrification/anammox (PD/anammox) systems to prolonged starvation (31-40 days). After starvation, total inorganic nitrogen (TIN) removal efficiency of single-Anammox and synergistic PD/anammox systems decreased to 62.16 % and 78.52 %, respectively, of their original level. After the nutrient resupply, the performance of both systems gradually recovered to a similar-to-pre-starvation level at the rate of 1.26 %/day and 1.89 %/day, respectively. Compared with single-Anammox system, complex synergistic relationship of microorganisms and effective quorum sensing (QS) regulation strategies might mitigate the negative influences were caused by starvation and ensure the performance quickly return of synergistic PD/anammox system. This study would contribute to promote the application of Anammox technology.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jing Qin
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongen Dong
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanqi Wu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiyue Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
6
|
Mazzarella T, Chialva M, de Souza LP, Wang JY, Votta C, Tiozon R, Vaccino P, Salvioli di Fossalunga A, Sreenivasulu N, Asami T, Fernie AR, Al-Babili S, Lanfranco L, Fiorilli V. Effect of exogenous treatment with zaxinone and its mimics on rice root microbiota across different growth stages. Sci Rep 2024; 14:31374. [PMID: 39732893 PMCID: PMC11682185 DOI: 10.1038/s41598-024-82833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops. Here, the impact of their exogenous application on soil and rice root microbiota was investigated. Plants grown in native paddy soil were treated with zaxinone, MiZax3, and MiZax5 and the composition of bacterial and fungal communities in soil, rhizosphere, and endosphere at the tillering and the milky stage was assessed. Furthermore, shoot metabolome profile and nutrient content of the seeds were evaluated. Results show that treatment with zaxinone and its mimics predominantly influenced the root endosphere prokaryotic community, causing a partial depletion of plant-beneficial microbes at the tillering stage, followed by a recovery of the prokaryotic community structure during the milky stage. Our study provides new insights into the role of zaxinone and MiZax in the interplay between rice and its root-associated microbiota and paves the way for their practical application in the field as ecologically friendly biostimulants to enhance crop productivity.
Collapse
Affiliation(s)
- Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Rhowell Tiozon
- Consumer-driven Grain Quality and Nutrition, Rice Breeding Innovation Department, International Rice Research Institute, Los Baños, Philippines
| | - Patrizia Vaccino
- Council for Agricultural Research and Economics CREA-CI,-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, Vercelli, 13100, VC, Italy
| | | | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition, Rice Breeding Innovation Department, International Rice Research Institute, Los Baños, Philippines
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 4700, 23955-6900, Kingdom of Saudi Arabia.
- Centre of Excellence for Sustainable Food Security, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
| |
Collapse
|
7
|
Zhang W, Ye J, Hu F, Zhang J, Chen P, Yuan Z, Xu Z. Microbial community succession and responses to internal environmental drivers throughout the operation of constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 259:119522. [PMID: 38960356 DOI: 10.1016/j.envres.2024.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Constructed wetlands (CWs) have been widely used to ensure effective domestic wastewater treatment. Microorganisms-derived CWs have received extensive attention as they play a crucial role. However, research on the succession patterns of microbial communities and the influencing mechanisms of internal environmental factors throughout entire CW operations remains limited. In this context, three parallel-operated CWs were established in this study to assess the microbial communities and their influencing environmental factors at different substrate depths throughout the operation process using 16S rRNA gene high-throughput sequencing and metagenomic sequencing. The results showed gradual reproduction and accumulation of the microbial communities throughout the CW operation. Although gradual increases in the richness and diversity of the microbial communities were found, there were decreases in the functional expression of the dominant microbial species. The excessive accumulation of microorganisms will decrease the oxidation-reduction potential (ORP) within CWs and attenuate their influence on effluent. Dissolved oxygen (DO) was the major factor influencing the microbial community succession over the CW operation. The main identified functional bacterial genera responsible for the ammonium oxidation, nitrification, and denitrification processes in the CWs were Nitrosospira, Nitrobacter, Nitrospira, Rhodanobacter, and Nakamurella. The narG gene was identified as a key functional gene linking various components of nitrogen cycling, while pH, electrical conductivity (EC), and ORP were the major environmental factors affecting the metabolism characteristics of nitrogen functional microorganisms. This study provides a theoretical basis for the effective regulation of related microbial communities to achieve long-term, efficient, and stable CW operations.
Collapse
Affiliation(s)
- Wencan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfeng Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Feng Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Peipei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhanzhan Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
8
|
Tran PYN, Dao TVH, Vo TKQ, Nguyen TAC, Nguyen TMX, Tran CS, Nguyen TYP, Le LT, Tra VT, Phan NN, Lens PNL, Bui XT. Enhanced pollution removal from canal water by coupling aeration to floating treatment wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:84-95. [PMID: 39258771 DOI: 10.1080/15226514.2024.2401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Floating treatment wetlands (FTWs) are natural solutions for purifying polluted water, providing a green surface area and improving city landscape. This study investigated if the efficiency of FTWs can be improved by aeration for treating contaminated canal water. The three used plant species were Canna generalis, Phragmites australis, and Cyperus alternifolius. The experiment was carried out in three FTWs with aeration and three without aeration to compare the removal for COD, NH4+-N, E. coli, PO43--P, and Fe. In the aerated FTWs, air blowers were installed to run at two different air flow rates of 2.5 L min-1 (Batch 1) and 1.0 L min-1 (Batch 2). Aeration increased the dissolved oxygen concentrations in each tank, which came over 6.5 mg L-1 in both batches. This study sheds light on the positive impact of aeration has on COD and NH4+-N removal: these are nearly three-fold higher compared to non-aeration conditions and reached approximately 99% (1.7-log reduction) for E. coli removal. Additionally, the plant growth rate in the aerated FTWs was higher than in the non-aerated ones. The average shoot growth rate of Phragmites australis was 0.76 cm d-1 for the aerated FTW which was two-fold higher compared to the non-aerated one.
Collapse
Affiliation(s)
- Pham-Yen-Nhi Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Viet-Huong Dao
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), Ho Chi Minh City, Vietnam
| | - Tran-Anh-Chi Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Mai-Xuan Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Cong-Sac Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Yen-Phuong Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ho Chi Minh City, Vietnam
| | - Van-Tung Tra
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Vietnam
| | - Nhu-Nguyet Phan
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam
| | - Piet N L Lens
- National University of Ireland Galway, Galway, Ireland
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Zhang X, Wang R, Wang H, Xu Z, Feng C, Zhao F. CH 4 control and nitrogen removal from constructed wetlands by plant combination. CHEMOSPHERE 2024; 355:141898. [PMID: 38579951 DOI: 10.1016/j.chemosphere.2024.141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Global warming trend is accelerating. This study proposes a green and economical methane (CH4) control strategy by plant combination in constructed wetlands (CWs). In this study, a single planting of Acorus calamus L. hybrid constructed wetland (HCW-A) and a mixed planting of Acorus calamus L. and Eichhornia crassipes (Mart.) Solms hybrid constructed wetland (HCW-EA) were constructed. The differences in nitrogen removal performance and CH4 emissions between HCW-A and HCW-EA were compared and analyzed. The findings indicated that HCW-EA demonstrated significant improvements over HCW-A, with NH4+-N and TN removal rates increasing by 21.61% and 16.38% respectively, and CH4 emissions decreased by 43.36%. The microbiological analysis results showed that plant combination promoted the enrichment of Proteobacteria, Alphaproteobacteria and Bacillus. More nitrifying bacteria carrying nxrA genes and denitrifying bacteria carrying nirK genes accelerated the nitrogen transformation process. In addition, the absolute abundance ratio of pmoA/mcrA increased, reducing the release of CH4.
Collapse
Affiliation(s)
- Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Rongzhen Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hongxiu Wang
- Inspur General Software Co., Ltd, Jinan, 250101, China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Fangxing Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
10
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
11
|
Zhang F, Wang J, Li L, Shen C, Zhang S, Zhang J, Liu R, Zhao Y. Technologies for performance intensification of floating treatment wetland - An explicit and comprehensive review. CHEMOSPHERE 2024; 348:140727. [PMID: 37977538 DOI: 10.1016/j.chemosphere.2023.140727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
With the wide application of floating treatment wetland (FTW), the limited performance of FTWs should be improved. A comprehensive review is accordingly necessary to summarize the state-of-the-art on FTWs for performance improvement. An attempt has been made to gain information from literature about technologies to enhance the performance of FTWs. These technologies have been classified into three categories according to their mechanisms: 1) increasing the amount and activity of bacteria; 2) enhancing the growth of plant; and 3) configurable innovations. The design and application of each enhanced FTW have been discussed in detail. Thereafter, all the technologies have been compared and analyzed according to their improvement in pollutant removal and ecological effects. In summary, FTW with additional bio-carriers has a higher potential for future applications with the benefits of wide application conditions, scale-up potential, and the easy combination with other methods to further improve the removal efficiency. The stability and sustainability of these technologies should be further investigated.
Collapse
Affiliation(s)
- Fuhao Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jie Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Liyuan Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Cheng Shen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Shaochen Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Ranbin Liu
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Zhang J, Yan Q, Bai G, Guo D, Chi Y, Li B, Yang L, Ren Y. Inducing root redundant development to release oxygen: An efficient natural oxygenation approach for subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 239:117377. [PMID: 37832770 DOI: 10.1016/j.envres.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Dissolved oxygen (DO) is a limiting factor affecting the purification efficiency of subsurface flow (SSF) constructed wetlands (CWs). To clarify the causes of oxygen environments and the response characteristics of plant oxygen release (POR) in SSF CWs, this study set three oxygen source treatments by limiting atmospheric reaeration (AR) and influent oxygen (IO) and compared the differences in plant physiological metabolism, DO distribution characteristics, and the purification effect of the SSF CWs at different depths. The results showed that limiting exogenous oxygen stimulated root redundancy of the wetland plants. The root volume and proportion of fibrous roots of the wetland plants increased significantly (p < 0.05). When only the POR existed, the root zone DO increased significantly to 2.05-4.37 mg/L (p < 0.05), and was positively correlated with the TN and TP removal rates (p < 0.05). Additionally, in the presence of POR only, the average removal rates of TN and TP in the top layer were 86.5% and 76.9%, respectively. The proportion of fibrous roots, root zone DO, and root-shoot ratio were key factors promoting the purification effect of the SSF CWs under limited exogenous oxygen sources. Enhancing POR by inducing root redundancy enhanced nitrification (hao, pmoABC-amoABC), plant absorption, and assimilation-related functional genes (nrtABC, nifKDH), and enriched nitrogen and phosphorus removal bacteria, such as Flavobacterium and Zoogloea. This consequently improved pollutant removal efficiency. Inducing root redundancy to strengthen POR produced an aerobic environment in the SSF CWs. This ensures the efficient and stable operation of the SSF CW and is an effective approach for natural oxygenation.
Collapse
Affiliation(s)
- Jingying Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiuhui Yan
- Xi'an High-tech Zone CITY CORE Development & Construction Co., Ltd, Xi'an, 710117, China
| | - Ge Bai
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dun Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanbin Chi
- School of Metallurgical and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Botanical Institute of Shaanxi Province, Xi'an, 710061, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
13
|
Zhang L, Yang B, Wang H, Wang S, He F, Xu W. Unveiling the nitrogen removal performance from microbial network establishment in vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2023; 388:129749. [PMID: 37690488 DOI: 10.1016/j.biortech.2023.129749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The combined effects of substrate types (natural zeolite or shale ceramsite) and hydraulic retention time (HRT, 3-day or 6-day) on nutrient removal and microbial co-occurrence networks in vertical flow constructed wetlands (VFCWs) remains to be elucidated. In this study, zeolite-packed VFCWs demonstrated superior removal rates, achieving 93.65% removal of NH4+-N and 83.84% removal of COD at 6-day HRT. The activity and establishment of microbial community were influenced by combined operating conditions. The abundances of Amx, amoA, nxrA, and nosZ genes increased with longer HRTs in zeolite-packed VFCWs. Additionally, a 6-day HRT significantly increased the relative abundances of Proteobacteria and Nitrospirae. At the species level, zeolite-packed VFCWs exhibited ecological niche sharing as a coping strategy in response to environment changes, while ceramsite-packed VFCWs displayed ecological niche differentiation. Both zeolite-packed and ceramsite-packed VFCWs established functional networks of nitrogen-transforming genera that utilized ecological niche differentiation strategies.
Collapse
Affiliation(s)
- Liandong Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Shuzhi Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250000, China
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
14
|
Zhao C, Li W, Shang D, Ma Q, Liu L, Xu J, Meng J, Zhang T, Wang Q, Wang X, Zhang J, Kong Q. Influence of nitrogen sources on wastewater treatment performance by filamentous algae in constructed wetland system. ENVIRONMENTAL RESEARCH 2023; 235:116638. [PMID: 37442256 DOI: 10.1016/j.envres.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Although filamentous algae have the characteristics of high nutrient assimilation ability, and adaptation to different conditions, studies on their role in water purification of constructed wetlands (CWs) are limited. In this study, the wastewater treatment capacity under different nitrogen sources was explored by constructing a filamentous algal CW (FACW) system. Results confirmed the fast and stable operation efficiency of the FACW system. Ammonia nitrogen was preferred in Cladophora sp. absorption and assimilation. The nutrient consumption rate (NCR) for total nitrogen (TN) of AG was 2.65 mg g-1 d-1, much higher than that of nitrate nitrogen (NG) (0.89 mg g-1 d-1). The symbiosis of bacteria and Cladophora sp. Contributed to pollutant removal. A stable and diverse community of microorganisms was found on Cladophora sp. Surface, which revealed different phylogenetic relationships and functional bacterial proportions with those attached on sediment surface. In addition, temperature and light intensity have great influence on the purification ability of plants, and low hydraulic retention time is beneficial to the cost-effective operation of the system. This study provides a method to expand the utilization of wetland plants and apply large filamentous algae to the purification of wetland water quality.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qilong Ma
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Luxing Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiashuo Meng
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Tao Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaofei Wang
- Shandong Academy of Environmental Sciences CO., LTD, No. 50, Lishan Road, Lixia District, Jinan City, Shandong Province, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China.
| |
Collapse
|
15
|
Shitu A, Chen W, Tadda MA, Zhang Y, Ye Z, Liu D, Zhu S, Zhao J. Enhanced aquaculture wastewater treatment in a biofilm reactor filled with sponge/ferrous oxalate/biochar composite (Sponge-C 2FeO 4@NBC) biocarriers: Performance and mechanism. CHEMOSPHERE 2023; 330:138772. [PMID: 37098362 DOI: 10.1016/j.chemosphere.2023.138772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/22/2023] [Indexed: 05/14/2023]
Abstract
Fabricating low-cost and efficient biofilm carriers for moving bed biofilm reactors in wastewater treatment is crucial for achieving environmental sustainability. Herein, a novel sponge biocarrier doped with NaOH-loaded biochar and nano ferrous oxalate (sponge-C2FeO4@NBC) was prepared and evaluated for nitrogenous compounds removal from recirculating aquaculture systems (RAS) wastewater by stepwise increasing ammonium nitrogen (NH4+-N) loading rates. The prepared NBC, sponge-C2FeO4@NBC, and matured biofilms were characterized using SEM, FTIR, BET, and N2 adsorption-desorption techniques. The results reveal that the highest removal rates of NH4+-N reached 99.28 ± 1.3% was yielded by the bioreactor filled with sponge-C2FeO4@NBC, with no obvious nitrite (NO2--N) accumulation in the final phase. The reactor packed with sponge-C2FeO4@NBC biocarrier had the highest relative abundance of functional microorganisms responsible for nitrogen metabolism than in the control reactor, confirmed from 16S rRNA gene sequencing analysis. Our study provides new insights into the newly developed biocarriers for enhancing RAS biofilters treatment performance in keeping water quality within the acceptable level for the rearing of aquatic species.
Collapse
Affiliation(s)
- Abubakar Shitu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria.
| | - Wei Chen
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Musa Abubakar Tadda
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Yadong Zhang
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China.
| | - Jian Zhao
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|