1
|
Bao Y, Feng S, Yu F, Ye W, Xing H, Zhu X, Bao W, Huang M. Self-Regulating pH Pyrite-Construction waste Biofilter: Denitrification Performance, Metabolic Pathways, and Clogging Alleviation. BIORESOURCE TECHNOLOGY 2025; 429:132500. [PMID: 40204030 DOI: 10.1016/j.biortech.2025.132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Waste-based denitrification filters face challenges like alkalinity accumulation, low efficiency, and clogging. This study proposes a novel denitrification filter using construction waste and pyrite (WPDF) to address these issues. WPDF's performance, safety, and mechanisms were evaluated by measuring effluent, filler characteristics and metagenomics. Results demonstrated a high total nitrogen removal load (88.65 g N m-3d-1) with minimal biofilm (13 %) and filler accumulation (39 %), effectively mitigating clogging. Phosphorus removal relied on chemical precipitation in construction waste. WPDF was pH self-regulating and promoted the formation and release of fulvic acid. Pyrite promotes bio-metabolism, making WPDF enriched in energy metabolism (6 %) and transporter capacity (6 %). Functional prediction indicated that WPDF was more abundant in genes related to denitrification, glycolysis, and electron transport, which promoted the heterotrophic denitrification process. This study provides a novel, efficient, and eco-friendly possible solution for wastewater and offers new insights into the molecular mechanisms of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yinzhou Bao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suhao Feng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenpei Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Xing
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weibin Bao
- Nantong Huaxin Environmental Protection Technology Co., Nantong 226000, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Li D, Li J, Zhu Y, Wu Y, Du L, Wu Y, Li J, Guo W. Responses of SNEDPR-AGS system under long-term exposure of polyethylene terephthalate microplastics for treating low C/N wastewater: Granular effect and microbial structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136299. [PMID: 39467437 DOI: 10.1016/j.jhazmat.2024.136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
The removal of nutrients in sewage treatment plants can be significantly impacted by carbon limitations, especially for treating low carbon to nitrogen ratio (C/N) wastewater, which can markedly increase operational costs. Simultaneous nitrification, endogenous denitrification, and phosphorus removal combined with aerobic granular sludge (SNEDPR-AGS) has emerged as one of the optimal processes for treating low C/N wastewater owing to its high carbon utilization efficiency; however, the long-term effect of microplastics (MPs) on this system remains unclear. This study investigated the granular effect and microbial response of an SNEDPR-AGS system for treating low C/N wastewater under long-term exposure (180 d) to polyethylene terephthalate microplastics (PET-MPs). The results showed that the integrity of the AGS structure was disrupted significantly as the PET-MP concentration increased, with clear AGS cracks appearing on days 180, 124, and 74 after exposure to 1, 10, and 100 mg/L of PET-MPs, respectively. Additionally, the addition of PET-MPs also inhibited denitrification and phosphorus removal due to a decrease in the relative abundance of functional genes (napAB, nirK/nirS, ppk1, ppk2, and ppx). Notably, both chemometric and high-throughput sequencing results indicated that the metabolic form of the system would shift from a polyphosphate-accumulating metabolism to a glycogen-accumulating metabolism. The reason may be that PET-MP stress inhibited the relative abundance of functional genes related to carbon, glycogen, phosphorus, and energy metabolism pathways in Candidatus Accumulibacter and Dechloromonas, but promoted their relative abundance of Candidatus Competibacter. Flow cytometry and molecular docking simulations have also demonstrated the direct toxic effects of PET-MPs on the SNEDPR-AGS system. The biological enhancement and functional recovery of damaged SNEDPR-AGS systems must be further investigated in future studies.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanshuo Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Han W, Liu X, Wang Y, Zhang S, Huang C, Yang Q. The interaction between sludge and microplastics during thermal hydrolysis of sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135816. [PMID: 39265395 DOI: 10.1016/j.jhazmat.2024.135816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
In municipal wastewater treatment plants (WWTPs), large number of microplastics (MPs) accumulated in wastewater migrated into sludge. Thermal hydrolysis of sludge (THS) was one of the most promising processes for promoting changes in molecular structure of MPs. The physicochemical properties and degradative pathways of polyethylene (PE) and polyethylene terephthalate (PET) in THS under different temperatures were studied in this paper. It was found that there was a mutual promotion relationship between sludge degradation and MPs aging. The presence of PE and PET MPs not only increased organics and nitrogen concentrations of sludge filtrate, but also enhanced the transformation of organics like proteins. Sludge accelerated the aging of PE and PET MPs. The friability of PE and PET MPs was increased with more surface fragmentation and breakage under the temperature of 120 ℃-180 ℃. Moreover, PE and PET MPs occurred thermal oxidation and reduction reactions with significant chemical structure changes at 160 °C and 140 °C, respectively. Pristine PE and PET had multiple carbon and oxygen active sites. During THS reaction, not only PE and PET reacted hydrolysis/decomposition to produce short-chain hydroxyl-terminated compounds, but also hydrothermal shear broke the polymer molecules and formed carboxyl-terminated and olefin-terminated low-carbon chains. This study provided some promising sign for in situ microplastic removal during sludge treatments.
Collapse
Affiliation(s)
- Weipeng Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yaxin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shiyong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Jiang K, Gao Q, Feng J, Zhu S, Zhai W, Wu D, Zhang H, Zhang W, Liu X, Zhang J, Wang S, Wang Z. Impact of phenolic-formaldehyde resin microplastics on anaerobic granular sludge: EPS interaction mechanisms and impacts on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136308. [PMID: 39467432 DOI: 10.1016/j.jhazmat.2024.136308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
This paper investigates the effects of phenolic-formaldehyde resin microplastics (PF-MPs) with different particle sizes on anaerobic granular sludge (AnGS) and reveals the complex interaction mechanisms between extracellular polymeric substances (EPS) and PF-MPs through the combination of molecular dynamics simulations and spectroscopy. PF-MPs provide a new ecological niche for microorganisms. Microorganisms and EPS can adhere and accumulate on the surface of PF-MPs, producing highly active floc sludge inside the reactor, thereby increasing the chemical oxygen demand (COD) removal rate and methane production of the reactor. However, the high metabolic activity of floc sludge consumes the biodegradable components in EPS, resulting in loose rupture of the sludge particles and reduced particle size. In addition, small particle size S-PF can adhere to the sludge surface,which caused mass transfer barriers and reduced the expression of genes and enzyme activities for the sludge acidification process and the main methanogenic processes. Insufficient internal nutrients lead to endogenous metabolism within the granules, causing internal hollowing, which affects the density and settling performance of the sludge. Monolayer physical adsorption plays a major role in the adsorption of EPS on PF-MPs. 2D-COS and FTIR spectroscopy were used to elucidate the preferential binding of polysaccharides to PF-MPs. This paper explores the fate of PF-MPs in anaerobic systems and demonstrates the important role of EPS in the capture of microplastics by granular sludge, providing a theoretical basis for understanding the migration of microplastics in wastewater treatment.
Collapse
Affiliation(s)
- Keyang Jiang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qian Gao
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinhu Feng
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Sijia Zhu
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenxia Zhai
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Di Wu
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Huiya Zhang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Zhang
- Shandong Sun Paper Co., Ltd., Yanzhou 272100, China
| | - Xi Liu
- Anhui Bossco Environm Co Ltd, Ningguo 242300, China
| | - Jian Zhang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Li X, Luo J, Zeng H, Yang X, Hou X, Lu X. Preferential adsorption of medium molecular weight proteins in extracellular polymeric substance alleviates toxicity of small-sized microplastics to Skeletonema costatum. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135034. [PMID: 38954856 DOI: 10.1016/j.jhazmat.2024.135034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Extracellular polymeric substances (EPS) secreted by organisms tend to encapsulate microplastics (MPs), forming an EPS-corona that affects the fate of MPs in marine ecosystems. However, the impact of the EPS-corona on the biotoxicity of MPs to marine organisms remains poorly understood. Herein, the effect of the EPS-corona on the toxicity of polystyrene (PS) MPs of different sizes (0.1 and 1 µm) to Skeletonema costatum (S. costatum) was investigated. The preferential adsorption of medium molecule weight (∼55 kDa) proteins onto PS MPs mainly contributed to the EPS-corona formation, decreasing the surface charge negativity of small-sized PS MPs (0.1 µm) by 72.4 %. Nitrogen (N) and oxygen (O) moieties in polysaccharides and proteins were identified as the preferential adsorption sites in the EPS-PS MPs interaction. Density functional theory (DFT) calculations confirmed the nuclear magnetic resonance spectroscopy (NMR) results, revealing that the binding mode between EPS and PS MPs was mainly hydrogen bonding. In addition, EPS-corona increased the cell density of S. costatum by 35.5-36.0 % when exposed to small-sized PS MPs (0.1 µm, 25-50 mg/L). These findings provide new insights into how EPS-corona affects the environmental fate and ecological risks associated with micro- and nano-sized plastics in marine ecosystems.
Collapse
Affiliation(s)
- Xue Li
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Wang Y, Liu X, Han W, Jiao J, Ren W, Jia G, Huang C, Yang Q. Migration and transformation modes of microplastics in reclaimed wastewater treatment plant and sludge treatment center with thermal hydrolysis and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 400:130649. [PMID: 38570098 DOI: 10.1016/j.biortech.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Microplastics in wastewater have been investigated globally, but less research on the migration and transformation of microplastics throughout wastewater and sludge treatment. This study investigated the fate of microplastics in a reclaimed wastewater treatment plant and a centralized sludge treatment center with thermal hydrolysis and anaerobic digestion. The results exhibited that the effluent microplastics of this reclaimed wastewater treatment plant were 0.75 ± 0.26 items/L. Approximately 98 % of microplastics were adsorbed and precipitated into sludge. After thermal hydrolysis, anaerobic digestion and plate and frame dewatering, the removal rate of microplastics was 41 %. Thermal hydrolysis was the most effective method for removing microplastics. Polypropylene, polyamide and polyethylene were widely detected in wastewater and sludge. 30 million microplastics were released into the downstream river and 51.80 billion microplastics entered soil through sludge cake daily. Therefore, substantial microplastics still entered the natural environment despite the high microplastics removal rate of reclaimed wastewater and sludge treatment.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Weipeng Han
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiatong Jiao
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Wenyang Ren
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Gaofeng Jia
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Li Y, Quan L, Li J, Zhang Z, Lv J, Fu C, Chen Z. The role of microstructure of extracellular proteins in dewaterability of alkaline pretreatment sludge during bioleaching. ENVIRONMENTAL RESEARCH 2024; 244:117969. [PMID: 38109956 DOI: 10.1016/j.envres.2023.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Alkaline pre-treatment is known to enhance the acid production efficiency of sludge but adversely affects its dewatering performance. In this study, the improvement of sludge dewaterability by a novel bioleaching system with inoculating domesticated acidified sludge (AS) and its underlying mechanism were investigated. The results showed that although the addition of Fe2+ and the reduction of pH improved the dewatering performance of sludge, their effects were inferior to that of AS + Fe. The addition of AS and Fe2+ significantly reduced the specific resistance to filtration and capillary suction time of the sludge by 98.6 % and 95.5 %, respectively. This improvement in dewatering performance was achieved through the combined actions of bio-acidification, bio-oxidation, and bio-flocculation. Remarkably, under alkaline pH, microorganisms in AS remained active, leading to the formation of iron-based bioflocculants, along with a rapid pH decrease. These bioflocculants, in combination with protein (PN) in tightly bound extracellular polymeric substances (TB-EPS) through amide bonding, transformed TB-EPS from extractable to non-extractable form, reducing PN content from 12.1 mg g-1DS to 5.09 mg g-1DS and altering the protein's secondary structure. Consequently, the gel-like TB-EPS matrix effectively broke down, releasing cellular water and significantly enhancing sludge dewaterability.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| | - Lijun Quan
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Jingyu Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhiwen Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Jinghua Lv
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Chunyan Fu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Ning Z, Zhou S, Li P, Li R, Liu F, Zhao Z, Ren N, Lu L. Exaggerated interaction of biofilm-developed microplastics and contaminants in aquatic environments. CHEMOSPHERE 2023; 345:140509. [PMID: 37871873 DOI: 10.1016/j.chemosphere.2023.140509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Biofilm-developed microplastics (MPs) may serve as important vectors for contaminants in aquatic environments. Elucidating the interactions between biofilm-developed MPs and coexisting contaminants is crucial for understanding the vector capacities of MPs. However, little is known about how the adverse effects of contaminants on MP surface-colonized biofilms influence their vector capacity. In this study, we aimed to investigate the interaction mechanism of biofilms colonizing the surface of MPs with coexisting contaminants using microcosm experiments and biofilm characterization techniques. The results indicated that the biofilm biomass on polystyrene increased over time, providing an additional abundance of oxygen-containing functional groups and promoting Cd accumulation by biofilm-developed polystyrene. Moreover, as a coexisting contaminant, Cd exerted adverse effects such as additional mortality of microorganisms and senescence and MP-colonized biofilm shedding. Consequently, the contaminant vector capacity of biofilm-developed MPs could be mitigated. Thus, the adverse effects of coexisting contaminants on biofilms influenced the ability of MPs to act as vectors in aquatic environments. Neglecting the negative effects of contaminants on biofilms may lead to an overestimation of the contaminant vector capacity of biofilm-developed MPs. This study provides support for more accurate assessment of the interactions between biofilm-developed MPs as vectors and contaminants in aquatic environments.
Collapse
Affiliation(s)
- Zigong Ning
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Zhuhai Modern Agriculture Development Center, Zhuhai 519075, China.
| | - Shuang Zhou
- Shenzhen Honglue Research Institute of Innovation Management, Shenzhen 518119, China
| | - Pengxiang Li
- CCTEG Beijing Academy of Land Renovation and Ecological Restoration Technology Co.,Ltd, Beijing 100013, China; Research Center of Land Renovation and Ecological Restoration Engineering in the Coal Industry, Beijing 100013, China
| | - Rong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feihua Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lu Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|