1
|
Zhang Y, Li Y, Liu H, Xie H, Liu J, Hua J, Xiong M, Song H, Yong C. Effect of Exogenous Melatonin on Corn Seed Germination and Seedling Salt Damage Mitigation Under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1139. [PMID: 40219206 PMCID: PMC11991619 DOI: 10.3390/plants14071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism of salt damage in maize. Phenotypic analyses showed that 100 µmol/L MT alleviated the effects of salt stress on maize seed germination, and germination index and vigor index were increased compared with salt treatment. MT also alleviated the effects of salt stress on biomass and photosynthesis of maize seedlings, and at a concentration of 100 µmol/L, root and shoot lengths were increased, Gs and Tr were significantly elevated, and LWUEint and LWUEins were decreased. MT also scavenged ROS accumulation, reduced MDA, H2O2, and O2- production, and increased antioxidant enzyme activities and osmoregulatory substances in maize seedlings, but too high a concentration exacerbated oxidative and osmotic stresses. In addition, MT reduced Na+ content and increased K+ content in leaves and roots of maize seedlings. The principal components analysis explained 99.1% of the total variance in the first two axes (PC1 and PC2), and the differences between the treatment groups along the PC1 and PC2 axes were obvious. Correlation analysis elucidated the correlation between the indicators. Random forest analysis showed that different treatments had significant effects on germination percentage (GP), free proline (FP), CAT, and leaf intrinsic water use efficiency (LWUEint). Partial least squares analysis showed that photosynthetic parameters and pigment content played an important role in the salt tolerance of maize seedlings. In conclusion, the application of exogenous MT can effectively alleviate the negative effects of salt stress on the growth of maize seeds and seedlings, especially at a concentration of 100 µmol/L, which is the most effective.
Collapse
Affiliation(s)
- Yuyu Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Yuchuang Li
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - He Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Haili Xie
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Jiani Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Jinzhu Hua
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Mingchun Xiong
- Yunnan Jiayuanshi Biotechnology Co., Ltd., Kunming 650214, China;
| | - Huaifei Song
- Agricultural and Rural Work Service Centre, Haiping Street, Shuicheng District, Liupanshui 553000, China;
| | - Chengjian Yong
- Yunnan Jiayuanshi Biotechnology Co., Ltd., Kunming 650214, China;
| |
Collapse
|
2
|
Su Y, Shi Q, Li Z, Deng H, Zhou Q, Li L, Zhao L, Yuan S, Liu Q, Chen Y. Rhodopseudomonas palustris shapes bacterial community, reduces Cd bioavailability in Cd contaminated flooding paddy soil, and improves rice performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171824. [PMID: 38521273 DOI: 10.1016/j.scitotenv.2024.171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.
Collapse
Affiliation(s)
- Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu 610101, China; College of Life Science, Sichuan Normal University, Chengdu 610101, China.
| | - Qiuyun Shi
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ziyuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Hongmei Deng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qian Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lihuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lanyin Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, Guangdong 510640, China
| | - Yanger Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
3
|
Chen X, Yang Y, Wang J, Pan C, Zhang Z, Chen S, Xie S. Impacts of o-cresol spill on composition and function of river sediment and soil microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31978-31988. [PMID: 38641693 DOI: 10.1007/s11356-024-33043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
o-Cresol is a toxic substance with strong irritating and corrosive effects on skin and mucous membranes. To date, information on the effects of o-cresol on microbial communities in the natural environment is very limited. In the present study, 16S rRNA sequencing and metagenomic technique were carried out to elucidate the effects of the o-cresol spill on microbial communities in river sediments and nearby soils. o-Cresol spill induced the increase in the relative abundance of phyla Planctomycetes and Gemmatimonadetes, suggesting their resilience to o-cresol-induced stress. Uncultured Gemmatimonadetes genera and the MND1 genus exhibited enrichment, while the Pseudomonas genus dominated across all samples, indicating their potential pivotal roles in adapting to the o-cresol spill. Moreover, o-cresol spill impaired the metabolic functions of microbes but triggered their defense mechanisms. Under o-cresol pressure, microbial functions related to carbon fixation were upregulated and functions associated with sulfur metabolism were downregulated. In addition, the o-cresol spill led to an increase in functional genes related to the conversion of o-cresol to 3-methylcatechol. Several genes involved in the degradation of aromatic compounds were also identified, potentially contributing to the biodegradation of o-cresol. This study provides fresh insights into the repercussions of an abrupt o-cresol spill on microbial communities in natural environments, shedding light on their adaptability, defense mechanisms, and biodegradation potential.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Ji Wang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Chaoyi Pan
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Zhengke Zhang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China.
| | - Sili Chen
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Waheed Z, Iqbal S, Irfan M, Jabeen K, Ilyas N, Al-Qahtani WH. Isolation and characterization of PGPR obtained from different arsenic-contaminated soil samples and their effect on photosynthetic characters of maize grown under arsenic stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18656-18671. [PMID: 38347363 DOI: 10.1007/s11356-024-31972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 03/09/2024]
Abstract
Contamination of the environment due to speedup of anthropogenic activities has become a serious threat to modern humanity. Among the contaminants, the new emerging concern is the heavy metal (HM) contamination in the environment. Because the persistence and harmfulness of heavy metals affect the ecosystem and the health of plants, animals, and humans, they are the most toxic substances in the environment. Among them, Arsenic (As) emerged as major environmental constraint leading to enormous negative effects on the plant, animal, and human health. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Research was performed to observe the capability of plant growth-promoting strains of bacteria in enhancing Zea mays (L.) growth in arsenic polluted soil. Total 30 bacterial strains were isolated from the polluted soils, screened for plant growth promotion potential and arsenic tolerance. Eighteen isolates showed resistance to different levels of sodium arsenate (ranging from 0 to 50 mM) in agar plate using LB media. Of 18 isolates, 83.3% produced IAA, methyl red, and hydrogen cyanide; 55.5% exhibited catalase activity; 61.1% showed siderophore production; 88.8% showed phosphate solubilization; and 44.4% showed oxidase, Voges proskauer activity, and KOH solubility. The most efficient isolates SR3, SD5, and MD3 with significant arsenic tolerance and plant growth-promoting (PGP) activity were examined via sequencing of amplified 16S rRNA gene. Isolates of bacteria, i.e., SR3, SD5, and MD3, showing multiple PGP-traits were identified as Bacillus pumilus (NCBI accession number: OR459628), Paenibacillus faecalis (NCBI accession number: OR461560), and Pseudochrobactrum asaccharolyticum (NCBI accession number: OR458922), respectively. Maize seeds treated with these PGPR strains were grown in pots contaminated with 50 ppm and 100 ppm sodium arsenate. Compared to untreated arsenic stressed plants, bacterial inoculation P. asaccharolyticum (MD3) resulted 20.54%, 18.55%, 33.45%, 45.08%, and 48.55% improvement of photosynthetic pigments (carotenoid content, chlorophyll content, stomatal conductance (gs), substomatal CO2, and photosynthetic rate), respectively. Principal component analysis explained that first two components were more than 96% of the variability for each tested parameter. The results indicate that in comparison to other isolates, P. asaccharolyticum isolate can be used as efficient agent for improving maize growth under arsenic polluted soil.
Collapse
Affiliation(s)
- Zainab Waheed
- Department of Botany, Lahore College For Women University, Lahore, Pakistan
| | - Sumera Iqbal
- Department of Botany, Lahore College For Women University, Lahore, Pakistan.
| | - Muhammad Irfan
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Khajista Jabeen
- Department of Botany, Lahore College For Women University, Lahore, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Nanfack AD, Nguefack J, Musonerimana S, La China S, Giovanardi D, Stefani E. Exploiting the microbiome associated with normal and abnormal sprouting rice (Oryza sativa L.) seed phenotypes through a metabarcoding approach. Microbiol Res 2024; 279:127546. [PMID: 37992468 DOI: 10.1016/j.micres.2023.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Rice germination and seedlings' growth are crucial stages that influence crop establishment and productivity. These performances depend on several factors, including the abundance and diversity of seed microbial endophytes. Two popular rainfed rice varieties cultivated in Cameroon, NERICA 3 and NERICA 8, were used for investigating the seed-associated microbiome using the Illumina-based 16 S rRNA gene. Significant differences were observed in terms of richness index between normal and abnormal seedlings developed from sprouting seeds, although no significant species evenness index was assessed within either phenotype. Two hundred ninety-two bacterial amplicon sequence variants were identified in seed microbiome of the rice varieties, and principal coordinate analysis revealed that microbial communities formed two distinct clusters in normal and abnormal seedling phenotypes. Overall, 38 bacteria genera were identified, belonging to 6 main phyla. Furthermore, the core microbiome was defined, and the differential abundance of 28 bacteria genera was assessed. Based on the collected results, putative bacterial genera were directly correlated with the development of normal seedlings. For most genera that are recognised to include beneficial species, such as Brevundimonas, Sphingomonas, Exiguobacterium, Luteibacter, Microbacterium and Streptomyces, a significant increase of their relative abundance was found in normal seedlings. Additionally, in abnormal seedlings, we also observed an increased abundance of the genera Kosakonia and Paenibacillus, which might have controversial aspects (beneficial or pathogenic), together with the presence of some genera (Clostridium sensu stricto) that are commonly correlated to sick plants. The putative functional gene annotation revealed the higher abundance of genes related to the metabolic biosynthesis of soluble carbohydrates and starch, tryptophan, nucleotides and ABC transporters in normal seedlings. Data presented in this study may help in further understanding the importance of the seed endophyte microbiome for driving a correct development of rice plants at the early stages and to identify possible beneficial bacteria for technological applications aimed to increase seed quality and crop productivity.
Collapse
Affiliation(s)
- Albert Dongmo Nanfack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon; Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Julienne Nguefack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Samson Musonerimana
- International Centre for Genetic Engineering and Biotechnology, Padriciano, TS, Italy; Burundi University, Faculty of Agronomy and Bio-Engineering 2, UNESCO Avenue, P.O. Box 2940, Bujumbura, Burundi
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Davide Giovanardi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; University Centre for International Cooperation and Development (CUSCOS), via Università 4, 41121 Modena, Italy
| |
Collapse
|
6
|
Wu Y, Liu Y, Kamyab H, Manivasagan R, Rajamohan N, Ngo GH, Xia C. Physico-chemical and biological remediation techniques for the elimination of endocrine-disrupting hazardous chemicals. ENVIRONMENTAL RESEARCH 2023:116363. [PMID: 37295587 DOI: 10.1016/j.envres.2023.116363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Rajasimman Manivasagan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Gia Huy Ngo
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
7
|
Liu H, Zhang Y, Wang H, Zhang B, He Y, Wang H, Zhu Y, Holm PE, Shi Y. Comparing cadmium uptake kinetics, xylem translocation, chemical forms, and subcellular distribution of two tobacco (Nicotiana tabacum L.) cultivars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114738. [PMID: 36905848 DOI: 10.1016/j.ecoenv.2023.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a potential phytoremediator that can reduce soil cadmium (Cd) contamination. Pot and hydroponic experiments were conducted to investigate the difference in absorption kinetics, translocation patterns, accumulation capacity, and extraction amounts between two leading tobacco cultivars in China. We studied the chemical forms and subcellular distribution of Cd in the plants to understand the diversity of the detoxification mechanism of the cultivars. The concentration-dependent kinetics of Cd accumulation in leaves, stems, roots, and xylem sap for cultivars Zhongyan 100 (ZY100) and K326, fitted well with the Michaelis-Menten equation. K326 exhibited high biomass, Cd tolerance, Cd translocation, and phytoextraction abilities. The acetic acid, sodium chloride, and water-extractable fractions accounted for > 90% of Cd in all ZY100 tissues but only in K326 roots and stems. Moreover, the acetic acid and NaCl fractions were the predominant storage forms, while the water fraction was the transport form. The ethanol fraction also contributed significantly to Cd storage in K326 leaves. As the Cd treatment increased, more NaCl and water fractions were found in K326 leaves, while only NaCl fractions increased in ZY100 leaves. For subcellular distribution, > 93% Cd proportions were primarily stored in both cultivars' soluble or cell wall fraction. The proportion of Cd in the cell wall fraction of ZY100 roots was less than that of K326, while that proportion in the soluble fraction in ZY100 leaves was higher than in K326 leaves. These findings demonstrate that Cd accumulation patterns, detoxification, and storage strategies differ between the cultivars, providing a deeper understanding of Cd tolerance and accumulation mechanism in tobacco plants. It also guides the screening of germplasm resources or gene modification to improve the Cd phytoextraction efficiency of tobacco.
Collapse
Affiliation(s)
- Haiwei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yan Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haiyun Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Biao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan He
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haohao Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yingying Zhu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Denmark
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|