1
|
He Q, Liu S, Chen S, Chen L. Emerging heterostructures derived from metal-organic frameworks for electrochemical energy storage: Progresses and perspectives. Adv Colloid Interface Sci 2025; 340:103449. [PMID: 40024064 DOI: 10.1016/j.cis.2025.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Heterostructures are a novel class of advanced materials have attracted considerable attention because they combine components with different structures and properties, exhibiting unique activity and function due to synergistic interactions at the interface. Over the last decade, there has been increasing research interest in constructing advanced heterostructures nanomaterials possessing efficient charge/ion transportation, optimize ion absorption behavior and rich accessible active sites for electrochemical energy storage (EES). Nonetheless, the conventional methodology for constructing heterostructures typically involves the self-assembly of active materials and conductive components, which poses significant challenges in achieving large-scale, uniformly atomically matched interfaces. Moreover, the development of heterostructures via transformation of the printine material into distinct phases can effectively address this limitation. Based on this, Metal-organic frameworks (MOFs), a class of porous materials with an inherently large surface area, uniform and adjustable cavities, and customizable chemical properties, have been widely used as precursors or templates for the preparation of heterostructure materials. Although there are some previous reviews on MOF-derived heterostructures for EES, they rarely focus on the structural engineering of MOF-derived heterostructures materials and their advanced characterization for EES. In this review, we summarize and discuss recent progress in the design and structural engineering (including morphology engineering, heteroatom doping, and defect engineering) of MOF-derived heterostructures and their applications in EES (e.g., supercapacitors, lithium-ion batteries, sodium-ion batteries, aluminum-ion batteries, aqueous Zn-ion batteries, etc.). The review concludes with a perspective on the remaining challenges and potential opportunities for future research.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, CA 95060, USA.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Liu J, Niu J, Wu W, Zhang Z, Ning Y, Zheng Q. Recent advances in the detection of microplastics in the aqueous environment by electrochemical sensors: A review. MARINE POLLUTION BULLETIN 2025; 214:117695. [PMID: 39987756 DOI: 10.1016/j.marpolbul.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Microplastics (MPs), as an emerging contaminant, have become a serious threat to marine ecosystems due to their small size, widespread distribution and easy ingestion by organisms. Therefore, it is necessary to develop various analytical techniques to detect MPs in real water environment. Among these detection techniques, the advantages of electrochemical sensors, such as easy operation, high sensitivity and low cost, provide the possibility of online real-time detection of MPs in real water environment. The aim of this article is to analyze and compare the advantages and disadvantages of different MPs detection techniques. Compilation of various electrochemical sensors, we compiled various electrochemical sensors, evaluated the recent advances in carbon materials, metals and their oxides, biomass materials, composite materials, and microfluidic chips in electrochemical sensors for detecting MPs, and in-depth investigated their detection mechanisms and sensing performances, proposed hotspot nanomaterials for electrochemical sensors that could be used to detecting MPs and gave an outlook on the last years of electrochemical sensors in the area of microplastic detection. Finally, the challenges of electrochemical sensors for the detection of MPs are discussed and perspectives for this area are presented.
Collapse
Affiliation(s)
- Jinhui Liu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Jiaqi Niu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Wanqing Wu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China; Engineering Technology Center for Ship Safety and Pollution Control, Liaoning Province, Dalian 116026, PR China.
| | - Ziyang Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Ye Ning
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Qinggong Zheng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China; Engineering Technology Center for Ship Safety and Pollution Control, Liaoning Province, Dalian 116026, PR China
| |
Collapse
|
3
|
Zhu S, Fan H, Lei L, Fan Y, Wang W. High sensitivity and selectivity of h-BN/WO 3 n-n heterojunction to triethylamine at low-temperature. CHEMOSPHERE 2024; 366:143522. [PMID: 39395477 DOI: 10.1016/j.chemosphere.2024.143522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Due to the unique properties of heterojunction interfaces, heterojunction materials have broad application prospects in gas sensors. In this work, a facile and economical two-step synthesis method was employed to fabricate h-BN/WO3 heterojunctions, exhibiting excellent performance in triethylamine (TEA) detection. The results indicate that compared to pure WO3 sensors, h-BN/WO3 sensors exhibit superior TEA sensing capabilities, with an excellent response of 281.45 to 20 ppm TEA at 100 °C, which is 3.4 times higher. Moreover, h-BN/WO3 sensors demonstrate favorable response times, low detection limits, and good stability. These significant enhancements are attributed to the increase in oxygen vacancies and the establishment of heterojunctions between h-BN and WO3. Heterojunctions can regulate the concentration and transport rate of charge carriers, as well as the interface potential barrier, thereby affecting the gas sensing processes. This work may promote the further development of sensing materials and the practical application of WO3 sensors in TEA detection.
Collapse
Affiliation(s)
- Shuwen Zhu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China.
| | - Lin Lei
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yongbo Fan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 100872, Hong Kong, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China.
| |
Collapse
|
4
|
Yu M, Li J, Yin D, Zhou Z, Wei C, Wang Y, Hao J. Enhanced oxygen anions generation on Bi 2S 3/Sb 2S 3 heterostructure by visible light for trace H 2S detection at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134932. [PMID: 38936189 DOI: 10.1016/j.jhazmat.2024.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Bismuth sulfide (Bi2S3) possesses unique properties that make it a promising material for effective hydrogen sulfide (H2S) detection at room temperature. However, when exposed to light, the oxygen anions (O2-(ads)) adsorbed on the surface of Bi2S3 can react with photoinduced holes, ultimately reducing the ability to respond to H2S. In this study, Bi2S3/Sb2S3 heterostructures were synthesized, producing photoinduced oxygen anions (O2-(hv)) under visible light conditions, resulting in enhanced H2S sensing capability. The Bi2S3/Sb2S3 heterostructure sensor exhibits a two-fold increase in sensing response to 500 ppb H2S under in door light conditions relative to its performance in darkness. Additionally, the sensing response of the Bi2S3/Sb2S3 sensor (Ra/Rg= 23.3) was approximately five times higher than pure Bi2S3. The improved sensing performance of the Bi2S3/Sb2S3 heterostructures is attributable to the synergistic influence of the heterostructure configuration and light modulation, which enhances the H2S sensing performance by facilitating rapid charge transfer and increasing active sites (O2-(hv)) when exposed to visible light.
Collapse
Affiliation(s)
- Meiling Yu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dongmin Yin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenze Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chenda Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
5
|
Amu-Darko JNO, Hussain S, Agyekum EA, Begi AN, Shah S, Yusuf K, Manavalan RK, Qiao G, Liu G. Low-Temperature NO 2 Gas-Sensing System Based on Metal-Organic Framework-Derived In 2O 3 Structures and Advanced Machine Learning Techniques. Inorg Chem 2024; 63:16429-16441. [PMID: 39172794 DOI: 10.1021/acs.inorgchem.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In the bustling metropolis of tomorrow, where pollution levels are a constant concern, a team of innovative researchers embarked on a quest to revolutionize air quality monitoring. In pursuit of this objective, this study embarked on the synthesis of indium oxide materials via a straightforward solvothermal method purposely for NO2 detection. Through meticulous analysis of their gas-sensing capabilities, a remarkable discovery came to light. Among the materials tested, In2O3 (IO-2) exhibited exceptional sensitivity toward 100 ppm of NO2 gas at an optimal working temperature of 150 °C and even at room temperature (RT). The response value reached an impressive 12.69, showcasing the material's outstanding capability to detect NO2 gas even at 100 ppb. Further investigation revealed a significant linear relationship (R2 = 0.89454) and commendable reproducibility, highlighting IO-2's potential as a reliable and stable sensing material. Moreover, machine learning techniques were utilized to predict the response characteristics of the sensing materials to various environmental conditions, concentrations of target gases, and operational parameters. This predictive capability can guide the design of more efficient and robust gas sensors, ultimately contributing to improved safety and environmental monitoring. As the demand for efficient, portable, and eco-friendly electronics continues to grow, these findings contribute to the development of sustainable and high-performance materials that can meet the needs of modern technology.
Collapse
Affiliation(s)
- Jesse Nii Okai Amu-Darko
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Enock Adjei Agyekum
- Ultrasound Medical Laboratory, Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Amensisa Negasa Begi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sufaid Shah
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rajesh Kumar Manavalan
- Institute of Natural Science and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
7
|
Goyat R, Singh J, Umar A, Ibrahim AA, Kumari S, Malik S, Chaudhary V, Akbar S, Baskoutas S. Enhanced removal of iron (Fe) and manganese (Mn) ions from contaminated water using graphene oxide-decorated polyethersulphone membranes: Synthesis and characterization. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:608-617. [PMID: 38353237 PMCID: PMC11295411 DOI: 10.1177/0734242x241227379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/30/2023] [Indexed: 08/02/2024]
Abstract
This study addresses the urgent issue of water pollution caused by iron (Fe) and manganese (Mn) ions. It introduces an innovative approach using graphene oxide (GO) and GO-decorated polyethersulphone (PES) membranes to efficiently remove these ions from contaminated water. The process involves integrating GO into PES membranes to enhance their adsorption capacity. Characterization techniques, including scanning electron microscopy, Fourier-transform infrared, and contact angle measurements, were used to assess structural and surface properties. The modified membranes demonstrated significantly improved adsorption compared to pristine PES. Notably, they achieved over 94% removal of Mn2+ and 93.6% of Fe2+ in the first filtration cycle for water with an initial concentration of 100 ppm. Continuous filtration for up to five cycles maintained removal rates above 60%. This research advances water purification materials, offering a promising solution for heavy metal ion removal. GO-decorated PES membranes may find application in large-scale water treatment, addressing environmental and public health concerns.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Kingdom of Saudi Arabia
| | - Savita Kumari
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
8
|
Levent A, Saka C. Mesoporous carbon particles by biomass waste based on sulfonation and copper oxide functionalization as efficient and stable electrode material for supercapacitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52511-52522. [PMID: 39147899 DOI: 10.1007/s11356-024-34710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Here, the hierarchical mesoporous-activated carbon particles obtained by KOH activation from pistachio shell wastes are modified by both the sulfonation process and CuO doping by hydrothermal heating (CuO@S-doped PSAC) for use as a supercapacitor. It is predicted that the electrochemical performance of the porous carbon electrode material obtained by such CuO doping and sulfonation process will be significantly increased with increased Faradaic capacitance. The electrochemical performance of CuO@S doped PSAC composite is systematically investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) in the presence of 1 M H2SO4, 1 M Na2SO4, and 1 M NaOH as electrolytes. The CuO@S doped PSAC-based electrode shows excellent stability with high specific capacitance up to 397.16 F/g at 0.1 A/g and 92.64% retention. Furthermore, FTIR, SEM, XRD, EDS, and nitrogen adsorption/desorption analyses are used for the characterisation of the obtained composites. Based on a significant supercapacitor performance, the synthesis strategy of carbon-based electrode material containing sulfonation and CuO modifications derived from agricultural biomass waste material is predicted to be a valuable example.
Collapse
Affiliation(s)
- Abdulkadir Levent
- Arts and Sciences Faculty, Chemistry Department, Batman University, Batman, Turkey
| | - Cafer Saka
- Health Science Faculty, Chemistry Department, Siirt University, Siirt, Turkey.
| |
Collapse
|
9
|
Li Y, Wei X, Liu Q, Zang D, You R. Visible Light-Activated Room Temperature NO 2 Gas Sensing Based on the In 2O 3@ZnO Heterostructure with a Hollow Microtube Structure. ACS Sens 2024; 9:3741-3753. [PMID: 38996081 DOI: 10.1021/acssensors.4c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The persistent challenge of poor recovery characteristics of NO2 sensors operated at room temperature remains significant. However, the development of In2O3-based gas sensing materials provides a promising approach to accelerate response and recovery for sub-ppm of NO2 detection at room temperature. Herein, we propose a simple two-step method to synthesize a one-dimensional (1D) In2O3@ZnO heterostructure material with hollow microtubes, by coupling metal-organic frameworks (MOFs) (MIL-68 (In)) and zinc ions. Meanwhile, the In2O3@ZnO composite-based gas sensor exhibits superior sensitivity performance to NO2 under visible light activation. The response value to 5 ppm of NO2 at room temperature is as high as 1800, which is 35 times higher than that of the pure In2O3-based sensor. Additionally, the gas sensor based on the In2O3@ZnO heterostructure demonstrates a significantly reduced response/recovery time of 30 s/67 s compared to the sensor based on pure In2O3 (74 s/235 s). The outstanding gas sensing properties of the In2O3@ZnO heterostructure-based sensors can be attributed to the enhanced photogenerated charge separation efficiency resulting from the heterostructure effect, and the improved receptor function toward NO2, which can increase the reactive sites and gas adsorption capacity. In summary, this work proposes a low-cost and efficient method to synthesize a 1D heterostructure material with microtube structures, which can serve as a fundamental technique for developing high-performance room-temperature gas sensors.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiangyang Wei
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Qingyuan Liu
- Beijing Institute of Control Engineering, Beijing 100090, China
- Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, Beijing 100090, China
| | - Diming Zang
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Rui You
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| |
Collapse
|
10
|
Zhao S, Ren J, Zhang F, He Y, Han X, Wang R. Fabrication of nano-hammer shaped CuO@HApNWs for catalytic degradation of tetracycline. ENVIRONMENTAL RESEARCH 2024; 249:118410. [PMID: 38342204 DOI: 10.1016/j.envres.2024.118410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
With widespread and excessive use of antibiotics in medicine, poultry farming, and aquaculture, antibiotic residues have become a significant threat to both eco-environment and human health. In this paper, using hydroxyapatite nanowires (HApNWs) as an ecologically compatible carrier, a novel nano-hammer shaped conjunction with HApNW conjugating CuO microspheres (CuO@HApNWs) was successfully synthesized by in-situ agglomeration method. The catalytic degradation performance of the nano-hammer shaped CuO@HApNWs with Fenton-like activation was investigated by using tetracycline (TC) as a representative antibiotic pollutant. Remarkably, it exhibited excellent catalytic activity, which the removal rate of TC got to 92.0% within 40 min, and the pseudo-second-order reaction kinetic constant was 18.33 × 10-3 L mg-1·min-1, which was 26 times and 5 times than that of HApNWs and CuO, respectively. Furthermore, after recycling 6 times, the degradation efficiency of TC still remained above 85 %. Based on radical scavenger tests and electron paramagnetic resonance (EPR) spectroscopy, it demonstrated that the excellent activity of CuO@HApNWs was mainly attributed to the fact that Fenton-like activation promotes the circulation of Cu2+ and Cu+, the generated main active oxygen species (•OH and O2-•) achieve efficient degradation of TC. In summary, the nano-hammer shaped CuO@HApNWs could be in-situ synthesed, and used as an eco-friendly Fenton-like catalyst for effectively catalytic degradation of organic pollutants, which has great potential for wastewater treatment.
Collapse
Affiliation(s)
- Shenglan Zhao
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiarui Ren
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Feng Zhang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoyu Han
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Shan L, Liu X, Zhao Y, Sun X, Wang T, Liu Y. Hierarchical Porous N-Doped Carbon Particles Derived from ZIF-8 as Highly Efficient H 2S Selective Oxidation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682823 DOI: 10.1021/acsami.4c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In the selective oxidation of H2S, the catalytic activity over N-doped carbon-based catalysts is significantly influenced by the accessibility of active sites and the mass transfer rates of reactant molecules (e.g., H2S and O2) as well as generated sulfur monomers. Therefore, it is crucial for enhancing the initial performance via the controlled synthesis of carbon-based catalysts with highly exposed active sites and unique porous structures. Herein, we reported on an efficient strategy to synthesize nanosized N-doped carbon particles with hierarchical porous structures by directly pyrolyzing an oversaturated NaCl-encapsulated ZIF-8 precursor mixture. The introduction of NaCl not only serves as a pollution-free template to promote the formation of graphitic carbon layers but also acts as an intercalating agent to guide the derivation of hierarchical porous structures, as well as enhances the amount of active nitrogen species in the catalysts. As a result, the as-prepared H-NC800 catalyst shows excellent H2S selective oxidation performance (sulfur formation rate is 794 gsulfur·kgcat-1·h-1), good stability (>80 h), and antiwater vapor properties. The characterization results and DFT calculations indicate the crucial role of pyridinic N in the adsorbing and activating reactant molecules (H2S, O2). Furthermore, nanoscale N-doped carbon particles accelerated the rapid transport of generated sulfur monomers under a hierarchical porous structure. This investigation introduces a distinctive strategy for synthesizing ZIF-8-derived N-doped carbon nanosized with a hierarchical porous structure, while its efficient and stable H2S selective oxidation performance highlights significant potential for practical implementation in the industrial desulfurization process.
Collapse
Affiliation(s)
- Liang Shan
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xu Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuheng Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiaoxue Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Tianxin Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
12
|
Kim SA, Kim EB, Imran M, Shahzad K, Moon DH, Akhtar MS, Ameen S, Park SH. Naturally manufactured biochar materials based sensor electrode for the electrochemical detection of polystyrene microplastics. CHEMOSPHERE 2024; 351:141151. [PMID: 38199498 DOI: 10.1016/j.chemosphere.2024.141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
In recent times, microplastics have become a disturbance to both aquatic and terrestrial ecosystems and the ingestion of these particles can have severe consequences for wildlife, aquatic organisms, and even humans. In this study, two types of biochars were manufactured through the carbonization of naturally found starfish (SF-1) and aloevera (AL-1). The produced biochars were utilized as sensing electrode materials for the electrochemical detection of ∼100 nm polystyrene microplastics (PS). SF-1 and AL-1 based biochars were thoroughly analyzed in terms of morphology, structure, and composition. The detection of microplastics over biochar based electrodes was carried out by electrochemical studies. From electrochemical results, SF-1 based electrode exhibited the detection efficiency of ∼0.2562 μA/μM∙cm2 with detection limit of ∼0.44 nM whereas, a high detection efficiency of ∼3.263 μA/μM∙cm2 was shown by AL-1 based electrode and detection limit of ∼0.52 nM for PS (100 nm) microplastics. Process contributed to enhancing the sensitivity of AL-1 based electrode might associate to the presence of metal-carbon framework over biochar's surfaces. The AL-1 biochar electrode demonstrated excellent repeatability and detection stability for PS microplastics, suggesting the promising potential of AL-1 biochar for electrochemical microplastics detection.
Collapse
Affiliation(s)
- Shin-Ae Kim
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Nuclear Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul 222, Republic of Korea.
| | - Eun-Bi Kim
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup 56212, Republic of Korea.
| | - M Imran
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup 56212, Republic of Korea.
| | - Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea.
| | - M Shaheer Akhtar
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup 56212, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
13
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Liu Z, Zhang Z, Yue C, Mu Y, Yang Z, Dastan D, Yin XT, Ma X. In-MIL-68 derived In 2O 3/Fe 2O 3 shuttle-like structures with n-n heterojunctions to improve ethanol sensing performance. Phys Chem Chem Phys 2024; 26:4184-4193. [PMID: 38230532 DOI: 10.1039/d3cp05003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Metal-organic frameworks (MOFs) have a variety of structures and unique properties that make them suitable for use in gas sensors. Herein, In2O3/Fe2O3 was successfully synthesized using simple solvothermal and impregnation methods. The response to 100 ppm of ethanol gas reached 67.5 at an optimum working temperature of 200 °C, and the response/recovery time was 9 s/236 s. The composite also exhibited excellent selectivity, repeatability, and long-term stability. SEM, TEM, XRD, and XPS were used for the characterization of materials. The excellent sensing performance of the sensors is attributed to the construction of n-n heterojunctions, an increase in oxygen vacancies, and the unique structural characteristics of MOFs. The above experimental results indicate that In-MIL-68-derived In2O3/Fe2O3 is a promising ethanol sensing material.
Collapse
Affiliation(s)
- Zhenyue Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| | - Zhenkai Zhang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| | - Chen Yue
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| | - Yang Mu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| | - Zhiguo Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Xi-Tao Yin
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| | - Xiaoguang Ma
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
| |
Collapse
|
15
|
Alsulaim GM. Effective Reinforcement of Visible Light Photocatalytic and Gas Sensing Characteristics of Nanocrystalline TiO 2: Gd-Based Nb and Mo Dopants. Molecules 2023; 28:7239. [PMID: 37959663 PMCID: PMC10648698 DOI: 10.3390/molecules28217239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Efficient compositions for the selective detection of ethanol gas and the removal of organic contaminants were realized by codoping of (Gd, Nb) and (Gd, Mo) ions into TiO2. TiO2, Ti0.96Gd0.01Nb0.03O2, and Ti0.96Gd0.01Mo0.03O2 samples were prepared by a coprecipitation method. For all compositions, a crystalline anatase phase of TiO2 was detected. Compared to pure TiO2, the absorption edges of Ti0.96Gd0.01Nb0.03O2 and Ti0.96Gd0.01Mo0.03O2 samples were red-shifted, further broadening towards visible light. The morphological studies demonstrate that the grains of TiO2 were more refined after (Gd, Nb) and (Gd, Mo) codoping. The photocatalytic efficiency of the Ti0.96Gd0.01Mo0.03O2 catalyst for degrading 20 mg/L reactive yellow 145, brilliant green, and amoxicillin was 98, 95, and 93% in 90 min, respectively. The reusability experiments indicate that the Ti0.96Gd0.01Mo0.03O2 catalyst had high stability during reuse. The high photocatalytic activity of the Ti0.96Gd0.01Mo0.03O2 catalyst was correlated to the broad visible-light absorption and effective separation of electron-hole pairs by Gd3+ and Mo6+ cations. The gas sensing characteristic is reflected by the high sensitivity of the Ti0.96Gd0.01Nb0.03O2 sensor to ethanol gas in the presence of different gases at 275 °C. The obtained results indicated that the (Gd, Mo) mixture could more effectively induce the photocatalytic properties of TiO2 while (Gd, Nb) dopants were the best for reinforcing its sensing characteristics.
Collapse
Affiliation(s)
- Ghayah M Alsulaim
- Department of Chemistry, Faculty of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
16
|
Amu-Darko JNO, Hussain S, Zhang X, Ouladsmane M, Issaka E, Ali S, Wang M, Qiao G. Exploring the gas-sensing properties of MOF-derived TiN@CuO as a hydrogen sulfide sensor. CHEMOSPHERE 2023; 337:139401. [PMID: 37423407 DOI: 10.1016/j.chemosphere.2023.139401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
In an effort to develop a long-lasting gas sensor, this article presents titanium nitride (TiN) as a potential substitute sensitive material in conjunction with (copper(II) benzene-1,3,5-tricarboxylate) Cu-BTC-derived CuO. The work focused on the gas-sensing characteristics of TiN/CuO nanoparticles in detecting H2S gas at various temperatures and concentrations. XRD, XPS, and SEM were utilized to analyze the composites with varied Cu molar ratios. The responses of TiN/CuO-2 nanoparticles to 50 and 100 ppm H2S gas at 50 °C and 250 °C are 34.8 and 60.0, respectively. The related sensor had high selectivity and stability towards H2S, and the response of TiN/CuO-2 is still 2.5-5 ppm H2S. The gas-sensing properties as well as the mechanism are fully explained in this study. TiN/CuO might be a choice for the detection of H2S gas, opening up new avenues for applications in industries, medical facilities, and homes.
Collapse
Affiliation(s)
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiangzhao Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Salman Ali
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Mingsong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
17
|
Schiopu AG, Oproescu M, Iana VG, Ducu CM, Moga SG, Vîlcoci DS, Cîrstea G, Calinescu VM, Ahmed O. Synthesis and Characterization of ZnO-Nanostructured Particles Produced by Solar Ablation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6417. [PMID: 37834554 PMCID: PMC10573445 DOI: 10.3390/ma16196417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Nowadays, nanotechnology offers opportunities to create new features and functions of emerging materials. Correlation studies of nanostructured materials' development processes with morphology, structure, and properties represent one of the most important topics today due to potential applications in all fields: chemistry, mechanics, electronics, optics, medicine, food, or defense. Our research was motivated by the fact that in the nanometric domain, the crystalline structure and morphology are determined by the elaboration mechanism. The objective of this paper is to provide an introduction to the fundamentals of nanotechnology and nanopowder production using the sun's energy. Solar energy, as part of renewable energy sources, is one of the sources that remain to be exploited in the future. The basic principle involved in the production of nanopowders consists of the use of a solar energy reactor concentrated on sintered targets made of commercial micropowders. As part of our study, for the first time, we report the solar ablation synthesis and characterization of Ni-doped ZnO performed in the CNRS-PROMES laboratory, UPR 8521, a member of the CNRS (French National Centre for Scientific Research). Also, we study the effect of the elaboration method on structural and morphological characteristics of pure and doped ZnO nanoparticles determined by XRD, SEM, and UV-Vis.
Collapse
Affiliation(s)
- Adriana-Gabriela Schiopu
- Faculty of Mechanics and Technology, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
| | - Mihai Oproescu
- Faculty of Electronics, Communication and Computers, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
| | - Vasile Gabriel Iana
- Faculty of Electronics, Communication and Computers, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
| | - Catalin Marian Ducu
- Faculty of Mechanics and Technology, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Sorin Georgian Moga
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Denisa Stefania Vîlcoci
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Georgiana Cîrstea
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Valentin Marian Calinescu
- Interdisciplinary Doctoral School, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (V.M.C.); (O.A.)
| | - Omar Ahmed
- Interdisciplinary Doctoral School, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (V.M.C.); (O.A.)
| |
Collapse
|
18
|
Si R, Luo H, Zhang T, Pu J. High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation. Int J Biol Macromol 2023; 238:124008. [PMID: 36933590 DOI: 10.1016/j.ijbiomac.2023.124008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Ultralight aerogels with low bulk density, highly porous nature, and functional performance have received significant focus in the field of water pollution treatment. Here, high-crystallinity, large surface-aera metal frame-work (ZIF-8) was efficiently utilized to assist in the preparation of ultralight yet highly oil and organic solvent adsorption capacity, double-network cellulose nanofibers/chitosan-based aerogels through a physical entanglement and scalable freeze-drying approach. After chemical vapor deposition with methyltrimethoxysilane, a hydrophobic surface was obtained with a water contact angle of 132.6°. The synthetic ultralight aerogel had low density (15.87 mg/cm3) and high porosity (99.01 %). Moreover, the aerogel had a three-dimensional porous structure, which endowed it with high adsorption capacity (35.99 to 74.55 g/g) for organic solvent, and outstanding cyclic stability (>88 % of the adsorption capacity after 20 cycles). At the same time, aerogel removes oil from various oil/water mixtures by gravity alone and has excellent separation performance. This work holding excellent properties in terms of convenient, low-cost, scalability to manufacture environmentally friendly biomass-based materials for oily water pollution treatment.
Collapse
Affiliation(s)
- Rongrong Si
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Honggang Luo
- State Key Laboratory of Biobased Materials & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junwen Pu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|