1
|
Sfriso AA, Juhmani AS, Tomio Y, Wedyan M, Cunsolo F, Forlani G, Sfriso A, Ferretti G, Coltorti M, Munari C, Mistri M. Microbial dynamics in seagrass restoration: Unveiling hidden indicators of ecological success. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107089. [PMID: 40139065 DOI: 10.1016/j.marenvres.2025.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Seagrass transplantation significantly alters sediment microbial communities, shaping their composition and metabolic functions. One year after Zostera marina transplantation, the microbial community structure and functions at the recipient site began shifting toward those of the donor site. Key microbial taxa associated with seagrass meadow sediment, such as Firmicutes (Hungateiclostridiaceae, Defluviitaleaceae) and Campylobacterota (Sulfurovum), increased in abundance, correlating with sediment organic matter content and carbon availability. Four functional groups were identified, each with distinct metabolic roles: (1) Opportunistic Anaerobic Degraders, (2) Seagrass-Driven Carbon Recyclers, (3) Anaerobic Fermenters and Hydrocarbon Recyclers and (4) Oxygen-Linked Carbon and Sulfur Cyclers. The sediments of transplanted Z. marina meadows exhibited increased cellulolysis and aerobic chemoheterotrophy, along with a reduction in nitrogen metabolism one year post transplant. Despite these microbial shifts, sediment isotopic signatures remained indicative of algal biomass, suggesting an incomplete transition toward a mature seagrass environment. Multivariate analysis further confirmed that the microbial community at the recipient site had not yet fully converged with that of the donor meadow, indicating that complete sediment maturation may require longer timescales. These findings demonstrate that microbial community composition and functional annotations serve as early indicators of seagrass restoration success. Long-term monitoring is essential to track ecosystem recovery and assess the stabilization of sediment conditions.
Collapse
Affiliation(s)
- Andrea Augusto Sfriso
- Department of Life Sciences and Biotechnologies, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Abdul-Salam Juhmani
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, 13133, Zarqa, Jordan
| | - Yari Tomio
- Department of Environmental Sciences Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170, Mestre, Italy
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, 13133, Zarqa, Jordan
| | - Federico Cunsolo
- Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Giuseppe Forlani
- Department of Life Sciences and Biotechnologies, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Adriano Sfriso
- Department of Environmental Sciences Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170, Mestre, Italy
| | - Giacomo Ferretti
- Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Massimo Coltorti
- Department of Environment and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Cristina Munari
- Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Michele Mistri
- Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
2
|
Yang F, Zhu F, Shi H, Dong X, Sheng J, Zhou J. Magnetic Nanofibers in Heavy Metal Arsenic(V) Pollution Control Research. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9392-9405. [PMID: 40176350 DOI: 10.1021/acs.langmuir.5c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this experiment, PAN/Fe3O4@CTAB magnetic nanofibers (average diameter of 386 nm) were prepared by electrospinning for the removal of As(V) from an aqueous solution. Material characterization was analyzed using phase analysis of X-ray diffraction (XRD), a Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), and thermogravimetric analysis (TG), which demonstrated that the magnetic nanoparticles were successfully incorporated into the fiber membrane. Batch adsorption experiments revealed that the process followed pseudo-second-order kinetics and Langmuir isotherm models, achieving a maximum adsorption capacity of 138.66 mg/g, higher than that of unmodified PAN/Fe3O4 (93.59 mg/g). The adsorption efficiency of this adsorbent was high (97% removal in 300 min) and remained at 91% after five regeneration cycles (initial value of 98.65%). The response surface methodology (RSM) was also employed to construct and analyze the model to investigate the effects of three critical adsorption parameters, pH, adsorption time, and adsorbent concentration, on As(V). The optimal conditions for adsorption were determined to be a pH of 3.81, an adsorption time of 342 min, and an adsorbent concentration of 1.36 g/L, achieving an arsenic ion removal rate of 98.62%. The experimental results were found to be in accordance with the theoretical parameters, thereby providing further evidence that the synthesized material is an excellent adsorbent for the treatment of water pollution.
Collapse
Affiliation(s)
- Fangyuan Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
- College of Mathematics and Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Feiyu Zhu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hao Shi
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuzhen Dong
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jie Sheng
- College of Mathematics and Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jinlong Zhou
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
3
|
Wang C, Jiang T, Huang J, Chen M, Hu H, Peng L, Wu L, Chaocheng Z, Zhang Q. Efficient incorporation of highly migratory thallium into struvite structure: Unraveling the stabilization mechanisms from a mineralogical perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173329. [PMID: 38772482 DOI: 10.1016/j.scitotenv.2024.173329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The remediation of high-concentration thallium (Tl+) contaminated wastewater is a critical environmental concern. Current research emphasizes the effectiveness of adsorption and oxidation methods for Tl+ treatment, yet challenges persist in enhancing their performance. This study explores the feasibility of emergency Tl+ wastewater treatment and elucidates the mechanisms of Tl+ incorporation into mineral structures, with a focus on the struvite mineral as a framework for Tl+ integration via NH4+ ion exchange. To assess the efficacy and mechanisms of Tl+ immobilization, we utilized comprehensive analytical techniques, including X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS), Thermogravimetric Analysis (TG), and Density Functional Theory (DFT) calculations. The findings reveal that struvite adsorbs Tl+ onto its surface, followed by an ion exchange process between monovalent cations (NH4+/K+) within the structure and Tl+. Ultimately, Tl+ is incorporated in the form of a (NH4,Tl)MgPO4 solid solution within the structure, achieving a remarkable maximum incorporation capacity of 320.56 mg/g, which significantly surpasses the capacity of typical adsorbents. The findings demonstrate significant Tl+ incorporation, validating the approach for emergency wastewater treatment and suggesting the potential of mineralogy in environmental remediation. This research contributes to advancing heavy metal wastewater treatment strategies, offering a foundation for further investigation.
Collapse
Affiliation(s)
- Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ting Jiang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Junwei Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Min Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Huimin Hu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Lei Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Wu
- The First Construction and Installation Company of China Construction Third Engineering Bureau Ltd, China
| | - Zeng Chaocheng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
4
|
Morrone L, Neri L, Facini O, Galamini G, Ferretti G, Rotondi A. Influence of Chabazite Zeolite Foliar Applications Used for Olive Fruit Fly Control on Volatile Organic Compound Emission, Photosynthesis, and Quality of Extra Virgin Olive Oil. PLANTS (BASEL, SWITZERLAND) 2024; 13:698. [PMID: 38475542 DOI: 10.3390/plants13050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The olive fruit fly (Bactrocera oleae Rossi) is the most dangerous pest of olive fruits and negatively influences the chemical and sensory quality of the oil produced. Organic farms have few tools against this pest and are constantly looking for effective and sustainable products such as geomaterials, i.e., zeolite. Since a particle film covers the canopy, a study was carried out on the olive tree's responses to zeolite foliar coating. The tested treatments were natural zeolite (NZ), zeolite enriched with ammonium (EZ), and Spintor-Fly® (SF). EZ was associated with higher photosynthetic activity with respect to the other treatments, while no differences were found between SF and NZ. Foliar treatments affect the amount of BVOC produced in both leaves and olives, where 26 and 23 different BVOCs (biogenic volatile organic compounds) were identified but not the type of compounds emitted. Foliar treatment with EZ significantly affected fruit size, and the olive fruit fly more frequently attacked the olives, while treatment with NZ had olives with similar size and attack as those treated with Spintor-Fly®; no difference in oil quantity was detected. Oil produced from olives treated with NZ presented higher values of phenolic content and intensities of bitterness and spiciness than oils from those treated with EZ and SF. According to the results of this study, using zeolite films on an olive tree canopy does not negatively influence plant physiology; it has an impact on BVOC emission and the chemical and sensory characteristics of the oil.
Collapse
Affiliation(s)
- Lucia Morrone
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | - Luisa Neri
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | - Osvaldo Facini
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | - Giulio Galamini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Street Giuseppe Campi, 103, 41125 Modena, Italy
| | - Giacomo Ferretti
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| | - Annalisa Rotondi
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
5
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|