1
|
Varghese D, S R N, P JSJ, S M, J M, M VAR. Synergistic design of CuO/CoFe₂O₄/MWCNTs ternary nanocomposite for enhanced photocatalytic degradation of tetracycline under visible light. Sci Rep 2025; 15:320. [PMID: 39747156 PMCID: PMC11696163 DOI: 10.1038/s41598-024-82926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.8 nm and 37.5 nm, respectively, while the CCT nanocomposite had a crystallite size of 53 nm. Microscopy confirmed a particle size of 49.2 nm for the nanocomposite, with MWCNTs measuring 15.65 nm in diameter. The band gap energy of the CCT nanocomposite was 1.6 eV, which contributed to its enhanced photocatalytic activity, as evidenced by the lower emission intensity in PL analysis. BET analysis revealed a pore volume of 0.37 cc/g and a surface area of 82.3 m²/g. Photocatalytic performance was tested across various conditions, with adjustments to nanocomposite dosages (0.1-0.5 g/L), TC concentrations (5-25 mg/L), and pH levels (2-10). Under optimized conditions (0.3 g/L CCT, 5 mg/L TC, pH 10, 120 min of visible light exposure), the CCT achieved 98.1% degradation of TC. The optimized parameters were subsequently used to assess TC degradation with individual photocatalysts: CoFe₂O₄, CuO, CT, and CCT. The enhanced photocatalytic efficiency observed can be largely attributed to the improved charge transfer dynamics and effective electron-hole separation facilitated by MWCNT doping. The reaction followed a pseudo-first-order kinetic model, with hydroxyl radicals (OH•) identified as the key species in the degradation process. Moreover, the catalyst exhibited 96% retention of its photocatalytic efficiency after five consecutive cycles, demonstrating exceptional stability and reusability. These results emphasize the CCT composite's potential as a highly efficient and sustainable photocatalyst for the remediation of pharmaceutical pollutants in aquatic systems.
Collapse
Affiliation(s)
- Davis Varghese
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India
- Loyola Institute of Frontier Energy, Loyola College, Chennai, 600034, India
| | - Niranjana S R
- Department of Physics, Panimalar Engineering College, Chennai, 600123, India
| | - Joselene Suzan Jennifer P
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India
| | - Muthupandi S
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Madhavan J
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India
| | - Victor Antony Raj M
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India.
| |
Collapse
|
2
|
Balakrishnan A, Vijaya Suryaa K, Chinthala M, Kumar A. Mechanistic insights of PO 43- functionalized carbon nitride homojunction hydrogels in photocatalytic-self-Fenton-peroxymonosulfate system for tetracycline degradation. J Colloid Interface Sci 2024; 669:366-382. [PMID: 38718590 DOI: 10.1016/j.jcis.2024.04.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/27/2024]
Abstract
In this study, metal-free PO43- enriched g-C3N4/g-C3N4 (PGCN) homojunction alginate 3D beads were developed for in-situ H2O2 production under visible light. Later, the photocatalytic-self-Fenton system was integrated with peroxymonosulfate for tetracycline degradation. Initially, the PO43- enriched g-C3N4 (PCN) and a homojunction composed of PCN and g-C3N4 (GCN) were prepared via the wet-impregnation method. Later, PGCN homojunction was formulated into 3D alginate beads through the blend-crosslinking method. The comprehensive characterization of the homojunction beads affirmed the closer contact between the semiconductors, alteration of the bandgap, faster channelization of electron-hole pairs, and improved separation of charge carriers that attributed to higher catalytic efficacy. The PGCN beads exhibited a maximum H2O2 production of 535 ± 12 µM under visible light irradiation for 60 min. The homojunction hydrogels displayed 99 ± 0.25 % tetracycline degradation in 20 min in the photocatalytic-self-Fenton-PMS system. The experimental studies also claimed a maximum chemical oxygen demand removal of 81 ± 3.6 % in 20 min with maximum reusability of beads up to 20 cycles. The Z-scheme electron migration mechanism is proposed based on the results aided by scavenger and electron spin resonance analysis. Overall, the as-synthesized alginate-supported homojunction-based photocatalytic-self-Fenton-peroxymonosulfate system is highly versatile and reusable for energy and environmental remediation.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - K Vijaya Suryaa
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India.
| | - Arvind Kumar
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| |
Collapse
|
3
|
Gong X, Liu J, Zhang C, Cao M, Min Y, Yuan C, Hu X, Xu J, Liu H. Protonated amine and pyrene co-functionalized sodium alginate templated on reduced graphene oxide for highly efficient removal of formaldehyde and acid pollutants. Int J Biol Macromol 2024; 274:133377. [PMID: 38925180 DOI: 10.1016/j.ijbiomac.2024.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Indoor formaldehyde pollution can cause inestimable harm to human health and even cancers, thus studies on the removal of formaldehyde attract extensive attentions. In this paper, an environmentally friendly and low-cost biomass material, sodium alginate (SA) was utilized to prepare pyrene functionalized amido-amine-alginic acid (AmAA-Py) by acidification and two-step amidation, which is subsequently self-assembled on reduced graphene oxide (rGO) by π-π stacking interaction, and the final composites were acidified to afford a highly porous composite material for chemical removal of formaldehyde. The formaldehyde chemical removal performance of composite is evaluated at different conditions and find that 1.0 g of acidified alginate derivatives and graphene composites (HCl·AmAA-Py-rGO) can adsorb 69.2 mg of HCHO. Simultaneously, amino groups in amido-amine derivative of acidified sodium alginate (AmAA) can react with acidic pollutants such as H2S and HCl via forming ionic bonding without generating any other by-products, which enables efficient and environment-friendly removal of acidic pollutants. The subtle design of the highly porous composite material utilizing low-cost SA and rGO with large specific surface area opens up a new methodology for fabricating highly porous materials for efficient removal of formaldehyde and other indoor hazardous pollutants.
Collapse
Affiliation(s)
- Xiaole Gong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengyu Cao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| | - Yuru Min
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| | - Chenyao Yuan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| | - Xiaoxia Hu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
4
|
Li X, Wang H, Li S, Xu Y, Bian Z. Doping and defects in carbon nitride cause efficient in situ H 2O 2 synthesis to allow efficient photocatalytic sterilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172109. [PMID: 38556021 DOI: 10.1016/j.scitotenv.2024.172109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In situ photocatalytic synthesis of H2O2 for disinfection has attracted widespread attention because it is a clean and environmentally friendly sterilization method. Graphitic carbon nitride has been used as a very selective photocatalyst for H2O2 generation but has some limitations (e.g., insufficient light absorption, rapid electron-hole recombination, and slow direct two-electron reduction processes) that prevent efficient H2O2 production. In this study, potassium-doped graphite carbon nitride with nitrogen vacancies (NDKCN) was prepared using a simple method involving a thermal fusion salt and N2 calcination, which possessed an ultrathin nanosheet structure (1.265 nm) providing abundant active sites. Synergistic effects caused by nitrogen vacancies and K+ and I- doping in the NDKCN photocatalyst gave the NDKCN a good ability to absorb light, undergo fast charge transfer, and give a high photoelectric current response. The optimized photocatalytic H2O2 yield of the NDKCN was 780.1 μM·g-1·min-1, which was 10 times the yield of the pristine g-C3N4. Tests involving quenching reactive species, electron spin resonance, and rotating disk electrodes indicated that one-step two-electron direct reduction on the NDKCN caused excellent H2O2 generation performance. The ability to efficiently generate H2O2 in situ gave NDKCN an excellent bactericidal performance, and 7.3 log10 (colony-forming units·mL-1) of Escherichia coli were completely eliminated within 80 min. Scanning electron microscopy images before and after sterilization indicated the changes in bacteria caused by the catalytic activity. The new g-C3N4-based photocatalyst and similar rationally designed photocatalysts with doping and defects offer efficient and simple in situ H2O2 sterilization.
Collapse
Affiliation(s)
- Xinyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Shunlin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ye Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Abbas M, Hussain Shah N, Ilyas M, Mudasar M, Raza A, Ashfaq Ahmad M, Cui Y, Wang Y. WO 3-x nanorods/rGO/AgBiS 2 Z-scheme heterojunction with comprehensive spectrum response and enhanced Fenton and photocatalytic activities. J Colloid Interface Sci 2024; 662:250-262. [PMID: 38350348 DOI: 10.1016/j.jcis.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Tetracycline (TC) antibiotics and dyes are the prevalent water contaminants, and their removal from the water through photocatalysis is a plausible approach. However, most semiconductors in their pristine form need to be improved to be exploited in photocatalysis owing to poor photoresponse, intense carrier recombination, and inertness without irradiation. Herein, we demonstrate the modification of defective WO3-x by rGO and AgBiS2 in the form of WO3-x/rGO/AgBiS2 (R2). It exploits the superior conductivity and synergism of rGO to inhibit carrier recombination; thereby, Z-scheme heterojunction with AgBiS2 provides high redox potential. Defects in WO3-x enable electron (e-) storage in R2, which decomposes H2O2 to generate ROS without irradiation. Owing to these essences and broad-spectrum response, it removed 93.72, 82.77, and 84.82% of TC during photo-Fenton (PFR), night-Fenton (NFR), and photocatalytic (PCR) reactions, respectively. Its removal rates reached 94.74, 81.54, and 87.50% against rhodamine B (RhB) during PFR, NFR, and PCR, respectively. It is superior to memory catalysis (MC) and conventional Fenton reactions (CFR) because it can perform without and with irradiation across a broader pH range. So, this work is conducive to designing WO3-x-based catalysts to combat environmental and energy crises.
Collapse
Affiliation(s)
- Muhammad Abbas
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Navid Hussain Shah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Mubashar Ilyas
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry Beijing Institute of Technology Beijing 100081, China
| | - Murtaza Mudasar
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ali Raza
- Department of Mechanical Engineering, University of Engineering and Technology Lahore, Pakistan
| | - M Ashfaq Ahmad
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
6
|
Gu Q, Feng C, Rong J, Zhang Y, Zheng X, Mei J, Li Z, Xu S. NiCoP cocatalyst modified g-C 3N 4 as ohmic junction photocatalyst for efficient degradation of tetracycline under visible light. ENVIRONMENTAL RESEARCH 2024; 249:118358. [PMID: 38325777 DOI: 10.1016/j.envres.2024.118358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
Increasing the electron-hole recombination rate in g-C3N4 can effectively improve its photocatalytic performance. In this work, NiCoP/g-C3N4 (NCP/PCN) composites with ohmic junction were formed by embedding granular NiCoP in irregularly porous g-C3N4. There was almost no barrier between the metal and the semiconductor in ohmic junction, which made it easier for electrons to slip from PCN to NCP along the curved energy band, and NCP acted as an electron collector to rapidly capture the slipping electrons. In addition, porous g-C3N4 prepared by supramolecular self-assembly could provide a shorter diffusion path for electrons. Thus, the electron-hole was effectively separated and the photocatalytic performance was improved. The band electronic structure and existence of ohmic junction in 7-NCP/PCN composite were demonstrated by XPS, ESR and DFT calculation. Finally, a reasonable photocatalytic degradation mechanism and possible tetracycline degradation path were proposed. This work has significant potential for providing an effective method for the design of non-precious metal photocatalysts.
Collapse
Affiliation(s)
- Qinyi Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Chujun Feng
- School of Safety Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China; School of Safety Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Song Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
7
|
Xu N, Liu K, Liu Q, Wang Q, Zhu A, Fan L. Peroxymonosulfate enhanced photocatalytic degradation of organic dye by metal-free TpTt-COF under visible light irradiation. Sci Rep 2024; 14:8183. [PMID: 38589499 PMCID: PMC11001911 DOI: 10.1038/s41598-024-58761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
Recently, the activation of persulfate (PDS) by non-metallic photocatalysts under visible light has attracted significant interest in applications in environmental remediation. This study presents a pioneering investigation into the combined application of the TpTt-COF and PMS for visible light degradation of organic dyes. Synthesized orange TpTt-COF monomers exhibit exceptional crystallinity, a 2D structure, and notable stability in harsh conditions. The broad visible light absorption around a wavelength of 708 nm. The TpTt-COF emerges as a promising candidate for photocatalytic dye degradation. The study addresses high charge recombination in the TpTt-COF, highlighting the crucial role of its electron donor and acceptor for the PMS activation. Comparative analyses against traditional photocatalytic materials, such as the metal-free carbon-based material g-C3N4 and transition metal-containing TiO2, demonstrate TpTt-COF's superior performance, generating diverse free radicals. In simulated experiments, the TpTt-COF's degradation rate surpasses PMS-combined g-C3N4 by 13.9 times. and 1.6 times higher than the TpTt-COF alone. Remarkably, the TpTt-COF maintains high activity under harsh environments. Investigations into the degradation mechanism and the TpTt-COF's reusability reveal its efficiency and stability. Under visible light, TpTt-COF facilitates efficient electron-hole separation. Combining the TpTt-COF with PMS produces various radicals, ensuring effective separation and a synergistic effect. Radical quenching experiments confirm the pivotal role of O2-· radicals, while ·OH and SO4-· radicals intensify the degradation. After five cycles, TpTt-COF maintains an impressive 83.2% degradation efficiency. This study introduces an efficient photocatalytic system mediated by PMS and valuable insights into governing mechanisms for organic pollutant degradation in water environments.
Collapse
Affiliation(s)
- Nong Xu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, People's Republic of China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211895, People's Republic of China
| | - Kaixuan Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, People's Republic of China
| | - Qiao Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, People's Republic of China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, People's Republic of China.
| | - Qing Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211895, People's Republic of China
| | - Anzheng Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, People's Republic of China
| | - Long Fan
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
8
|
Brillas E, Peralta-Hernández JM. Antibiotic removal from synthetic and real aqueous matrices by peroxymonosulfate-based advanced oxidation processes. A review of recent development. CHEMOSPHERE 2024; 351:141153. [PMID: 38219991 DOI: 10.1016/j.chemosphere.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada s/n, Pueblito, United States.
| |
Collapse
|
9
|
Patial S, Sudhaik A, Sonu, Thakur S, Van Le Q, Ahamad T, Singh P, Huang CW, Nguyen VH, Raizada P. Synergistic interface engineering in n-p-n type heterojunction Co 3O 4/MIL/Mn-STO with dual S-scheme multi-charge migration to enhance visible-light photocatalytic degradation of antibiotics. ENVIRONMENTAL RESEARCH 2024; 240:117481. [PMID: 37890829 DOI: 10.1016/j.envres.2023.117481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Constructing an effective multi-heterojunction photocatalyst with maximum charge carrier separation remains challenging. Herein, a high-efficient Co3O4/MIL-88A/Mn-SrTiO3 (Co3O4/MIL/Mn-STO) n-p-n heterojunction photocatalyst was successfully prepared by a simple hydrothermal method for the photodegradation of sulfamethoxazole (SMX). The combination of MIL and Co3O4/Mn-STO established an internal electric field and heterojunction, accelerating the separation of carriers, and thus improved photocatalytic performance. In the Co3O4/MIL/Mn-STO photocatalytic system, 95.5 % of SMX was degraded in 90 min. The photocatalytic kinetic removal rate of Co3O4/MIL/Mn-STO reached 0.0337 min-1, 8 times of Co3O4 (0.0041 min-1), 5.2 times of Mn-STO (0.0062 min-1), 4.6 times of MIL (0.0078 min-1), and 3.6 times of MIL/Mn-STO (0.0095 min-1). Remarkably, superoxide radicals (•O2-) and holes (h+) have been recognized as the main active species in the degradation process through reactive species elimination experiments and electron spin resonance (ESR) tests. The experimental and theoretical proved the in-built interfacial contact and synergistic effect between the photocatalyst accomplished with low bandgaps, high specific surface area, more reaction sites, high electron-hole pair separation, and maximum solar-light utilization. The molecular structure and possible degradation routes with intermediate products in the photocatalytic system were investigated using a liquid chromatography-mass spectrometer (LC-MS) and DFT calculations. This work provided new insight into the guidelines of rational design/growth of new multicomponent photocatalysts to remove antibiotics and other emerging contaminants in wastewater.
Collapse
Affiliation(s)
- Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan (Himachal Pradesh)- 8, 173229, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan (Himachal Pradesh)- 8, 173229, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan (Himachal Pradesh)- 8, 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan (Himachal Pradesh)- 8, 173229, India
| | - Chao-Wei Huang
- Department of Engineering Science, National Cheng Kung University, No. 1, Daxue Rd., East Dist., Tainan, 701401, Taiwan
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan (Himachal Pradesh)- 8, 173229, India.
| |
Collapse
|
10
|
Lin Z, Wang Z, Xu Z, Xiao Z, Fang Z, Luo J, Li P, Chen P, Lv W, Liu G. Self-assembly construction of 1D carbon nitride nanotubes and cobalt-modified for superior photocatalytic degradation of sulfonamide antibiotics. CHEMOSPHERE 2023; 343:140299. [PMID: 37769924 DOI: 10.1016/j.chemosphere.2023.140299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
In the present work, a cobalt-doped carbon nitride nanotubes (Co-CNt) was synthesized via self-assembly process. Contributed to the narrow band gap, enlarged specific surface area and abundant active sites, Co-CNt has excellent photoelectric properties and superior performance than pristine CN in sulfisoxazole (SIZ) degradation under blue light irradiation, which achieved 100% removal within 40 min. Meanwhile, the system not only exhibited practical applicability by efficiently degrading SIZ, but also generating high levels of H2O2. Moreover, the Co-CNt/visible light system shows superior operability over a wide pH range, micro-concentration contaminants, various anions, water matrices and other sulfonamides with promising catalytic stability and applicability. The contribution of RSs in the degradation process were elucidated based on radical scavenging and spin-trapped tests, clarifying that O2·- and h+ majorly dominated the process. In addition, 4 probable degradation pathways of SIZ were provided and the generated intermediates' toxicity were evaluated. Overall, this study successfully synthesized a self-assembled 1D tubular photocatalyst with Co-doped and demonstrated the potential Co-CNt/visible light system for environmental remediation, providing a promising approach for the development of photocatalysis.
Collapse
Affiliation(s)
- Zifeng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhongquan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zihong Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zheng Fang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Su C, Zhang N, Zhu X, Sun Z, Hu X. pH adjustable MgAl@LDH-coated MOFs-derived Co 2.25Mn 0.75O 4 for SMX degradation in PMS activated system. CHEMOSPHERE 2023; 339:139672. [PMID: 37517665 DOI: 10.1016/j.chemosphere.2023.139672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) is considered as one of the most promising technologies for antibiotic pollution. In this study, a core-shell catalyst of cobalt-manganese oxide derived from CoMn-MOFs coating by MgAl-LDH (Co/Mn@LDH) was synthesized for peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX). Degradation efficiency of nearly 100% and a mineralization efficiency of 68.3% for SMX were achieved in Co/Mn@LDH/PMS system. Mn species and out shell MgAl-LDH greatly suppressed the cobalt ions leaching, which only 23 μg/L Co ions were detected by ICP after the reaction. SO4·- was identified as dominant reactive species in the system. Furthermore, the possible reactive sites of SMX were predicted by the density functional theory (DFT) calculations. And the intermediates of SMX were detected by LC-MS and the degradation pathway was proposed based on the results above. The ECOSAR results suggested the intermediates of SMX showed a relatively low toxicity compared to SMX, indicating huge potential of utilization of Co/Mn@LDH in SR-AOPs system.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Nizi Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaobiao Zhu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
12
|
Li J, Jiang X, Guan H, Liu Z, Li J, Lin Z, Li F, Xu W. Visible-light-driven peroxymonosulfate activation by robust TiO 2-base nanoparticles for efficient removal of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122150. [PMID: 37429490 DOI: 10.1016/j.envpol.2023.122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
In this study, a novel bimetallic Co-Mo-TiO2 nanomaterial was fabricated through a simple two-step method, and applied as photocatalyst to activate peroxymonosulfate (PMS) with high efficiency for sulfamethoxazole (SMX) removal under visible light. Nearly 100% of SMX was degraded within 30 min in Vis/Co-Mo-TiO2/PMS system, and its kinetic reaction rate constant (0.099 min-1) was 24.8 times higher compare with the Vis/TiO2/PMS system (0.014 min-1). Moreover, the quenching experiments and the electronic spin resonance analysis results confirmed that both 1O2 and SO4•- were the dominant active species in the optimal system, and the redox cycles of Co3+/Co2+ and Mo6+/Mo4+ promoted the generation of the radicals during the PMS activation process. Additionally, the Vis/Co-Mo-TiO2/PMS system exhibited a wide working pH range, superior catalytic performance toward different pollutants and excellent stability with 92.8% SMX removal capacity retention after three consecutive cycles. The result of density functional theory (DFT) suggested that Co-Mo-TiO2 exhibited a high affinity for PMS adsorption, as indicated by the length O-O bond from PMS and the Eads of the catalysts. Finally, the possible degradation pathway of SMX in optimal system was proposed through intermediate identification and DFT calculation, and a toxicity assessment of the by-products was also conducted.
Collapse
Affiliation(s)
- Jianghong Li
- School of Transportation and Civil Engineering, Foshan University, Foshan, 528000, China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Haishan Guan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Zhifeng Lin
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Fuhua Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
13
|
Quang HHP, Dinh DA, Dutta V, Chauhan A, Lahiri SK, Gopalakrishnan C, Radhakrishnan A, Batoo KM, Thi LAP. Current approaches, and challenges on identification, remediation and potential risks of emerging plastic contaminants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104193. [PMID: 37348772 DOI: 10.1016/j.etap.2023.104193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Plastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosystems, and biological organisms is considered a severe threat to the environmental system. Geographical distribution, migration patterns, etymologies of formation, and ecological ramifications of absorption are just a few topics covered in the scientific literature on environmental issues. Degradable solutions from material science and chemistry are needed to address the micro/nanoplastics problem, primarily to reduce the production of these pollutants and their potential effects. Removing micro/nanoplastics from their discharge points has been a central and effective way to mitigate the adverse pollution effects. In this review, we begin by discussing the hazardous effect on living beings and the identification-characterization of micro/nanoplastics. Then, we provide a summary of the existing degradation strategies, which include bio-degradation and advanced oxidation processes (AOPs), and a detailed discussion of their degradation mechanisms is also represented. Finally, a persuasive summary of the evaluated work and projections for the future of this topic is provided.
Collapse
Affiliation(s)
- Huy Hoang Phan Quang
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Duc Anh Dinh
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Vishal Dutta
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab.
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, 5 King's College Road, University of Toronto, Canada
| | - C Gopalakrishnan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Tamil Nadu, 603203, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam; Center for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam.
| |
Collapse
|
14
|
Xu X, Li P, Zhong Y, Yu J, Miao C, Tong G. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol 2023:125203. [PMID: 37270116 DOI: 10.1016/j.ijbiomac.2023.125203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Vanillin plays an important role not only in food and flavouring, but also as a platform compound for the synthesis of other valuable products, mainly derived from the oxidative decarboxylation of petroleum-based guaiacol production. In order to alleviate the problem of collapsing oil resources, the preparation of vanillin from lignin has become a good option from the perspective of environmental sustainability, but it is still not optimistic in terms of vanillin production. Currently, catalytic oxidative depolymerization of lignin for the preparation of vanillin is the main development trend. This paper mainly reviews four ways of preparing vanillin from lignin base: alkaline (catalytic) oxidation, electrochemical (catalytic) oxidation, Fenton (catalytic) oxidation and photo (catalytic) oxidative degradation of lignin. In this work, the working principles, influencing factors, vanillin yields obtained, respective advantages and disadvantages and the development trends of the four methods are systematically summarized, and finally, several methods for the separation and purification of lignin-based vanillin are briefly reviewed.
Collapse
Affiliation(s)
- Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|